Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic polymorphisms in key methotrexate pathway genes are associated with response to treatment in rheumatoid arthritis patients

Abstract

We investigated the effect of single-nucleotide polymorphisms (SNPs) spanning 10 methotrexate (MTX) pathway genes, namely AMPD1, ATIC, DHFR, FPGS, GGH, ITPA, MTHFD1, SHMT1, SLC19A1 (RFC) and TYMS on the outcome of MTX treatment in a UK rheumatoid arthritis (RA) patient cohort. Tagging SNPs were selected and genotyping was performed in 309 patients with predefined outcomes to MTX treatment. Of the 129 SNPs tested, 11 associations were detected with efficacy (P-trend 0.05) including four SNPs in the ATIC gene (rs12995526, rs3821353, rs7563206 and rs16853834), six SNPs in the SLC19A1 gene region (rs11702425, rs2838956, rs7499, rs2274808, rs9977268 and rs7279445) and a single SNP within the GGH gene (rs12681874). Five SNPs were significantly associated with adverse events; three in the DHFR gene (rs12517451, rs10072026, and rs1643657) and two of borderline significance in the FPGS gene. The results suggest that genetic variations in several key MTX pathway genes may influence response to MTX in the RA patients. Further studies will be required to validate these findings and if confirmed these results could contribute towards a better understanding of and ability to predict MTX response in RA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anderson JJ, Wells G, Verhoeven AC, Felson DT . Factors predicting response to treatment in rheumatoid arthritis: the importance of disease duration. Arthritis Rheum 2000; 43: 22–29.

    Article  CAS  PubMed  Google Scholar 

  2. Finckh A, Liang MH, van Herckenrode CM, de Pablo P . Long-term impact of early treatment on radiographic progression in rheumatoid arthritis: A meta-analysis. Arthritis Rheum 2006; 55: 864–872.

    Article  PubMed  Google Scholar 

  3. Weinblatt ME, Coblyn JS, Fox DA, Fraser PA, Holdsworth DE, Glass DN et al. Efficacy of low-dose methotrexate in rheumatoid arthritis. N Engl J Med 1985; 312: 818–822.

    Article  CAS  PubMed  Google Scholar 

  4. Williams HJ, Willkens RF, Samuelson Jr CO, Alarcon GS, Guttadauria M, Yarboro C et al. Comparison of low-dose oral pulse methotrexate and placebo in the treatment of rheumatoid arthritis. A controlled clinical trial. Arthritis Rheum 1985; 28: 721–730.

    Article  CAS  PubMed  Google Scholar 

  5. Le Loet X, Berthelot JM, Cantagrel A, Combe B, De Bandt M, Fautrel B et al. Clinical practice decision tree for the choice of the first disease modifying antirheumatic drug for very early rheumatoid arthritis: a 2004 proposal of the French Society of Rheumatology. Ann Rheum Dis 2006; 65: 45–50.

    Article  CAS  PubMed  Google Scholar 

  6. Sokka T, Kautiainen H, Toloza S, Makinen H, Verstappen SM, Lund Hetland M et al. QUEST-RA: quantitative clinical assessment of patients with rheumatoid arthritis seen in standard rheumatology care in 15 countries. Ann Rheum Dis 2007; 66: 1491–1496.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jones G, Halbert J, Crotty M, Shanahan EM, Batterham M, Ahern M . The effect of treatment on radiological progression in rheumatoid arthritis: a systematic review of randomized placebo-controlled trials. Rheumatology 2003; 42: 6–13.

    Article  CAS  PubMed  Google Scholar 

  8. Pincus T, Ferraccioli G, Sokka T, Larsen A, Rau R, Kushner I et al. Evidence from clinical trials and long-term observational studies that disease-modifying anti-rheumatic drugs slow radiographic progression in rheumatoid arthritis: updating a 1983 review. Rheumatology 2002; 41: 1346–1356.

    Article  CAS  PubMed  Google Scholar 

  9. Alarcon GS, Tracy IC, Blackburn Jr WD . Methotrexate in rheumatoid arthritis. Toxic effects as the major factor in limiting long-term treatment. Arthritis Rheum 1989; 32: 671–676.

    Article  CAS  PubMed  Google Scholar 

  10. Gispen JG, Alarcon GS, Johnson JJ, Acton RT, Barger BO, Koopman WJ . Toxicity of methotrexate in rheumatoid arthritis. J Rheumatol 1987; 14: 74–79.

    CAS  PubMed  Google Scholar 

  11. Salliot C, van der Heijde D . Long-term safety of methotrexate monotherapy in patients with rheumatoid arthritis: a systematic literature research. Ann Rheum Dis 2009; 68: 1100–1104.

    Article  CAS  PubMed  Google Scholar 

  12. Chakravarty K, McDonald H, Pullar T, Taggart A, Chalmers R, Oliver S et al. BSR/BHPR guideline for disease-modifying anti-rheumatic drug (DMARD) therapy in consultation with the British Association of Dermatologists. Rheumatology 2008; 47: 924–925.

    Article  CAS  PubMed  Google Scholar 

  13. Hoekstra M, van Ede AE, Haagsma CJ, van de Laar MA, Huizinga TW, Kruijsen MW et al. Factors associated with toxicity, final dose, and efficacy of methotrexate in patients with rheumatoid arthritis. Ann Rheum Dis 2003; 62: 423–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hider SL, Silman AJ, Thomson W, Lunt M, Bunn D, Symmons DP . Can clinical factors at presentation be used to predict outcome of treatment with methotrexate in patients with early inflammatory polyarthritis? Ann Rheum Dis 2009; 68: 57–62.

    Article  CAS  PubMed  Google Scholar 

  15. van Ede AE, Laan RF, Rood MJ, Huizinga TW, van de Laar MA, van Denderen CJ et al. Effect of folic or folinic acid supplementation on the toxicity and efficacy of methotrexate in rheumatoid arthritis: a forty-eight week, multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum 2001; 44: 1515–1524.

    Article  CAS  PubMed  Google Scholar 

  16. Cronstein BN . Going with the flow: methotrexate, adenosine, and blood flow. Ann Rheum Dis 2006; 65: 421–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cutolo M, Sulli A, Pizzorni C, Seriolo B, Straub RH . Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann Rheum Dis 2001; 60: 729–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Riksen NP, Barrera P, van den Broek PH, van Riel PL, Smits P, Rongen GA . Methotrexate modulates the kinetics of adenosine in humans in vivo. Ann Rheum Dis 2006; 65: 465–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jansen G, Mauritz R, Drori S, Sprecher H, Kathmann I, Bunni M et al. A structurally altered human reduced folate carrier with increased folic acid transport mediates a novel mechanism of antifolate resistance. J Biol Chem 1998; 273: 30189–30198.

    Article  CAS  PubMed  Google Scholar 

  20. Laverdiere C, Chiasson S, Costea I, Moghrabi A, Krajinovic M . Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia. Blood 2002; 100: 3832–3834.

    Article  PubMed  Google Scholar 

  21. McGuire JJ, Hsieh P, Bertino JR . Enzymatic synthesis of polyglutamate derivatives of 7-hydroxymethotrexate. Biochem Pharmacol 1984; 33: 1355–1361.

    Article  CAS  PubMed  Google Scholar 

  22. Hider SL, Thomson W, Mack LF, Armstrong DJ, Shadforth M, Bruce IN . Polymorphisms within the adenosine receptor 2a gene are associated with adverse events in RA patients treated with MTX. Rheumatology 2008; 47: 1156–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31: 315–324.

    Article  CAS  PubMed  Google Scholar 

  24. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Z, Shi Q, Sturgis EM, Spitz MR, Hong WK, Wei Q . Thymidylate synthase 5′- and 3′-untranslated region polymorphisms associated with risk and progression of squamous cell carcinoma of the head and neck. Clin Cancer Res 2004; 10: 7903–7910.

    Article  CAS  PubMed  Google Scholar 

  26. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wadelius M, Chen LY, Downes K, Ghori J, Hunt S, Eriksson N et al. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J 2005; 5: 262–270.

    Article  CAS  PubMed  Google Scholar 

  28. Eichelbaum M, Ingelman-Sundberg M, Evans WE . Pharmacogenomics and individualized drug therapy. Annu Rev Med 2006; 57: 119–137.

    Article  CAS  PubMed  Google Scholar 

  29. Cooper GM, Johnson JA, Langaee TY, Feng H, Stanaway IB, Schwarz UI et al. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood 2008; 112: 1022–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, Soranzo N et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genetics 2009; 5: e1000433.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dervieux T, Furst D, Lein DO, Capps R, Smith K, Walsh M et al. Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum 2004; 50: 2766–2774.

    Article  CAS  PubMed  Google Scholar 

  32. Weisman MH, Furst DE, Park GS, Kremer JM, Smith KM, Wallace DJ et al. Risk genotypes in folate-dependent enzymes and their association with methotrexate-related side effects in rheumatoid arthritis. Arthritis Rheum 2006; 54: 607–612.

    Article  CAS  PubMed  Google Scholar 

  33. Dervieux T, Furst D, Lein DO, Capps R, Smith K, Caldwell J et al. Pharmacogenetic and metabolite measurements are associated with clinical status in patients with rheumatoid arthritis treated with methotrexate: results of a multicentred cross sectional observational study. Ann Rheum Dis 2005; 64: 1180–1185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sharma S, Das M, Kumar A, Marwaha V, Shankar S, Aneja R et al. Interaction of genes from influx-metabolism-efflux pathway and their influence on methotrexate efficacy in rheumatoid arthritis patients among Indians. Pharmacogenet Genomics 2008; 18: 1041–1049.

    Article  CAS  PubMed  Google Scholar 

  35. Sharma S, Das M, Kumar A, Marwaha V, Shankar S, Singh P et al. Purine biosynthetic pathway genes and methotrexate response in rheumatoid arthritis patients among north Indians. Pharmacogenet Genomics 2009; 19: 823–828.

    Article  CAS  PubMed  Google Scholar 

  36. Wessels JA, de Vries-Bouwstra JK, Heijmans BT, Slagboom PE, Goekoop-Ruiterman YP, Allaart CF et al. Efficacy and toxicity of methotrexate in early rheumatoid arthritis are associated with single-nucleotide polymorphisms in genes coding for folate pathway enzymes. Arthritis Rheum 2006; 54: 1087–1095.

    Article  CAS  PubMed  Google Scholar 

  37. Drozdzik M, Rudas T, Pawlik A, Gornik W, Kurzawski M, Herczynska M . Reduced folate carrier-1 80G>A polymorphism affects methotrexate treatment outcome in rheumatoid arthritis. Pharmacogenomics J 2007; 7: 404–407.

    Article  CAS  PubMed  Google Scholar 

  38. Hayashi H, Fujimaki C, Daimon T, Tsuboi S, Matsuyama T, Itoh K . Genetic polymorphisms in folate pathway enzymes as a possible marker for predicting the outcome of methotrexate therapy in Japanese patients with rheumatoid arthritis. J Clin Pharm Ther 2009; 34: 355–361.

    Article  CAS  PubMed  Google Scholar 

  39. Takatori R, Takahashi KA, Tokunaga D, Hojo T, Fujioka M, Asano T et al. ABCB1 C3435T polymorphism influences methotrexate sensitivity in rheumatoid arthritis patients. Clin Exp Rheumatol 2006; 24: 546–554.

    CAS  PubMed  Google Scholar 

  40. Fukino K, Kawashima T, Suzuki M, Ueno K . Methylenetetrahydrofolate reductase and reduced folate carrier-1 genotypes and methotrexate serum concentrations in patients with rheumatoid arthritis. J Toxicol Sci 2007; 32: 449–452.

    Article  CAS  PubMed  Google Scholar 

  41. Bohanec Grabar P, Logar D, Lestan B, Dolzan V . Genetic determinants of methotrexate toxicity in rheumatoid arthritis patients: a study of polymorphisms affecting methotrexate transport and folate metabolism. Eur J Clin Pharmacol 2008; 64: 1057–1068.

    Article  CAS  PubMed  Google Scholar 

  42. Chatzikyriakidou A, Georgiou I, Voulgari PV, Papadopoulos CG, Tzavaras T, Drosos AA . Transcription regulatory polymorphism -43T>C in the 5′-flanking region of SLC19A1 gene could affect rheumatoid arthritis patient response to methotrexate therapy. Rheumatol Int 2007; 27: 1057–1061.

    Article  CAS  PubMed  Google Scholar 

  43. James HM, Gillis D, Hissaria P, Lester S, Somogyi AA, Cleland LG et al. Common polymorphisms in the folate pathway predict efficacy of combination regimens containing methotrexate and sulfasalazine in early rheumatoid arthritis. J Rheumatol 2008; 35: 562–571.

    CAS  PubMed  Google Scholar 

  44. Lee YC, Cui J, Costenbader KH, Shadick NA, Weinblatt ME, Karlson EW . Investigation of candidate polymorphisms and disease activity in rheumatoid arthritis patients on methotrexate. Rheumatology 2009; 48: 613–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wessels JA, Kooloos WM, De Jonge R, De Vries-Bouwstra JK, Allaart CF, Linssen A et al. Relationship between genetic variants in the adenosine pathway and outcome of methotrexate treatment in patients with recent-onset rheumatoid arthritis. Arthritis Rheum 2006; 54: 2830–2839.

    Article  CAS  PubMed  Google Scholar 

  46. Hinks A, Moncrieffe H, Martin P, Ursu S, Lal S, Kassoumeri L et al. Association of the 5-aminoimidazole-4-carboxamide ribonucleotide transformylase gene with response to methotrexate in juvenile idiopathic arthritis. Ann Rheum Dis 2011; 70: 1395–1400.

    Article  CAS  PubMed  Google Scholar 

  47. Wessels JA, van der Kooij SM, le Cessie S, Kievit W, Barerra P, Allaart CF et al. A clinical pharmacogenetic model to predict the efficacy of methotrexate monotherapy in recent-onset rheumatoid arthritis. Arthritis Rheum 2007; 56: 1765–1775.

    Article  CAS  PubMed  Google Scholar 

  48. Dervieux T, Greenstein N, Kremer J . Pharmacogenomic and metabolic biomarkers in the folate pathway and their association with methotrexate effects during dosage escalation in rheumatoid arthritis. Arthritis Rheum 2006; 54: 3095–3103.

    Article  CAS  PubMed  Google Scholar 

  49. van der Straaten R, Wessels JA, de Vries-Bouwstra JK, Goekoop-Ruiterman YP, Allaart CF, Bogaartz J et al. Exploratory analysis of four polymorphisms in human GGH and FPGS genes and their effect in methotrexate-treated rheumatoid arthritis patients. Pharmacogenomics 2007; 8: 141–150.

    Article  CAS  PubMed  Google Scholar 

  50. Kato T, Hamada A, Mori S, Saito H . Genetic polymorphisms in metabolic and cellular transport pathway of methotrexate impact clinical outcome of methotrexate monotherapy in Japanese patients with rheumatoid arthritis. Drug Metab Pharmacokinet 2011; 22 November 2011 (e-pub ahead of print).

  51. Stamp LK, Chapman PT, O’Donnell JL, Zhang M, James J, Frampton C et al. Polymorphisms within the folate pathway predict folate concentrations but are not associated with disease activity in rheumatoid arthritis patients on methotrexate. Pharmacogenet Genomics 2010; 20: 367–376.

    Article  CAS  PubMed  Google Scholar 

  52. Dervieux T, Kremer J, Lein DO, Capps R, Barham R, Meyer G et al. Contribution of common polymorphisms in reduced folate carrier and gamma-glutamylhydrolase to methotrexate polyglutamate levels in patients with rheumatoid arthritis. Pharmacogenetics 2004; 14: 733–739.

    Article  CAS  PubMed  Google Scholar 

  53. Zeng QY, Wang YK, Xiao ZY, Chen SB . Pharmacogenetic study of 5,10-methylenetetrahydrofolate reductase C677T and thymidylate synthase 3R/2R gene polymorphisms and methotrexate-related toxicity in Chinese Han patients with inflammatory arthritis. Ann Rheum Dis 2008; 67: 1193–1194.

    Article  PubMed  Google Scholar 

  54. Ghodke Y, Chopra A, Joshi K, Patwardhan B . Are thymidylate synthase and methylenetetrahydrofolate reductase genes linked with methotrexate response (efficacy, toxicity) in Indian (Asian) rheumatoid arthritis patients? Clin Rheumatol 2008; 27: 787–789.

    Article  PubMed  Google Scholar 

  55. Kumagai K, Hiyama K, Oyama T, Maeda H, Kohno N . Polymorphisms in the thymidylate synthase and methylenetetrahydrofolate reductase genes and sensitivity to the low-dose methotrexate therapy in patients with rheumatoid arthritis. Int J Mol Med 2003; 11: 593–600.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Arthritis Research UK for their support (grant reference no 17552). SH, PM, INB, AB, WT are funded by the Arthritis Research UK and SAO's salary is funded by Pfizer. We acknowledge the NIHR Manchester Biomedical Research Centre for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Thomson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owen, S., Hider, S., Martin, P. et al. Genetic polymorphisms in key methotrexate pathway genes are associated with response to treatment in rheumatoid arthritis patients. Pharmacogenomics J 13, 227–234 (2013). https://doi.org/10.1038/tpj.2012.7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2012.7

Keywords

This article is cited by

Search

Quick links