Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Risk factors and disease mechanisms in myositis

Key Points

  • Multiple independent associations within the HLA 8.1 ancestral haplotype are the strongest genetic risk factors for idiopathic inflammatory myopathies (IIMs).

  • Although some associations overlap with those for other autoimmune diseases, other genetic risk factors are unique to certain IIM phenotypes, suggesting that these phenotypes have different pathophysiologies.

  • In addition to drug-induced myositis, epidemiological data support a role for infections, prior lung disease, physical exertion, collagen implants, ultraviolet radiation and smoking in the development of IIM phenotypes.

  • Although the disease mechanisms for IIM are ill-defined, both the innate immune system (including cytokines and chemokines) and adaptive immune system (including autoantibodies and antigen-specific T cells) are probably involved.

  • Several non-immune-mediated mechanisms contribute to IIM pathogenesis, including cell-stress pathways, free radicals, altered energy metabolism, protein homeostasis and mitochondrial damage.

  • Multidisciplinary collaborative approaches, focused use of resources and better investigative tools are needed to define additional risk and protective factors and pathogenic mechanisms, to cure and prevent the development of IIM.

Abstract

Autoimmune diseases develop as a result of chronic inflammation owing to interactions between genes and the environment. However, the mechanisms by which autoimmune diseases evolve remain poorly understood. Newly discovered risk factors and pathogenic processes in the various idiopathic inflammatory myopathy (IIM) phenotypes (known collectively as myositis) have illuminated innovative approaches for understanding these diseases. The HLA 8.1 ancestral haplotype is a key risk factor for major IIM phenotypes in some populations, and several genetic variants associated with other autoimmune diseases have been identified as IIM risk factors. Environmental risk factors are less well studied than genetic factors but might include viruses, bacteria, ultraviolet radiation, smoking, occupational and perinatal exposures and a growing list of drugs (including biologic agents) and dietary supplements. Disease mechanisms vary by phenotype, with evidence of shared innate and adaptive immune and metabolic pathways in some phenotypes but unique pathways in others. The heterogeneity and rarity of the IIMs make advancements in diagnosis and treatment cumbersome. Novel approaches, better-defined phenotypes, and international, multidisciplinary consensus have contributed to progress, and it is hoped that these methods will eventually enable therapeutic intervention before the onset or major progression of disease. In the future, preemptive strategies for IIM management might be possible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible pathways to idiopathic inflammatory myopathy phenotypes.
Figure 2: Epidemiological investigations of environmental agents and idiopathic inflammatory myopathies.
Figure 3: Immune-mediated and non-immune-mediated disease mechanisms in idiopathic inflammatory myopathies.

Similar content being viewed by others

References

  1. Lundberg, I. E., de Visser, M. & Werth, V. P. Classification of myositis. Nat. Rev. Rheumatol. https://doi.org/nrrheum.2018.41 (2018).

  2. Rider, L. G. et al. Update on outcome assessment in myositis. Nat. Rev. Rheumatol. https://doi.org/nrrheum.2018.33 (2018).

  3. McHugh, N.J. & Tansley, S.L. Autoantibodies in myositis Nat. Rev. Rheumatol. https://doi.org/10.1038/nrrheum.2018.56 (2018).

  4. Oddis, C. V. & Aggarwal, R. Treatment in myositis. Nat. Rev. Rheumatol. https://doi.org/10.1038/nrrheum.2018.42 (2018).

  5. Ozaki, T. et al. Two patients in the same family with anti-ARS antibody-associated myositis. Mod. Rheumatol. 24, 699–700 (2014).

    Article  PubMed  Google Scholar 

  6. Rider, L. G. et al. Clinical, serologic, and immunogenetic features of familial idiopathic inflammatory myopathy. Arthritis Rheum. 41, 710–719 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Hyttinen, V., Kaprio, J., Kinnunen, L., Koskenvuo, M. & Tuomilehto, J. Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes 52, 1052–1055 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. van der Woude, D. et al. Quantitative heritability of anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis Rheum. 60, 916–923 (2009).

    Article  PubMed  Google Scholar 

  9. Ginn, L. R. et al. Familial autoimmunity in pedigrees of idiopathic inflammatory myopathy patients suggests common genetic risk factors for many autoimmune diseases. Arthritis Rheum. 41, 400–405 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Niewold, T. B., Wu, S. C., Smith, M., Morgan, G. A. & Pachman, L. M. Familial aggregation of autoimmune disease in juvenile dermatomyositis. Pediatrics 127, e1239–e1246 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kuo, C. F. et al. Familial aggregation of systemic lupus erythematosus and coaggregation of autoimmune diseases in affected families. JAMA Intern. Med. 175, 1518–1526 (2015).

    Article  PubMed  Google Scholar 

  12. Kuo, C. F. et al. Familial risk of systemic sclerosis and co-aggregation of autoimmune diseases in affected families. Arthritis Res. Ther. 18, 231 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Meyer, A. et al. Incidence and prevalence of inflammatory myopathies: a systematic review. Rheumatology 54, 50–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Miller, F. W. et al. Genome-wide association study of dermatomyositis reveals genetic overlap with other autoimmune disorders. Arthritis Rheum. 65, 3239–3247 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miller, F. W. et al. Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes. Genes Immun. 16, 470–480 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jia, X. et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS ONE 8, e64683 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rothwell, S. et al. Dense genotyping of immune-related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups. Ann. Rheum. Dis. 75, 1558–1566 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Rothwell, S. et al. Immune-array analysis in sporadic inclusion body myositis reveals HLA-DRB1 amino acid heterogeneity across the myositis spectrum. Arthritis Rheumatol. 69, 1090–1099 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Furuya, T. et al. Immunogenetic features in 120 Japanese patients with idiopathic inflammatory myopathy. J. Rheumatol. 31, 1768–1774 (2004).

    CAS  PubMed  Google Scholar 

  20. Gao, X. et al. HLA class II alleles may influence susceptibility to adult dermatomyositis and polymyositis in a Han Chinese population. BMC Dermatol. 14, 9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O'Hanlon, T. P. et al. Immunogenetic risk and protective factors for the idiopathic inflammatory myopathies: distinct HLA-A, -B, -Cw, -DRB1, and -DQA1 allelic profiles distinguish European American patients with different myositis autoantibodies. Medicine 85, 111–127 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. O'Hanlon, T. P. & Miller, F. W. Genetic risk and protective factors for the idiopathic inflammatory myopathies. Curr. Rheumatol. Rep. 11, 287–294 (2009).

    Article  PubMed  Google Scholar 

  23. Mammen, A. L. et al. Increased frequency of DRB1*11:01 in anti-hydroxymethylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Arthritis Care Res. 64, 1233–1237 (2012).

    Article  CAS  Google Scholar 

  24. Kishi, T. et al. Association of anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase autoantibodies with DRB1*07:01 and severe myositis in juvenile myositis patients. Arthritis Care Res. 69, 1088–1094 (2017).

    Article  CAS  Google Scholar 

  25. Chinoy, H. et al. The protein tyrosine phosphatase N22 gene is associated with juvenile and adult idiopathic inflammatory myopathy independent of the HLA 8.1 haplotype in British Caucasian patients. Arthritis Rheum. 58, 3247–3254 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sugiura, T. et al. Positive association between STAT4 polymorphisms and polymyositis/dermatomyositis in a Japanese population. Ann. Rheum. Dis. 71, 1646–1650 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Q. et al. Positive association of genetic variations in the phospholipase C-like 1 gene with dermatomyositis in Chinese Han. Immunol. Res. 64, 204–212 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Lintner, K. E. et al. Gene copy-number variations (CNVs) of complement C4 and C4A deficiency in genetic risk and pathogenesis of juvenile dermatomyositis. Ann. Rheum. Dis. 75, 1599–1606 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Gang, Q. et al. Rare variants in SQSTM1 and VCP genes and risk of sporadic inclusion body myositis. Neurobiol. Aging 47, 218.e1–218.e9 (2016).

    Article  CAS  Google Scholar 

  30. Weihl, C. C. et al. Targeted sequencing and identification of genetic variants in sporadic inclusion body myositis. Neuromuscul. Disord. 25, 289–296 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Guttsches, A. K. et al. Proteomics of rimmed vacuoles define new risk allele in inclusion body myositis. Ann. Neurol. 81, 227–239 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rothwell, S., Lamb, J. A. & Chinoy, H. New developments in genetics of myositis. Curr. Opin. Rheumatol. 28, 651–656 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Torrelo, A. CANDLE syndrome as a paradigm of proteasome-related autoinflammation. Front. Immunol. 8, 927 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wakeland, E. K., Liu, K., Graham, R. R. & Behrens, T. W. Delineating the genetic basis of systemic lupus erythematosus. Immunity 15, 397–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Svendsen, A. J. et al. On the origin of rheumatoid arthritis: the impact of environment and genes — a population based twin study. PLoS ONE 8, e57304 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Love, L. A. & Miller, F. W. Noninfectious environmental agents associated with myopathies. Curr. Opin. Rheumatol. 5, 712–718 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Reed, A. M. & Ytterberg, S. R. Genetic and environmental risk factors for idiopathic inflammatory myopathies. Rheum. Dis. Clin. North Am. 28, 891–916 (2002).

    Article  PubMed  Google Scholar 

  38. Miller, F. W. in The Autoimmune Diseases Vol. 4 (eds Rose, N. R. & Mackay, I. R.) 297–308 (Elsevier, 2006).

    Book  Google Scholar 

  39. Miller, F. W. et al. Approaches for identifying and defining environmentally associated rheumatic disorders. Arthritis Rheum. 43, 243–249 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Miller, F. W. et al. Criteria for environmentally associated autoimmune diseases. J. Autoimmun. 39, 253–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fazeli Farsani, S. et al. Increasing trends in the incidence and prevalence rates of type 1 diabetes among children and adolescents in the Netherlands. Pediatr. Diabetes 17, 44–52 (2016).

    Article  PubMed  Google Scholar 

  42. Bach, J. F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    Article  PubMed  Google Scholar 

  43. Leff, R. L. et al. Distinct seasonal patterns in the onset of adult idiopathic inflammatory myopathy in patients with anti-Jo-1 and anti-signal recognition particle autoantibodies. Arthritis Rheum. 34, 1391–1396 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Willer, C. J. et al. Timing of birth and risk of multiple sclerosis: population based study. BMJ 330, 120 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sarkar, K. et al. Seasonal influence on the onset of idiopathic inflammatory myopathies in serologically defined groups. Arthritis Rheum. 52, 2433–2438 (2005).

    Article  PubMed  Google Scholar 

  46. Vegosen, L. J. et al. Seasonal birth patterns in myositis subgroups suggest an etiologic role of early environmental exposures. Arthritis Rheum. 56, 2719–2728 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rose, N. R. The role of infection in the pathogenesis of autoimmune disease. Semin. Immunol. 10, 5–13 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Oldstone, M. B. Viruses and autoimmune diseases. Scand. J. Immunol. 46, 320–325 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Germolec, D., Kono, D. H., Pfau, J. C. & Pollard, K. M. Animal models used to examine the role of the environment in the development of autoimmune disease: findings from an NIEHS Expert Panel Workshop. J. Autoimmun. 39, 285–293 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Miller, F. W. Environmental agents and autoimmune diseases. Adv. Exp. Med. Biol. 711, 61–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Knight, J. C. Genomic modulators of the immune response. Trends Genet. 29, 74–83 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brodin, P. et al. Variation in the human immune system is largely driven by non-heritable influences. Cell 160, 37–47 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gourley, M. & Miller, F. W. Mechanisms of disease: environmental factors in the pathogenesis of rheumatic disease. Nat. Clin. Pract. Rheumatol. 3, 172–180 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Miller, F. W. et al. Epidemiology of environmental exposures and human autoimmune diseases: findings from a National Institute of Environmental Health Sciences Expert Panel Workshop. J. Autoimmun. 39, 259–271 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mamyrova, G. et al. Environmental factors associated with disease flare in juvenile and adult dermatomyositis. Rheumatology 56, 1342–1347 (2017).

    Article  PubMed  Google Scholar 

  56. Holers, V. M. Insights from populations at risk for the future development of classified rheumatoid arthritis. Rheum. Dis. Clin. North Am. 40, 605–620 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Miller, F. W. in Inflammatory Myopathies (ed. Kagen, L.) 15–28 (Humana Press, 2009).

    Book  Google Scholar 

  58. Gan, L. & Miller, F. W. State of the art: what we know about infectious agents and myositis. Curr. Opin. Rheumatol. 23, 585–594 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Allen, J. A. et al. Post-epidemic eosinophilia-myalgia syndrome associated with L-tryptophan. Arthritis Rheum. 63, 3633–3639 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Cukier, J. et al. Association between bovine collagen dermal implants and a dermatomyositis or a polymyositis-like syndrome. Ann. Intern. Med. 118, 920–928 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. O'Hanlon, T. et al. Immunogenetic differences between Caucasian women with and those without silicone implants in whom myositis develops. Arthritis Rheum. 50, 3646–3650 (2004).

    Article  PubMed  Google Scholar 

  62. Shah, M., Targoff, I. N., Rice, M. M., Miller, F. W. & Rider, L. G. Brief report: ultraviolet radiation exposure is associated with clinical and autoantibody phenotypes in juvenile myositis. Arthritis Rheum. 65, 1934–1941 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Love, L. A. et al. Ultraviolet radiation intensity predicts the relative distribution of dermatomyositis and anti-Mi-2 autoantibodies in women. Arthritis Rheum. 60, 2499–2504 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Webber, M. P. et al. Nested case–control study of selected systemic autoimmune diseases in World Trade Center rescue/recovery workers. Arthritis Rheumatol. 67, 1369–1376 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Labirua-Iturburu, A. et al. Occupational exposure in patients with the antisynthetase syndrome. Clin. Rheumatol. 33, 221–225 (2014).

    Article  PubMed  Google Scholar 

  66. Nojima, T. et al. A case of polymyositis associated with hepatitis B infection. Clin. Exp. Rheumatol. 18, 86–88 (2000).

    CAS  PubMed  Google Scholar 

  67. Chou, J. W., Lin, Y. L., Cheng, K. S., Wu, P. Y. & Reanne Ju, T. Dermatomyositis induced by hepatitis B virus-related hepatocellular carcinoma: a case report and review of the literature. Intern. Med. 56, 1831–1837 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Uruha, A. et al. Hepatitis C virus infection in inclusion body myositis: a case-control study. Neurology 86, 211–217 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Johnson, R. W., Williams, F. M., Kazi, S., Dimachkie, M. M. & Reveille, J. D. Human immunodeficiency virus-associated polymyositis: a longitudinal study of outcome. Arthritis Rheum. 49, 172–178 (2003).

    Article  PubMed  Google Scholar 

  70. Carroll, M. B. & Holmes, R. Dermatomyositis and HIV infection: case report and review of the literature. Rheumatol. Int. 31, 673–679 (2011).

    Article  PubMed  Google Scholar 

  71. Dalakas, M. C. et al. Inclusion body myositis with human immunodeficiency virus infection: four cases with clonal expansion of viral-specific T cells. Ann. Neurol. 61, 466–475 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Matsuura, E. et al. Inclusion body myositis associated with human T-lymphotropic virus-type I infection: eleven patients from an endemic area in Japan. J. Neuropathol. Exp. Neurol. 67, 41–49 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Calore, E. E. et al. Skeletal muscle pathology in 2 siblings infected with Toxoplasma gondii . J. Rheumatol. 27, 1556–1559 (2000).

    CAS  PubMed  Google Scholar 

  74. Carroll, G. J., Will, R. K., Peter, J. B., Garlepp, M. J. & Dawkins, R. L. Penicillamine induced polymyositis and dermatomyositis. J. Rheumatol. 14, 995–1001 (1987).

    CAS  PubMed  Google Scholar 

  75. Somani, A. K., Swick, A. R., Cooper, K. D. & McCormick, T. S. Severe dermatomyositis triggered by interferon beta-1a therapy and associated with enhanced type I interferon signaling. Arch. Dermatol. 144, 1341–1349 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Liu, S. W. et al. Dermatomyositis induced by anti-tumor necrosis factor in a patient with juvenile idiopathic arthritis. JAMA Dermatol. 149, 1204–1208 (2013).

    Article  PubMed  Google Scholar 

  77. Jones, J. D., Kirsch, H. L., Wortmann, R. L. & Pillinger, M. H. The causes of drug-induced muscle toxicity. Curr. Opin. Rheumatol. 26, 697–703 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Borges, I. B. P., Silva, M. G., Misse, R. G. & Shinjo, S. K. Lipid-lowering agent-triggered dermatomyositis and polymyositis: a case series and literature review. Rheumatol. Int. 38, 293–301 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Musset, L. et al. Anti-HMGCR antibodies as a biomarker for immune-mediated necrotizing myopathies: a history of statins and experience from a large international multi-center study. Autoimmun. Rev. 15, 983–993 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Orbach, H. & Tanay, A. Vaccines as a trigger for myopathies. Lupus 18, 1213–1216 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Svensson, J., Holmqvist, M., Lundberg, I. E. & Arkema, E. V. Infections and respiratory tract disease as risk factors for idiopathic inflammatory myopathies: a population-based case–control study. Ann. Rheum. Dis. 76, 1803–1808 (2017).

    Article  PubMed  Google Scholar 

  82. Lyon, M. G., Bloch, D. A., Hollak, B. & Fries, J. F. Predisposing factors in polymyositis-dermatomyositis: results of a nationwide survey. J. Rheumatol. 16, 1218–1224 (1989).

    CAS  PubMed  Google Scholar 

  83. Chinoy, H. et al. Interaction of HLA-DRB1*03 and smoking for the development of anti-Jo-1 antibodies in adult idiopathic inflammatory myopathies: a European-wide case study. Ann. Rheum. Dis. 71, 961–965 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Lilleker, J. B. et al. The EuroMyositis registry: an international collaborative tool to facilitate myositis research. Ann. Rheum. Dis. 76, 862–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Koch, M. J., Brody, J. A. & Gillespie, M. M. Childhood polymyositis: a case-control study. Am. J. Epidemiol. 104, 627–631 (1976).

    Article  CAS  PubMed  Google Scholar 

  86. Orione, M. A. et al. Risk factors for juvenile dermatomyositis: exposure to tobacco and air pollutants during pregnancy. Arthritis Care Res. 66, 1571–1575 (2014).

    Article  CAS  Google Scholar 

  87. Oddis, C. V., Conte, C. G., Steen, V. D. & Medsger, T. A. Jr. Incidence of polymyositis-dermatomyositis: a 20-year study of hospital diagnosed cases in Allegheny County, PA 1963–1982. J. Rheumatol. 17, 1329–1334 (1990).

    CAS  PubMed  Google Scholar 

  88. Jacobson, D. L., Gange, S. J., Rose, N. R. & Graham, N. M. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin. Immunol. Immunopathol. 84, 223–243 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Goebels, N. et al. Differential expression of perforin in muscle-infiltrating T cells in polymyositis and dermato-myositis. J. Clin. Invest. 97, 2905–2910 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Orimo, S. et al. Immunohistochemical analysis of perforin and granzyme A in inflammatory myopathies. Neuromuscul. Disord. 4, 219–226 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Greenberg, S. A., Pinkus, J. L., Amato, A. A., Kristensen, T. & Dorfman, D. M. Association of inclusion body myositis with T cell large granular lymphocytic leukaemia. Brain 139, 1348–1360 (2016).

    Article  PubMed  Google Scholar 

  92. Hohlfeld, R., Engel, A. G., Ii, K. & Harper, M. C. Polymyositis mediated by T lymphocytes that express the gamma/delta receptor. N. Engl. J. Med. 324, 877–881 (1991).

    Article  CAS  PubMed  Google Scholar 

  93. Wiendl, H. et al. An autoreactive γδ TCR derived from a polymyositis lesion. J. Immunol. 169, 515–521 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Bruder, J. et al. Target specificity of an autoreactive pathogenic human γδ-T cell receptor in myositis. J. Biol. Chem. 287, 20986–20995 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yamashita, T. et al. A case of myositis associated with clonal expansion of γδ T cells in peripheral blood and bone marrow [Japanese]. Rinsho Shinkeigaku 52, 227–233 (2012).

    Article  PubMed  Google Scholar 

  96. Fasth, A. E. et al. T cell infiltrates in the muscles of patients with dermatomyositis and polymyositis are dominated by CD28null T cells. J. Immunol. 183, 4792–4799 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Pandya, J. M. et al. Expanded T cell receptor Vβ-restricted T cells from patients with sporadic inclusion body myositis are proinflammatory and cytotoxic CD28null T cells. Arthritis Rheum. 62, 3457–3466 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Pandya, J. M. et al. CD4+ and CD8+ CD28null T cells are cytotoxic to autologous muscle cells in patients with polymyositis. Arthritis Rheumatol. 68, 2016–2026 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Waschbisch, A., Schwab, N., Ruck, T., Stenner, M. P. & Wiendl, H. FOXP3+ T regulatory cells in idiopathic inflammatory myopathies. J. Neuroimmunol. 225, 137–142 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Vercoulen, Y. et al. Increased presence of FOXP3+ regulatory T cells in inflamed muscle of patients with active juvenile dermatomyositis compared to peripheral blood. PLoS ONE 9, e105353 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Greenberg, S. A. et al. Plasma cells in muscle in inclusion body myositis and polymyositis. Neurology 65, 1782–1787 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Greenberg, S. A. et al. Molecular profiles of inflammatory myopathies. Neurology 59, 1170–1182 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Bradshaw, E. M. et al. A local antigen-driven humoral response is present in the inflammatory myopathies. J. Immunol. 178, 547–556 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Gunawardena, H., Betteridge, Z. E. & McHugh, N. J. Myositis-specific autoantibodies: their clinical and pathogenic significance in disease expression. Rheumatology 48, 607–612 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Betteridge, Z. & McHugh, N. Myositis-specific autoantibodies: an important tool to support diagnosis of myositis. J. Intern. Med. 280, 8–23 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Aggarwal, R. et al. Autoantibody levels in myositis patients correlate with clinical response during B cell depletion with rituximab. Rheumatology 55, 991–999 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Katsumata, Y. et al. Species-specific immune responses generated by histidyl-tRNA synthetase immunization are associated with muscle and lung inflammation. J. Autoimmun. 29, 174–186 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Howard, O. M. et al. Histidyl-tRNA synthetase and asparaginyl-tRNA synthetase, autoantigens in myositis, activate chemokine receptors on T lymphocytes and immature dendritic cells. J. Exp. Med. 196, 781–791 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Merad, M., Sathe, P., Helft, J., Miller, J. & Mortha, A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31, 563–604 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Greenberg, S. A., Pinkus, G. S., Amato, A. A. & Pinkus, J. L. Myeloid dendritic cells in inclusion-body myositis and polymyositis. Muscle Nerve 35, 17–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Gendek-Kubiak, H. & Gendek, E. G. Fascin-expressing dendritic cells dominate in polymyositis and dermatomyositis. J. Rheumatol. 40, 186–191 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Nagaraju, K. et al. Endothelial cell activation and neovascularization are prominent in dermatomyositis. J. Autoimmune Dis. 3, 2 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Maddur, M. S. et al. Contribution of myeloid dendritic cells to type I interferon-induced cytokines and chemokines: comment on the article by Bilgic et al. Arthritis Rheum. 62, 2181–2182 (2010).

    PubMed  Google Scholar 

  115. Chung, T., Christopher-Stine, L., Paik, J. J., Corse, A. & Mammen, A. L. The composition of cellular infiltrates in anti-HMG-CoA reductase-associated myopathy. Muscle Nerve 52, 189–195 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rinnenthal, J. L. et al. Inflammatory myopathy with abundant macrophages (IMAM): the immunology revisited. Neuromuscul. Disord. 24, 151–155 (2014).

    Article  PubMed  Google Scholar 

  117. Liu, X. et al. Macrophage depletion impairs skeletal muscle regeneration: The roles of regulatory factors for muscle regeneration. Cell Biol. Int. 41, 228–238 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Rigamonti, E., Zordan, P., Sciorati, C., Rovere-Querini, P. & Brunelli, S. Macrophage plasticity in skeletal muscle repair. Biomed. Res. Int. 2014, 560629 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Tournadre, A., Lenief, V., Eljaafari, A. & Miossec, P. Immature muscle precursors are a source of interferon-β in myositis: role of Toll-like receptor 3 activation and contribution to HLA class I up-regulation. Arthritis Rheum. 64, 533–541 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Tournadre, A., Lenief, V. & Miossec, P. Expression of Toll-like receptor 3 and Toll-like receptor 7 in muscle is characteristic of inflammatory myopathy and is differentially regulated by Th1 and Th17 cytokines. Arthritis Rheum. 62, 2144–2151 (2010).

    CAS  PubMed  Google Scholar 

  121. Cappelletti, C. et al. Type I interferon and Toll-like receptor expression characterizes inflammatory myopathies. Neurology 76, 2079–2088 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Moran, E. M. & Mastaglia, F. L. Cytokines in immune-mediated inflammatory myopathies: cellular sources, multiple actions and therapeutic implications. Clin. Exp. Immunol. 178, 405–415 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rayavarapu, S., Coley, W., Kinder, T. B. & Nagaraju, K. Idiopathic inflammatory myopathies: pathogenic mechanisms of muscle weakness. Skelet. Muscle 3, 13 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. De Paepe, B., Creus, K. K. & De Bleecker, J. L. Role of cytokines and chemokines in idiopathic inflammatory myopathies. Curr. Opin. Rheumatol. 21, 610–616 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Greenberg, S. A. et al. Interferon-α/β-mediated innate immune mechanisms in dermatomyositis. Ann. Neurol. 57, 664–678 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Salajegheh, M. et al. Interferon-stimulated gene 15 (ISG15) conjugates proteins in dermatomyositis muscle with perifascicular atrophy. Ann. Neurol. 67, 53–63 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Liao, A. P. et al. Interferon β is associated with type 1 interferon-inducible gene expression in dermatomyositis. Ann. Rheum. Dis. 70, 831–836 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Greenberg, S. A. Dermatomyositis and type 1 interferons. Curr. Rheumatol. Rep. 12, 198–203 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Baechler, E. C. et al. An interferon signature in the peripheral blood of dermatomyositis patients is associated with disease activity. Mol. Med. 13, 59–68 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Greenberg, S. A. et al. Relationship between disease activity and type 1 interferon- and other cytokine-inducible gene expression in blood in dermatomyositis and polymyositis. Genes Immun. 13, 207–213 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Walsh, R. J. et al. Type I interferon-inducible gene expression in blood is present and reflects disease activity in dermatomyositis and polymyositis. Arthritis Rheum. 56, 3784–3792 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Krol, P. et al. Serum levels of interferon α do not correlate with disease activity in patients with dermatomyositis/polymyositis. Ann. Rheum. Dis. 70, 879–880 (2011).

    Article  PubMed  Google Scholar 

  133. Hervas-Stubbs, S. et al. Direct effects of type I interferons on cells of the immune system. Clin. Cancer Res. 17, 2619–2627 (2011).

    Article  CAS  Google Scholar 

  134. Meyer, A. et al. IFN-β-induced reactive oxygen species and mitochondrial damage contribute to muscle impairment and inflammation maintenance in dermatomyositis. Acta Neuropathol. 134, 655–666 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Akeno, N. et al. IFN-α mediates the development of autoimmunity both by direct tissue toxicity and through immune cell recruitment mechanisms. J. Immunol. 186, 4693–4706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Coomans de Brachene, A. et al. IFN-α induces a preferential long-lasting expression of MHC class I in human pancreatic beta cells. Diabetologia 61, 636–640 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Atta, M. S., Irving, W. L., Powell, R. J. & Todd, I. Enhanced expression of MHC class I molecules on cultured human thyroid follicular cells infected with reovirus through induction of type 1 interferons. Clin. Exp. Immunol. 101, 121–126 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nagaraju, K. et al. Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum. 52, 1824–1835 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Nagaraju, K. et al. Conditional up-regulation of MHC class I in skeletal muscle leads to self-sustaining autoimmune myositis and myositis-specific autoantibodies. Proc. Natl Acad. Sci. USA 97, 9209–9214 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Higgs, B. W. et al. A phase 1b clinical trial evaluating sifalimumab, an anti-IFN-α monoclonal antibody, shows target neutralisation of a type I IFN signature in blood of dermatomyositis and polymyositis patients. Ann. Rheum. Dis. 73, 256–262 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Manole, E., Bastian, A. E., Butoianu, N. & Goebel, H. H. Myositis non-inflammatory mechanisms: an up-dated review. J. Immunoassay Immunochem. 38, 115–126 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Coley, W., Rayavarapu, S. & Nagaraju, K. Role of non-immune mechanisms of muscle damage in idiopathic inflammatory myopathies. Arthritis Res. Ther. 14, 209 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rayavarapu, S., Coley, W. & Nagaraju, K. Endoplasmic reticulum stress in skeletal muscle homeostasis and disease. Curr. Rheumatol. Rep. 14, 238–243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Vitadello, M., Doria, A., Tarricone, E., Ghirardello, A. & Gorza, L. Myofiber stress-response in myositis: parallel investigations on patients and experimental animal models of muscle regeneration and systemic inflammation. Arthritis Res. Ther. 12, R52 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Vattemi, G., Engel, W. K., McFerrin, J. & Askanas, V. Endoplasmic reticulum stress and unfolded protein response in inclusion body myositis muscle. Am. J. Pathol. 164, 1–7 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lightfoot, A. P., Nagaraju, K., McArdle, A. & Cooper, R. G. Understanding the origin of non-immune cell-mediated weakness in the idiopathic inflammatory myopathies – potential role of ER stress pathways. Curr. Opin. Rheumatol. 27, 580–585 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Monici, M. C., Aguennouz, M., Mazzeo, A., Messina, C. & Vita, G. Activation of nuclear factor-κB in inflammatory myopathies and Duchenne muscular dystrophy. Neurology 60, 993–997 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. De Paepe, B. et al. Activation of osmolyte pathways in inflammatory myopathy and Duchenne muscular dystrophy points to osmoregulation as a contributing pathogenic mechanism. Lab. Invest. 96, 872–884 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Bhattarai, S. et al. The immunoproteasomes are key to regulate myokines and MHC class I expression in idiopathic inflammatory myopathies. J. Autoimmun. 75, 118–129 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Yin, X., Han, G. C., Jiang, X. W., Shi, Q. & Pu, C. Q. Increased expression of the NOD-like receptor family, pyrin domain containing 3 inflammasome in dermatomyositis and polymyositis is a potential contributor to their pathogenesis. Chin. Med. J. 129, 1047–1052 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Bae, H. R. et al. β-Hydroxybutyrate suppresses inflammasome formation by ameliorating endoplasmic reticulum stress via AMPK activation. Oncotarget 7, 66444–66454 (2016).

    PubMed  PubMed Central  Google Scholar 

  152. Wanchu, A., Khullar, M., Sud, A. & Bambery, P. Nitric oxide production is increased in patients with inflammatory myositis. Nitric Oxide 3, 454–458 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Tews, D. S. & Goebel, H. H. Cell death and oxidative damage in inflammatory myopathies. Clin. Immunol. Immunopathol. 87, 240–247 (1998).

    Article  CAS  PubMed  Google Scholar 

  154. Lambert, K. et al. Grape polyphenols supplementation reduces muscle atrophy in a mouse model of chronic inflammation. Nutrition 31, 1275–1283 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Alger, H. M. et al. The role of TRAIL in mediating autophagy in myositis skeletal muscle: a potential nonimmune mechanism of muscle damage. Arthritis Rheum. 63, 3448–3457 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. De Paepe, B., Creus, K. K., Martin, J. J., Weis, J. & De Bleecker, J. L. A dual role for HSP90 and HSP70 in the inflammatory myopathies: from muscle fiber protection to active invasion by macrophages. Ann. NY Acad. Sci. 1173, 463–469 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Grundtman, C. et al. Effects of HMGB1 on in vitro responses of isolated muscle fibers and functional aspects in skeletal muscles of idiopathic inflammatory myopathies. FASEB J. 24, 570–578 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Ulfgren, A. K. et al. Down-regulation of the aberrant expression of the inflammation mediator high mobility group box chromosomal protein 1 in muscle tissue of patients with polymyositis and dermatomyositis treated with corticosteroids. Arthritis Rheum. 50, 1586–1594 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Zong, M. et al. TLR4 as receptor for HMGB1 induced muscle dysfunction in myositis. Ann. Rheum. Dis. 72, 1390–1399 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Harris, H. E., Andersson, U. & Pisetsky, D. S. HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat. Rev. Rheumatol. 8, 195–202 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Wan, Z. et al. TLR4-HMGB1 signaling pathway affects the inflammatory reaction of autoimmune myositis by regulating MHC-I. Int. Immunopharmacol. 41, 74–81 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Cseri, K. et al. HMGB1 expression and muscle regeneration in idiopathic inflammatory myopathies and degenerative joint diseases. J. Muscle Res. Cell. Motil. 36, 255–262 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Shu, X., Peng, Q., Lu, X. & Wang, G. HMGB1 may be a biomarker for predicting the outcome in patients with polymyositis /dermatomyositis with interstitial lung disease. PLoS ONE 11, e0161436 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Keller, C. W., Schmidt, J. & Lunemann, J. D. Immune and myodegenerative pathomechanisms in inclusion body myositis. Ann. Clin. Transl Neurol. 4, 422–445 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Vattemi, G. et al. Amyloid-β42 is preferentially accumulated in muscle fibers of patients with sporadic inclusion-body myositis. Acta Neuropathol. 117, 569–574 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Askanas, V., Engel, W. K. & Nogalska, A. Sporadic inclusion-body myositis: a degenerative muscle disease associated with aging, impaired muscle protein homeostasis and abnormal mitophagy. Biochim. Biophys. Acta 1852, 633–643 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Askanas, V. & King Engel, W. Update on neuromuscular diseases: pathology and molecular pathogenesis. Biochim. Biophys. Acta 1852, 561–562 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Muth, I. E., Barthel, K., Bahr, M., Dalakas, M. C. & Schmidt, J. Pro-inflammatory cell stress in sporadic inclusion body myositis: overexpression of αB-crystallin is associated with amyloid precursor protein and accumulation of α-amyloid. J. Neurol. Neurosurg. Psychiatry 80, 1344–1349 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Wojcik, S., Engel, W. K., McFerrin, J., Paciello, O. & Askanas, V. AβPP-overexpression and proteasome inhibition increase αB-crystallin in cultured human muscle: relevance to inclusion-body myositis. Neuromuscul. Disord. 16, 839–844 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Banwell, B. L. & Engel, A. G. αB-crystallin immunolocalization yields new insights into inclusion body myositis. Neurology 54, 1033–1041 (2000).

    Article  CAS  PubMed  Google Scholar 

  171. Wang, P., Wander, C. M., Yuan, C. X., Bereman, M. S. & Cohen, T. J. Acetylation-induced TDP-43 pathology is suppressed by an HSF1-dependent chaperone program. Nat. Commun. 8, 82 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ahmed, M. et al. Targeting protein homeostasis in sporadic inclusion body myositis. Sci. Transl. Med. 8, 331ra41 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nogalska, A., D'Agostino, C., Terracciano, C., Engel, W. K. & Askanas, V. Impaired autophagy in sporadic inclusion-body myositis and in endoplasmic reticulum stress-provoked cultured human muscle fibers. Am. J. Pathol. 177, 1377–1387 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Cacciottolo, M., Nogalska, A., D'Agostino, C., Engel, W. K. & Askanas, V. Chaperone-mediated autophagy components are upregulated in sporadic inclusion-body myositis muscle fibres. Neuropathol. Appl. Neurobiol. 39, 750–761 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Lunemann, J. D. et al. Beta-amyloid is a substrate of autophagy in sporadic inclusion body myositis. Ann. Neurol. 61, 476–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Schmidt, K. et al. IL-1β-induced accumulation of amyloid: macroautophagy in skeletal muscle depends on ERK. Mediators Inflamm. 2017, 5470831 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Nakano, S., Oki, M. & Kusaka, H. The role of p62/SQSTM1 in sporadic inclusion body myositis. Neuromuscul. Disord. 27, 363–369 (2017).

    Article  PubMed  Google Scholar 

  178. Nicot, A. S. et al. Phosphorylation of NBR1 by GSK3 modulates protein aggregation. Autophagy 10, 1036–1053 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. D'Agostino, C., Nogalska, A., Cacciottolo, M., King Engel, W. & Askanas, V. Abnormalities of NBR1, a novel autophagy-associated protein, in muscle fibers of sporadic inclusion-body myositis. Acta Neuropathol. 122, 627 (2011).

    Article  CAS  PubMed  Google Scholar 

  180. Duleh, S., Wang, X., Komirenko, A. & Margeta, M. Activation of the Keap1/Nrf2 stress response pathway in autophagic vacuolar myopathies. Acta Neuropathol. Commun. 4, 115 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02481453 (2017).

  182. Oldfors, A. et al. Mitochondrial abnormalities in inclusion-body myositis. Neurology 66, S49–S55 (2006).

    Article  CAS  PubMed  Google Scholar 

  183. Catalán-García, M. et al. Mitochondrial DNA disturbances and deregulated expression of oxidative phosphorylation and mitochondrial fusion proteins in sporadic inclusion body myositis. Clin. Sci. 130, 1741–1751 (2016).

    Article  PubMed  Google Scholar 

  184. Rygiel, K. A. et al. Mitochondrial and inflammatory changes in sporadic inclusion body myositis. Neuropathol. Appl. Neurobiol. 41, 288–303 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Joshi, P. R. et al. Functional relevance of mitochondrial abnormalities in sporadic inclusion body myositis. J. Clin. Neurosci. 21, 1959–1963 (2014).

    Article  CAS  PubMed  Google Scholar 

  186. Boncompagni, S. et al. Mitochondrial dysfunction in skeletal muscle of amyloid precursor protein-overexpressing mice. J. Biol. Chem. 287, 20534–20544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Askanas, V. et al. Transfer of beta-amyloid precursor protein gene using adenovirus vector causes mitochondrial abnormalities in cultured normal human muscle. Proc. Natl Acad. Sci. USA 93, 1314–1319 (1996).

    Article  CAS  PubMed  Google Scholar 

  188. Schmidt, J. et al. Nitric oxide stress in sporadic inclusion body myositis muscle fibres: inhibition of inducible nitric oxide synthase prevents interleukin-1β-induced accumulation of β-amyloid and cell death. Brain 135, 1102–1114 (2012).

    Article  PubMed  Google Scholar 

  189. Baron, P. et al. Synergistic effect of β-amyloid protein and interferon gamma on nitric oxide production by C2C12 muscle cells. Brain 123, 374–379 (2000).

    Article  PubMed  Google Scholar 

  190. Rayavarapu, S. et al. Activation of the ubiquitin proteasome pathway in a mouse model of inflammatory myopathy: a potential therapeutic target. Arthritis Rheum. 65, 3248–3258 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Rider, L. G., Danko, K. & Miller, F. W. Myositis registries and biorepositories: powerful tools to advance clinical, epidemiologic and pathogenic research. Curr. Opin. Rheumatol. 26, 724–741 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Molberg, O. & Dobloug, C. Epidemiology of sporadic inclusion body myositis. Curr. Opin. Rheumatol. 28, 657–660 (2016).

    Article  PubMed  Google Scholar 

  193. Helmers, S. B. et al. Inflammatory lung disease a potential risk factor for onset of idiopathic inflammatory myopathies: results from a pilot study. RMD Open 2, e000342 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Mamyrova, G., Rider, L. G., Haagenson, L., Wong, S. & Brown, K. E. Parvovirus B19 and onset of juvenile dermatomyositis. JAMA 294, 2170–2171 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank L. Rider, I. Lundberg, A. Mammen and C. Parks for many useful discussions of concepts in this area and for helpful comments on the manuscript, and are grateful to L. Maroski for her technical assistance. The authors' work is supported in part by the Intramural Research Program of the NIH National Institute of Environmental Health Sciences. K.N. is supported by the NIH (1R21AI128248-01, K26OD011171), The Myositis Association and the US Department of Defense (W81XWH-11-1-0809 (K.N. and F.W.M.), W81XWH-11-1-0782 (K.N.). J.L. is supported by the Medical Research Council, UK (MR/N003322/1) and The Myositis Association.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content, wrote the article and contributed equally to reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to Frederick W. Miller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Rimmed vacuoles

Spaces within the cytoplasm of a muscle cell with a purplish staining rim on trichrome staining.

Functional annotation

Characterization of the function assigned to each gene product or genetic variant.

Expression quantitative trait loci

(eQTLs). Genomic loci that regulate gene expression.

Macroautophagy

A process in which cellular contents are degraded by lysosomes or vacuoles and recycled.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, F., Lamb, J., Schmidt, J. et al. Risk factors and disease mechanisms in myositis. Nat Rev Rheumatol 14, 255–268 (2018). https://doi.org/10.1038/nrrheum.2018.48

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2018.48

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing