Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Histone deacetylase inhibitors: molecular mechanisms of action

Abstract

This review focuses on the mechanisms of action of histone deacetylase (HDAC) inhibitors (HDACi), a group of recently discovered ‘targeted’ anticancer agents. There are 18 HDACs, which are generally divided into four classes, based on sequence homology to yeast counterparts. Classical HDACi such as the hydroxamic acid-based vorinostat (also known as SAHA and Zolinza) inhibits classes I, II and IV, but not the NAD+-dependent class III enzymes. In clinical trials, vorinostat has activity against hematologic and solid cancers at doses well tolerated by patients. In addition to histones, HDACs have many other protein substrates involved in regulation of gene expression, cell proliferation and cell death. Inhibition of HDACs causes accumulation of acetylated forms of these proteins, altering their function. Thus, HDACs are more properly called ‘lysine deacetylases.’ HDACi induces different phenotypes in various transformed cells, including growth arrest, activation of the extrinsic and/or intrinsic apoptotic pathways, autophagic cell death, reactive oxygen species (ROS)-induced cell death, mitotic cell death and senescence. In comparison, normal cells are relatively more resistant to HDACi-induced cell death. The plurality of mechanisms of HDACi-induced cell death reflects both the multiple substrates of HDACs and the heterogeneous patterns of molecular alterations present in different cancer cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Almenara J, Rosato R, Grant S . (2002). Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Leukemia 16: 1331–1343.

    Article  CAS  PubMed  Google Scholar 

  • Anders MW, Dekant W . (1994). Aminoacylases. Adv Pharmacol 27: 431–448.

    Article  CAS  PubMed  Google Scholar 

  • Aoyagi S, Archer TK . (2005). Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends Cell Biol 15: 565–567.

    Article  CAS  PubMed  Google Scholar 

  • Archer SY, Meng S, Shei A, Hodin RA . (1998). p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci USA 95: 6791–6796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashkenazi A . (2002). Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2: 420–430.

    Article  CAS  PubMed  Google Scholar 

  • Bali P, Pranpat M, Bradner J, Balasis M, Fiskus W, Guo F et al. (2005). Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 280: 26729–26734.

    Article  CAS  PubMed  Google Scholar 

  • Bhalla KN . (2005). Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol 23: 3971–3993.

    Article  CAS  PubMed  Google Scholar 

  • Blander G, Guarente L . (2004). The Sir2 family of protein deacetylases. Annu Rev Biochem 73: 417–435.

    Article  CAS  PubMed  Google Scholar 

  • Bolden JE, Peart MJ, Johnstone RW . (2006). Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5: 769–784.

    Article  CAS  PubMed  Google Scholar 

  • Boyault C, Gilquin B, Zhang Y, Rybin V, Garman E, Meyer-Klaucke W et al. (2006). HDAC6-p97/VCP controlled polyubiquitin chain turnover. EMBO J 25: 3357–3366.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown JM, Wilson WR . (2004). Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4: 437–447.

    Article  CAS  PubMed  Google Scholar 

  • Brush MH, Guardiola A, Connor JH, Yao TP, Shenolikar S . (2004). Deactylase inhibitors disrupt cellular complexes containing protein phosphatases and deacetylases. J Biol Chem 279: 7685–7691.

    Article  CAS  PubMed  Google Scholar 

  • Bug G, Ritter M, Wassmann B, Schoch C, Heinzel T, Schwarz K et al. (2005). Clinical trial of valproic acid and all-trans retinoic acid in patients with poor-risk acute myeloid leukemia. Cancer 104: 2717–2725.

    Article  CAS  PubMed  Google Scholar 

  • Burgess A, Ruefli A, Beamish H, Warrener R, Saunders N, Johnstone R et al. (2004). Histone deacetylase inhibitors specifically kill nonproliferating tumour cells. Oncogene 23: 6693–6701.

    Article  CAS  PubMed  Google Scholar 

  • Butler LM, Agus DB, Scher HI, Higgins B, Rose A, Cordon-Cardo C et al. (2000). Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res 60: 5165–5170.

    CAS  PubMed  Google Scholar 

  • Butler LM, Zhou X, Xu WS, Scher HI, Rifkind RA, Marks PA et al. (2002). The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci USA 99: 11700–11705.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chambers AE, Banerjee S, Chaplin T, Dunne J, Debernardi S, Joel SP et al. (2003). Histone acetylation-mediated regulation of genes in leukaemic cells. Eur J Cancer 39: 1165–1175.

    Article  CAS  PubMed  Google Scholar 

  • Chavez-Blanco A, Segura-Pacheco B, Perez-Cardenas E, Taja-Chayeb L, Cetina L, Candelaria M et al. (2005). Histone acetylation and histone deacetylase activity of magnesium valproate in tumor and peripheral blood of patients with cervical cancer. A phase I study. Mol Cancer 4: 22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen CS, Weng SC, Tseng PH, Lin HP, Chen CS . (2005). Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. J Biol Chem 280: 38879–38887.

    Article  CAS  PubMed  Google Scholar 

  • Chung YM, Yoo YD, Park JK, Kim YT, Kim HJ . (2001). Increased expression of peroxiredoxin II confers resistance to cisplatin. Anticancer Res 21: 1129–1133.

    CAS  PubMed  Google Scholar 

  • Cimini D, Mattiuzzo M, Torosantucci L, Degrassi F . (2003). Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects. Mol Biol Cell 14: 3821–3833.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deroanne CF, Bonjean K, Servotte S, Devy L, Colige A, Clausse N et al. (2002). Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene 21: 427–436.

    Article  CAS  PubMed  Google Scholar 

  • Dowling M, Voong KR, Kim M, Keutmann MK, Harris E, Kao GD . (2005). Mitotic spindle checkpoint inactivation by trichostatin A defines a mechanism for increasing cancer cell killing by microtubule-disrupting agents. Cancer Biol Ther 4: 197–206.

    Article  CAS  PubMed  Google Scholar 

  • Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C et al. (2007). Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 109: 31–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duvic M, Zhang C . (2006). Clinical and laboratory experience of vorinostat (suberoylanilide hydroxamic acid) in the treatment of cutaneous T-cell lymphoma. Br J Cancer 95(Suppl 1): S13–S19.

    Article  CAS  PubMed Central  Google Scholar 

  • Fath DM, Kong X, Liang D, Lin Z, Chou A, Jiang Y et al. (2006). Histone deacetylase inhibitors repress the transactivation potential of hypoxia-inducible factors independently of direct acetylation of HIF-alpha. J Biol Chem 281: 13612–13619.

    Article  CAS  PubMed  Google Scholar 

  • Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA et al. (1999). Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401: 188–193.

    Article  CAS  PubMed  Google Scholar 

  • Fu M, Rao M, Wang C, Sakamaki T, Wang J, Di Vizio D et al. (2003). Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. Mol Cell Biol 23: 8563–8575.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao L, Cueto MA, Asselbergs F, Atadja P . (2002). Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277: 25748–25755.

    Article  CAS  PubMed  Google Scholar 

  • Garber K . (2007). HDAC inhibitors overcome first hurdle. Nat Biotechnol 25: 17–19.

    Article  CAS  PubMed  Google Scholar 

  • Glaser KB . (2006). Defining the role of gene regulation in resistance to HDAC inhibitors – mechanisms beyond P-glycoprotein. Leuk Res 30: 651–652.

    Article  CAS  PubMed  Google Scholar 

  • Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, Davidsen SK . (2003). Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther 2: 151–163.

    CAS  PubMed  Google Scholar 

  • Glick RD, Swendeman SL, Coffey DC, Rifkind RA, Marks PA, Richon VM et al. (1999). Hybrid polar histone deacetylase inhibitor induces apoptosis and CD95/CD95 ligand expression in human neuroblastoma. Cancer Res 59: 4392–4399.

    CAS  PubMed  Google Scholar 

  • Glozak MA, Sengupta N, Zhang X, Seto E . (2005). Acetylation and deacetylation of non-histone proteins. Gene 363: 15–23.

    Article  CAS  PubMed  Google Scholar 

  • Gray SG, Qian CN, Furge K, Guo X, Teh BT . (2004). Microarray profiling of the effects of histone deacetylase inhibitors on gene expression in cancer cell lines. Int J Oncol 24: 773–795.

    CAS  PubMed  Google Scholar 

  • Gregoretti IV, Lee YM, Goodson HV . (2004). Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338: 17–31.

    Article  CAS  PubMed  Google Scholar 

  • Gui CY, Ngo L, Xu WS, Richon VM, Marks PA . (2004). Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci USA 101: 1241–1246.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL . (2003). Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci USA 100: 4389–4394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hitomi T, Matsuzaki Y, Yokota T, Takaoka Y, Sakai T . (2003). p15(INK4b) in HDAC inhibitor-induced growth arrest. FEBS Lett 554: 347–350.

    Article  CAS  PubMed  Google Scholar 

  • Hu E, Dul E, Sung CM, Chen Z, Kirkpatrick R, Zhang GF et al. (2003). Identification of novel isoform-selective inhibitors within class I histone deacetylases. J Pharmacol Exp Ther 307: 720–728.

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Pardee AB . (2000). Suberoylanilide hydroxamic acid as a potential therapeutic agent for human breast cancer treatment. Mol Med 6: 849–866.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A et al. (2002). HDAC6 is a microtubule-associated deacetylase. Nature 417: 455–458.

    Article  CAS  PubMed  Google Scholar 

  • Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A et al. (2005). Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 11: 71–76.

    Article  CAS  PubMed  Google Scholar 

  • Iwabata H, Yoshida M, Komatsu Y . (2005). Proteomic analysis of organ-specific post-translational lysine-acetylation and -methylation in mice by use of anti-acetyllysine and -methyllysine mouse monoclonal antibodies. Proteomics 5: 4653–4664.

    Article  CAS  PubMed  Google Scholar 

  • Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH et al. (2002). Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 111: 709–720.

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Wang X . (2004). Cytochrome c-mediated apoptosis. Annu Rev Biochem 73: 87–106.

    Article  CAS  PubMed  Google Scholar 

  • Johnston JA, Illing ME, Kopito RR . (2002). Cytoplasmic dynein/dynactin mediates the assembly of aggresomes. Cell Motil Cytoskeleton 53: 26–38.

    Article  CAS  PubMed  Google Scholar 

  • Kang SW, Chae HZ, Seo MS, Kim K, Baines IC, Rhee SG . (1998). Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J Biol Chem 273: 6297–6302.

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Tamamizu-Kato S, Shibasaki F . (2004). Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity. J Biol Chem 279: 41966–41974.

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP . (2003). The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115: 727–738.

    Article  CAS  PubMed  Google Scholar 

  • Kelly W, Marks P . (2005). Drug Insight: histone deacetylase inhibitors-development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat Clin Pract Oncol 2: 150–157.

    Article  CAS  PubMed  Google Scholar 

  • Kim DK, Lee JY, Kim JS, Ryu JH, Choi JY, Lee JW et al. (2003a). Synthesis and biological evaluation of 3-(4-substituted-phenyl)-N-hydroxy-2-propenamides, a new class of histone deacetylase inhibitors. J Med Chem 46: 5745–5751.

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Blake M, Baek JH, Kohlhagen G, Pommier Y, Carrier F . (2003b). Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res 63: 7291–7300.

    CAS  PubMed  Google Scholar 

  • Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J et al. (2006). Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23: 607–618.

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Lin Z, Liang D, Fath D, Sang N, Caro J . (2006). Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1alpha. Mol Cell Biol 26: 2019–2028.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV et al. (2005). HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18: 601–607.

    Article  CAS  PubMed  Google Scholar 

  • Lehrmann H, Pritchard LL, Harel-Bellan A . (2002). Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation. Adv Cancer Res 86: 41–65.

    Article  CAS  PubMed  Google Scholar 

  • Liang D, Kong X, Sang N . (2006). Effects of histone deacetylase inhibitors on HIF-1. Cell Cycle 5: 2430–2435.

    Article  CAS  PubMed  Google Scholar 

  • Lillig CH, Holmgren A . (2007). Thioredoxin and related molecules-from biology to health and disease. Antioxid Redox Signal 9: 25–47.

    Article  CAS  PubMed  Google Scholar 

  • Lindemann RK, Newbold A, Whitecross KF, Cluse LA, Frew AJ, Ellis L et al. (2007). Analysis of the apoptotic and therapeutic activities of histone deacetylase inhibitors by using a mouse model B cell lymophoma. Proc Natl Acad Sci USA 104: 8071–8076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas DM, Davis ME, Parthun MR, Mone AP, Kitada S, Cunningham KD et al. (2004). The histone deacetylase inhibitor MS-275 induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia cells. Leukemia 18: 1207–1214.

    Article  CAS  PubMed  Google Scholar 

  • Mai A, Massa S, Rotili D, Cerbara I, Valente S, Pezzi R et al. (2005). Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med Res Rev 25: 261–309.

    Article  CAS  PubMed  Google Scholar 

  • Marchion DC, Bicaku E, Turner JG, Daud AI, Sullivan DM, Munster PN . (2005). Synergistic interaction between histone deacetylase and topoisomerase II inhibitors is mediated through topoisomerase IIbeta. Clin Cancer Res 11: 8467–8475.

    Article  CAS  PubMed  Google Scholar 

  • Marks PA, Breslow R . (2007). Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25: 84–90.

    Article  CAS  PubMed  Google Scholar 

  • Marks PA, Dokmanovic M . (2005). Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert Opin Investig Drugs 14: 1497–1511.

    Article  CAS  PubMed  Google Scholar 

  • Marks PA, Richon VM, Rifkind RA . (1996). Cell cycle regulatory proteins are targets for induced differentiation of transformed cells: molecular and clinical studies employing hybrid polar compounds. Int J Hematol 63: 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Miller TA, Witter DJ, Belvedere S . (2003). Histone deacetylase inhibitors. J Med Chem 46: 5097–5116.

    Article  CAS  PubMed  Google Scholar 

  • Minucci S, Pelicci PG . (2006). Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6: 38–51.

    Article  CAS  PubMed  Google Scholar 

  • Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Hideshima T et al. (2004). Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 101: 540–545.

    Article  CAS  PubMed  Google Scholar 

  • Mitsiades N, Mitsiades CS, Richardson PG, McMullan C, Poulaki V, Fanourakis G et al. (2003). Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood 101: 4055–4062.

    Article  CAS  PubMed  Google Scholar 

  • Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM . (2001). The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 61: 8492–8497.

    CAS  PubMed  Google Scholar 

  • Nakata S, Yoshida T, Horinaka M, Shiraishi T, Wakada M, Sakai T . (2004). Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene 23: 6261–6271.

    Article  CAS  PubMed  Google Scholar 

  • Nimmanapalli R, Fuino L, Stobaugh C, Richon V, Bhalla K . (2003). Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood 101: 3236–3239.

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H, Nakamura H et al. (1999). Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem 274: 21645–21650.

    Article  CAS  PubMed  Google Scholar 

  • Peart MJ, Smyth GK, van Laar RK, Bowtell DD, Richon VM, Marks PA et al. (2005). Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci USA 102: 3697–3702.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peart MJ, Tainton KM, Ruefli AA, Dear AE, Sedelies KA, O'Reilly LA et al. (2003). Novel mechanisms of apoptosis induced by histone deacetylase inhibitors. Cancer Res 63: 4460–4471.

    CAS  PubMed  Google Scholar 

  • Pommier Y, Sordet O, Antony S, Hayward RL, Kohn KW . (2004). Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene 23: 2934–2949.

    Article  CAS  PubMed  Google Scholar 

  • Powis G, Mustacich D, Coon A . (2000). The role of the redox protein thioredoxin in cell growth and cancer. Free Radic Biol Med 29: 312–322.

    Article  CAS  PubMed  Google Scholar 

  • Qian DZ, Kachhap SK, Collis SJ, Verheul HM, Carducci MA, Atadja P et al. (2006). Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1{alpha}. Cancer Res 66: 8814–8821.

    Article  CAS  PubMed  Google Scholar 

  • Qiu L, Burgess A, Fairlie DP, Leonard H, Parsons PG, Gabrielli BG . (2000). Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol Biol Cell 11: 2069–2083.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rascle A, Johnston JA, Amati B . (2003). Deacetylase activity is required for recruitment of the basal transcription machinery and transactivation by STAT5. Mol Cell Biol 23: 4162–4173.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA et al. (1998). A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA 95: 3003–3007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richon VM, Sandhoff TW, Rifkind RA, Marks PA . (2000). Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 97: 10014–10019.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robbins AR, Jablonski SA, Yen TJ, Yoda K, Robey R, Bates SE et al. (2005). Inhibitors of histone deacetylases alter kinetochore assembly by disrupting pericentromeric heterochromatin. Cell Cycle 4: 717–726.

    Article  CAS  PubMed  Google Scholar 

  • Rosato RR, Almenara JA, Grant S . (2003). The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res 63: 3637–3645.

    CAS  PubMed  Google Scholar 

  • Rosato RR, Grant S . (2004). Histone deacetylase inhibitors in clinical development. Expert Opin Investig Drugs 13: 21–38.

    Article  CAS  PubMed  Google Scholar 

  • Rosato RR, Grant S . (2005). Histone deacetylase inhibitors: insights into mechanisms of lethality. Expert Opin Ther Targets 9: 809–824.

    Article  CAS  PubMed  Google Scholar 

  • Rosato RR, Maggio SC, Almenara JA, Payne SG, Atadja P, Spiegel S et al. (2006). The histone deacetylase inhibitor LAQ824 induces human leukemia cell death through a process involving XIAP down-regulation, oxidative injury, and the acid sphingomyelinase-dependent generation of ceramide. Mol Pharmacol 69: 216–225.

    Article  CAS  PubMed  Google Scholar 

  • Rosato RR, Wang Z, Gopalkrishnan RV, Fisher PB, Grant S . (2001). Evidence of a functional role for the cyclin-dependent kinase-inhibitor p21WAF1/CIP1/MDA6 in promoting differentiation and preventing mitochondrial dysfunction and apoptosis induced by sodium butyrate in human myelomonocytic leukemia cells (U937). Int J Oncol 19: 181–191.

    CAS  PubMed  Google Scholar 

  • Ruefli AA, Ausserlechner MJ, Bernhard D, Sutton VR, Tainton KM, Kofler R et al. (2001). The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad Sci USA 98: 10833–10838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruefli AA, Bernhard D, Tainton KM, Kofler R, Smyth MJ, Johnstone RW . (2002). Suberoylanilide hydroxamic acid (SAHA) overcomes multidrug resistance and induces cell death in P-glycoprotein-expressing cells. Int J Cancer 99: 292–298.

    Article  CAS  PubMed  Google Scholar 

  • Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y et al. (1998). Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17: 2596–2606.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sasakawa Y, Naoe Y, Inoue T, Sasakawa T, Matsuo M, Manda T et al. (2002). Effects of FK228, a novel histone deacetylase inhibitor, on human lymphoma U-937 cells in vitro and in vivo. Biochem Pharmacol 64: 1079–1090.

    Article  CAS  PubMed  Google Scholar 

  • Sasakawa Y, Naoe Y, Sogo N, Inoue T, Sasakawa T, Matsuo M et al. (2005). Marker genes to predict sensitivity to FK228, a histone deacetylase inhibitor. Biochem Pharmacol 69: 603–616.

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Gao Z, Marks PA, Jiang X . (2004). Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 101: 18030–18035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solit DB, Rosen N . (2006). Hsp90: a novel target for cancer therapy. Curr Top Med Chem 6: 1205–1214.

    Article  CAS  PubMed  Google Scholar 

  • Somoza JR, Skene RJ, Katz BA, Mol C, Ho JD, Jennings AJ et al. (2004). Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure (Cambridge) 12: 1325–1334.

    Article  CAS  Google Scholar 

  • Stadler WM, Margolin K, Ferber S, McCulloch W, Thompson JA . (2006). A phase II study of depsipeptide in refractory metastatic renal cell cancer. Clinical genitourinary cancer 5: 57–60.

    Article  CAS  PubMed  Google Scholar 

  • Sutheesophon K, Nishimura N, Kobayashi Y, Furukawa Y, Kawano M, Itoh K et al. (2005). Involvement of the tumor necrosis factor (TNF)/TNF receptor system in leukemic cell apoptosis induced by histone deacetylase inhibitor depsipeptide (FK228). J Cell Physiol 203: 387–397.

    Article  CAS  PubMed  Google Scholar 

  • Taddei A, Maison C, Roche D, Almouzni G . (2001). Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nat Cell Biol 3: 114–120.

    Article  CAS  PubMed  Google Scholar 

  • Tan J, Zhuang L, Jiang X, Yang KK, Karuturi KM, Yu Q . (2006). Apoptosis signal-regulating kinase 1 is a direct target of E2F1 and contributes to histone deacetylase inhibitor-induced apoptosis through positive feedback regulation of E2F1 apoptotic activity. J Biol Chem 281: 10508–10515.

    Article  CAS  PubMed  Google Scholar 

  • Ungerstedt JS, Sowa Y, Xu WS, Shao Y, Dokmanovic M, Perez G et al. (2005). Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc Natl Acad Sci USA 102: 673–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Lint C, Emiliani S, Verdin E . (1996). The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 5: 245–253.

    CAS  PubMed  Google Scholar 

  • Vannini A, Volpari C, Filocamo G, Casavola EC, Brunetti M, Renzoni D et al. (2004). Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci USA 101: 15064–15069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal A, Koff A . (2000). Cell-cycle inhibitors: three families united by a common cause. Gene 247: 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Wang LG, Ossowski L, Ferrari AC . (2004). Androgen receptor level controlled by a suppressor complex lost in an androgen-independent prostate cancer cell line. Oncogene 23: 5175–5184.

    Article  CAS  PubMed  Google Scholar 

  • Westendorf JJ, Zaidi SK, Cascino JE, Kahler R, van Wijnen AJ, Lian JB et al. (2002). Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21(CIP1/WAF1) promoter. Mol Cell Biol 22: 7982–7992.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu W, Ngo L, Perez G, Dokmanovic M, Marks PA . (2006). Intrinsic apoptotic and thioredoxin pathways in human prostate cancer cell response to histone deacetylase inhibitor. Proc Natl Acad Sci USA 103: 15540–15545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu WS, Perez G, Ngo L, Gui CY, Marks PA . (2005). Induction of polyploidy by histone deacetylase inhibitor: a pathway for antitumor effects. Cancer Res 65: 7832–7839.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Matsuyama A, Komatsu Y, Nishino N . (2003). From discovery to the coming generation of histone deacetylase inhibitors. Curr Med Chem 10: 2351–2358.

    Article  CAS  PubMed  Google Scholar 

  • Zhang XD, Gillespie SK, Borrow JM, Hersey P . (2004). The histone deacetylase inhibitor suberic bishydroxamate regulates the expression of multiple apoptotic mediators and induces mitochondria-dependent apoptosis of melanoma cells. Mol Cancer Ther 3: 425–435.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Gilquin B, Khochbin S, Matthias P . (2006). Two catalytic domains are required for protein deacetylation. J Biol Chem 281: 2401–2404.

    Article  CAS  PubMed  Google Scholar 

  • Zhao LJ, Subramanian T, Zhou Y, Chinnadurai G . (2006). Acetylation by p300 regulates nuclear localization and function of the transcriptional corepressor CtBP2. J Biol Chem 281: 4183–4189.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Tan J, Zhuang L, Jiang X, Liu ET, Yu Q . (2005). Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim. Proc Natl Acad Sci USA 102: 16090–16095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou H, Wu Y, Navre M, Sang BC . (2006). Characterization of the two catalytic domains in histone deacetylase 6. Biochem Biophys Res Commun 341: 45–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The studies reported in this paper from the authors' laboratory have been supported, in part, by grants from the National Institute of Health (P30CA08748-41), Jack and Susan Rudin Foundation, David H Koch Foundation, and the Prostate Cancer Research Award, Experimental Therapeutics Center at Memorial Sloan-Kettering Cancer Center and the DeWitt Wallace Research Fund. MSKCC and Columbia University jointly hold patents on hydroxamic acid-based polar compounds, including vorinostat (SAHA), that were exclusively licensed to Aton Pharma Inc., a biotechnology company that was acquired by Merck Inc. in April 2004. PAM was a founder of Aton and has a financial interest in Merck's further development of vorinostat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P A Marks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Parmigiani, R. & Marks, P. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26, 5541–5552 (2007). https://doi.org/10.1038/sj.onc.1210620

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210620

Keywords

This article is cited by

Search

Quick links