Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Annexin A1: potential for glucocorticoid sparing in RA

Abstract

Glucocorticoids have broad-ranging and powerful anti-inflammatory and immunomodulatory effects. Unsurprisingly, therefore, glucocorticoids are widely and persistently used to treat a large number of inflammatory diseases, including rheumatoid arthritis (RA), despite the well-described adverse effects of these drugs. Annexin A1 is a glucocorticoid-induced molecule that is known to replicate many of the described anti-inflammatory effects of glucocorticoids. In addition to the well-documented roles of this protein in neutrophil function, emerging evidence suggests that annexin A1 is involved in the modulation of T-cell function and the adaptive immune responses relevant to RA. Interest in annexin A1 was renewed after the delineation of the receptors for this protein. This breakthrough also led to advances in our understanding of anti-inflammatory annexin A1 mimetic peptides and agonistic compounds targeting these receptors, particularly those specific for the receptor N-formyl peptide receptor 2 (FPR2). Herein, we review the current knowledge of the biological activities of annexin A1 and their relevance to RA pathogenesis. We also discuss the potential of annexin A1 mimics and strategies aimed at potentiating annexin A1 signalling to become viable approaches to minimizing glucocorticoid use in RA and other inflammatory disorders.

Key Points

  • Glucocorticoids have powerful anti-inflammatory effects; the glucocortoid-induced protein annexin A1 mediates many of these

  • Annexin A1 has important and well-documented influences on inflammatory mechanisms involving the innate immune system, which are relevant to rheumatoid arthritis (RA) pathogenesis

  • Emerging data also support a role for annexin A1 in modulating the adaptive immune responses that are particularly relevant to the pathogenesis of RA

  • The cellular receptors for annexin A1, which include the N-formyl peptide receptor 2 (FPR2; also known as lipoxin A4 receptor or ALX), have now been delineated

  • Annexin A1, annexin A1 mimetic peptides and agonists of the N-formyl peptide receptors have the potential to reproduce the therapeutic anti-inflammatory effects of glucocorticoids without their adverse effects on other biological systems

  • Therapies directly targeting the annexin A1 signalling pathway could enable a novel glucocorticoid-sparing approach to the treatment of RA

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathway of glucocorticoid-induced annexin A1 expression.
Figure 2: The FPR2-mediated anti-inflammatory and immune modulatory effects of annexin A1.
Figure 3: Receptor–ligand complexity of annexin A1 and its mimetics.

Similar content being viewed by others

References

  1. Seldin, M. F., Amos, C. I., Ward, R. & Gregersen, P. K. The genetics revolution and the assault on rheumatoid arthritis. Arthritis Rheum. 42, 1071–1079 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Emery, P. et al. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial. Ann. Rheum. Dis. 67, 1516–1523 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Huscher, D. et al. Dose-related patterns of glucocorticoid-induced side effects. Ann. Rheum. Dis. 68, 1119–1124 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Kremer, J. M. et al. Results of a two-year followup study of patients with rheumatoid arthritis who received a combination of abatacept and methotrexate. Arthritis Rheum. 58, 953–963 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Hoes, J. N., Jacobs, J. W., Verstappen, S. M., Bijlsma, J. W. & Van der Heijden, G. J. Adverse events of low- to medium-dose oral glucocorticoids in inflammatory diseases: a meta-analysis. Ann. Rheum. Dis. 68, 1833–1838 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Baschant, U., Lane, N. E. & Tuckermann, J. The multiple facets of glucocorticoid action in rheumatoid arthritis. Nat. Rev. Rheumatol. 8, 645–655 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Flower, R. J. & Blackwell, G. J. Anti-inflammatory steroids induce biosynthesis of a phospholipase A2 inhibitor which prevents prostaglandin generation. Nature 278, 456–459 (1979).

    Article  CAS  PubMed  Google Scholar 

  8. Wallner, B. P. et al. Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. Nature 320, 77–81 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Perretti, M. & D'Acquisto, F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat. Rev. Immunol. 9, 62–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Damazo, A. S. et al. Critical protective role for annexin 1 gene expression in the endotoxemic murine microcirculation. Am. J. Pathol. 166, 1607–1617 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang, Y. H., Aeberli, D., Dacumos, A., Xue, J. R. & Morand, E. F. Annexin-1 regulates macrophage IL-6 and TNF via glucocorticoid-induced leucine zipper. J. Immunol. 183, 1435–1445 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, Z., Huang, L., Zhao, W. & Rigas, B. Annexin 1 induced by anti-inflammatory drugs binds to NF-κB and inhibits its activation: anticancer effects in vitro and in vivo. Cancer Res. 70, 2379–2388 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang, Y. H. et al. Deficiency of annexin A1 in CD4+ T cells exacerbates T cell-dependent inflammation. J. Immunol. 190, 997–1007 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Walther, A., Riehemann, K. & Gerke, V. A novel ligand of the formyl peptide receptor: annexin 1 regulates neutrophil extravasation by interacting with the FPR. Mol. Cell 5, 831–840 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Perretti, M. et al. Endogenous lipid- and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nat. Med. 8, 1296–1302 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dufton, N. et al. Anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation. J. Immunol. 184, 2611–2619 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Buttgereit, F., Straub, R. H., Wehling, M. & Burmester, G. R. Glucocorticoids in the treatment of rheumatic diseases: an update on the mechanisms of action. Arthritis Rheum. 50, 3408–3417 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Fan, H. & Morand, E. F. Targeting the side effects of steroid therapy in autoimmune diseases: the role of GILZ. Discov. Med. 13, 123–133 (2012).

    PubMed  Google Scholar 

  19. Weinstein, R. S. Glucocorticoid-induced osteonecrosis. Endocrine 41, 183–190 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Surjit, M. et al. Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell 145, 224–241 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Patel, H. B. et al. The impact of endogenous annexin A1 on glucocorticoid control of inflammatory arthritis. Ann. Rheum. Dis. 71, 1872–1880 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Yang, Y. H. et al. Modulation of inflammation and response to dexamethasone by annexin 1 in antigen-induced arthritis. Arthritis Rheum. 50, 976–984 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Gerke, V. & Moss, S. E. Annexins and membrane dynamics. Biochim. Biophys. Acta 1357, 129–154 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Perretti, M. & Dalli, J. Exploiting the annexin A1 pathway for the development of novel anti-inflammatory therapeutics. Br. J. Pharmacol. 158, 936–946 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lim, L. H. & Pervaiz, S. Annexin 1: the new face of an old molecule. FASEB J. 21, 968–975 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Croxtall, J. D. et al. Attenuation of glucocorticoid functions in an Anx-A1−/− cell line. Biochem. J. 371, 927–935 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Violette, S. M. et al. Role of lipocortin I in the glucocorticoid induction of the terminal differentiation of a human squamous carcinoma. J. Cell. Physiol. 142, 70–77 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Gerke, V. & Moss, S. E. Annexins: from structure to function. Physiol. Rev. 82, 331–371 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Blackwell, G. J. et al. Macrocortin: a polypeptide causing the anti-phospholipase effect of glucocorticoids. Nature 287, 147–149 (1980).

    Article  CAS  PubMed  Google Scholar 

  30. Hannon, R. et al. Aberrant inflammation and resistance to glucocorticoids in annexin 1−/− mouse. FASEB J. 17, 253–255 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Babbin, B. A. et al. Annexin A1 regulates intestinal mucosal injury, inflammation, and repair. J. Immunol. 181, 5035–5044 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Solito, E. et al. A novel calcium-dependent proapoptotic effect of annexin 1 on human neutrophils. FASEB J 17, 1544–1546 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Scannell, M. et al. Annexin-1 and peptide derivatives are released by apoptotic cells and stimulate phagocytosis of apoptotic neutrophils by macrophages. J. Immunol. 178, 4595–4605 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Hayhoe, R. P. et al. Annexin 1 and its bioactive peptide inhibit neutrophil-endothelium interactions under flow: indication of distinct receptor involvement. Blood 107, 2123–2130 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Dalli, J. et al. Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles. Blood 112, 2512–2519 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Perretti, M. et al. Mobilizing lipocortin 1 in adherent human leukocytes downregulates their transmigration. Nat. Med. 2, 1259–1262 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Brancaleone, V. et al. Evidence for an anti-inflammatory loop centered on polymorphonuclear leukocyte formyl peptide receptor 2/lipoxin A4 receptor and operative in the inflamed microvasculature. J. Immunol. 186, 4905–4914 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Goulding, N. J. et al. Anti-inflammatory lipocortin 1 production by peripheral blood leucocytes in response to hydrocortisone. Lancet 335, 1416–1418 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Morand, E. F. et al. Detection of intracellular lipocortin 1 in human leukocyte subsets. Clin. Immunol. Immunopathol. 76, 195–202 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Perretti, M. & Flower, R. J. Measurement of lipocortin 1 levels in murine peripheral blood leukocytes by flow cytometry: modulation by glucocorticoids and inflammation. Br. J. Pharmacol. 118, 605–610 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spurr, L. et al. Comparative analysis of annexin A1–formyl peptide receptor 2/ALX expression in human leukocyte subsets. Int. Immunopharmacol. 11, 55–66 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Paschalidis, N. et al. Modulation of experimental autoimmune encephalomyelitis by endogenous annexin A1. J. Neuroinflammation 6, 33 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. D'Acquisto, F. et al. Annexin-1 modulates T-cell activation and differentiation. Blood 109, 1095–1102 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. D'Acquisto, F. et al. Impaired T cell activation and increased TH2 lineage commitment in Annexin-1-deficient T cells. Eur. J. Immunol. 37, 3131–3142 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Blume, K. E. et al. Cleavage of annexin A1 by ADAM10 during secondary necrosis generates a monocytic “find-me” signal. J. Immunol. 188, 135–145 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Hirata, F. & Iwata, M. Role of lipomodulin, a phospholipase inhibitory protein, in immunoregulation by thymocytes. J. Immunol. 130, 1930–1936 (1983).

    CAS  PubMed  Google Scholar 

  47. Kamal, A. M., Smith, S. F., De Silva Wijayasinghe, M., Solito, E. & Corrigan, C. J. An annexin 1 (ANXA1)-derived peptide inhibits prototype antigen-driven human T cell TH1 and TH2 responses in vitro. Clin. Exp. Allergy 31, 1116–1125 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Gold, R., Pepinsky, R. B., Zettl, U. K., Toyka, K. V. & Hartung, H. P. Lipocortin-1 (annexin-1) suppresses activation of autoimmune T cell lines in the Lewis rat. J. Neuroimmunol. 69, 157–164 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Ng, F. S. et al. Annexin-1-deficient mice exhibit spontaneous airway hyperresponsiveness and exacerbated allergen-specific antibody responses in a mouse model of asthma. Clin. Exp. Allergy 41, 1793–1803 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, Y., Hutchinson, P. & Morand, E. F. Inhibitory effect of annexin 1 on synovial inflammation in rat adjuvant arthritis. Arthritis Rheum. 42, 1538–1544 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Yang, Y., Leech, M., Hutchinson, P., Holdsworth, S. R. & Morand, E. F. Antiinflammatory effect of lipocortin 1 in experimental arthritis. Inflammation 21, 583–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Korganow, A. S. et al. From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 10, 451–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Bevaart, L., Vervoordeldonk, M. J. & Tak, P. P. Evaluation of therapeutic targets in animal models of arthritis: how does it relate to rheumatoid arthritis? Arthritis Rheum. 62, 2192–2205 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. van den Berg, W. B. Lessons from animal models of arthritis over the past decade. Arthritis Res. Ther. 11, 250 (2009).

    Article  PubMed  CAS  Google Scholar 

  55. Baschant, U. et al. Glucocorticoid therapy of antigen-induced arthritis depends on the dimerized glucocorticoid receptor in T cells. Proc. Natl Acad. Sci. USA 108, 19317–19322 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Morand, E. F., Jefferiss, C. M., Dixey, J., Mitra, D. & Goulding, N. J. Impaired glucocorticoid induction of mononuclear leukocyte lipocortin-1 in rheumatoid arthritis. Arthritis Rheum. 37, 207–211 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Goulding, N. J., Jefferiss, C. M., Pan, L., Rigby, W. F. & Guyre, P. M. Specific binding of lipocortin-1 (annexin I) to monocytes and neutrophils is decreased in rheumatoid arthritis. Arthritis Rheum. 35, 1395–1397 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Sampey, A. V., Hutchinson, P. & Morand, E. F. Annexin I surface binding sites and their regulation on human fibroblast-like synoviocytes. Arthritis Rheum. 43, 2537–2542 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. D'Acquisto, F. et al. Glucocorticoid treatment inhibits annexin-1 expression in rheumatoid arthritis CD4+ T cells. Rheumatology (Oxford) 47, 636–639 (2008).

    Article  CAS  Google Scholar 

  60. Goulding, N. J. et al. Differential distribution of annexins-I, -II, -IV, and -VI in synovium. Ann. Rheum. Dis. 54, 841–845 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morand, E. F., Hall, P., Hutchinson, P. & Yang, Y. H. Regulation of annexin I in rheumatoid synovial cells by glucocorticoids and interleukin-1. Mediators Inflamm. 2006, 73835 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Tagoe, C. E. et al. Annexin-1 mediates TNF-α-stimulated matrix metalloproteinase secretion from rheumatoid arthritis synovial fibroblasts. J. Immunol. 181, 2813–2820 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Ye, R. D. et al. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol. Rev. 61, 119–161 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gavins, F. N. & Hickey, M. J. Annexin A1 and the regulation of innate and adaptive immunity. Front. Immunol. 3, 354 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fiore, S., Maddox, J. F., Perez, H. D. & Serhan, C. N. Identification of a human cDNA encoding a functional high affinity lipoxin A4 receptor. J. Exp. Med. 180, 253–260 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Su, S. B. et al. A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells. J. Exp. Med. 189, 395–402 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hartt, J. K., Barish, G., Murphy, P. M. & Gao, J. L. N-formylpeptides induce two distinct concentration optima for mouse neutrophil chemotaxis by differential interaction with two N-formylpeptide receptor (FPR) subtypes. Molecular characterization of FPR2, a second mouse neutrophil FPR. J. Exp. Med. 190, 741–747 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chiang, N. et al. The lipoxin receptor ALX: potent ligand-specific and stereoselective actions in vivo. Pharmacol. Rev. 58, 463–487 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Maderna, P. et al. FPR2/ALX receptor expression and internalization are critical for lipoxin A4 and annexin-derived peptide-stimulated phagocytosis. FASEB J. 24, 4240–4249 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Jia, Y. et al. Regulation of lung fibroblast activation by annexin A1. J. Cell. Physiol. 228, 476–484 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Bena, S., Brancaleone, V., Wang, J. M., Perretti, M. & Flower, R. J. Annexin A1 interaction with the FPR2/ALX receptor: identification of distinct domains and downstream associated signaling. J. Biol. Chem. 287, 24690–24697 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Perretti, M. & Flower, R. J. Modulation of IL-1-induced neutrophil migration by dexamethasone and lipocortin 1. J. Immunol. 150, 992–999 (1993).

    CAS  PubMed  Google Scholar 

  73. Perretti, M., Ahluwalia, A., Harris, J. G., Goulding, N. J. & Flower, R. J. Lipocortin-1 fragments inhibit neutrophil accumulation and neutrophil-dependent edema in the mouse. A qualitative comparison with an anti-CD11b monoclonal antibody. J. Immunol. 151, 4306–4314 (1993).

    CAS  PubMed  Google Scholar 

  74. Tae, Y. M. et al. Airway activation of formyl peptide receptors inhibits TH1 and TH17 cell responses via inhibition of mediator release from immune and inflammatory cells and maturation of dendritic cells. J. Immunol. 188, 1799–1808 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Sogawa, Y., Shimizugawa, A., Ohyama, T., Maeda, H. & Hirahara, K. The pyrazolone originally reported to be a formyl peptide receptor (FPR) 2/ALX-selective agonist is instead an FPR1 and FPR2/ALX dual agonist. J. Pharmacol. Sci. 111, 317–321 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Burli, R. W. et al. Potent hFPRL1 (ALXR) agonists as potential anti-inflammatory agents. Bioorg. Med. Chem. Lett. 16, 3713–3718 (2006).

    Article  PubMed  CAS  Google Scholar 

  77. Kirpotina, L. N. et al. Identification of novel small-molecule agonists for human formyl peptide receptors and pharmacophore models of their recognition. Mol. Pharmacol. 77, 159–170 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schepetkin, I. A., Kirpotina, L. N., Khlebnikov, A. I., Jutila, M. A. & Quinn, M. T. Gastrin-releasing peptide/neuromedin B receptor antagonists PD176252, PD168368, and related analogs are potent agonists of human formyl-peptide receptors. Mol. Pharmacol. 79, 77–90 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Damazo, A. S., Yona, S., Flower, R. J., Perretti, M. & Oliani, S. M. Spatial and temporal profiles for anti-inflammatory gene expression in leukocytes during a resolving model of peritonitis. J. Immunol. 176, 4410–4418 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Gavins, F. N., Dalli, J., Flower, R. J., Granger, D. N. & Perretti, M. Activation of the annexin 1 counter-regulatory circuit affords protection in the mouse brain microcirculation. FASEB J. 21, 1751–1758 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Damazo, A. S. et al. Endogenous annexin A1 counter-regulates bleomycin-induced lung fibrosis. BMC Immunol. 12, 59 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Qin, C. et al. Reperfusion-induced myocardial dysfunction is prevented by endogenous annexin-A1 and its N-terminal-derived peptide Ac-ANX-A1(2–26). Br. J. Pharmacol. 168, 238–252 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Cristante, E. et al. Identification of an essential endogenous regulator of blood–brain barrier integrity, and its pathological and therapeutic implications. Proc. Natl Acad. Sci. USA 110, 832–841 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Lee, S. H. et al. Anti-inflammatory effects of Tat-annexin protein on ovalbumin-induced airway inflammation in a mouse model of asthma. Biochem. Biophys. Res. Commun. 417, 1024–1029 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Vago, J. P. et al. Annexin A1 modulates natural and glucocorticoid-induced resolution of inflammation by enhancing neutrophil apoptosis. J. Leukoc. Biol. 92, 249–258 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. da Cunha, E. E., Oliani, S. M. & Damazo, A. S. Effect of annexin-A1 peptide treatment during lung inflammation induced by lipopolysaccharide. Pulm. Pharmacol. Ther. 25, 303–311 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Kamaly, N. et al. Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles. Proc. Natl Acad. Sci. USA 110, 6506–6511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Leoni, G. et al. Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J. Clin. Invest. 123, 443–454 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y. H. Yang researched the data for the article. All authors provided substantial contribution to discussions of content, contributed equally to writing the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Yuan H. Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Morand, E. & Leech, M. Annexin A1: potential for glucocorticoid sparing in RA. Nat Rev Rheumatol 9, 595–603 (2013). https://doi.org/10.1038/nrrheum.2013.126

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing