Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Microparticles as autoadjuvants in the pathogenesis of SLE

Abstract

Nucleic acids represent the main source of autoantigens in systemic lupus erythematosus (SLE). DNA and RNA can exit the cell during cell death and, in the extracellular space, can be immunostimulatory. Also extracellularly, DNA and RNA can be incorporated into microparticles (MPs)—small, membrane-bound vesicles released from dying cells by blebbing. We suggest that MPs display autoantigens, such as RNA and DNA, in a highly immunostimulatory manner, enabling them to function as autoadjuvants. In the bone marrow, nucleic-acid-containing MP autoadjuvants might induce B-cell tolerance, whereas in the periphery, they might stimulate mature B cells that have escaped central tolerance. Indeed, because MP autoadjuvants can trigger several receptors, they could effectively provide apoptotic or activating signals to B cells. We would therefore advance the idea that a model for SLE based on MP autoadjuvants can provide a new paradigm to elucidate the mechanisms by which DNA and RNA affect the immune system and critically influence B-cell fate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The immune activity of autoadjuvant microparticles.

Similar content being viewed by others

References

  1. Ardoin, S. P. & Pisetsky, D. S. Developments in the scientific understanding of lupus. Arthritis Res. Ther. 10, 218 (2008).

    Article  Google Scholar 

  2. Kirou, K. A. et al. Activation of the interferon-alpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum. 52, 1491–1503 (2005).

    Article  CAS  Google Scholar 

  3. Ronnblom, L., Eloranta, M. L. & Alm, G. V. The type I interferon system in systemic lupus erythematosus. Arthritis Rheum. 54, 408–420 (2006).

    Article  Google Scholar 

  4. Deane, J. A. & Bolland, S. Nucleic acid-sensing TLRs as modifiers of autoimmunity. J. Immunol. 177, 6573–6578 (2006).

    Article  CAS  Google Scholar 

  5. Martin, D. A. & Elkon, K. B. Intracellular mammalian DNA stimulates myeloid dendritic cells to produce type I interferons predominantly through a toll-like receptor 9-independent pathway. Arthritis Rheum. 54, 951–962 (2006).

    Article  CAS  Google Scholar 

  6. Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007).

    Article  CAS  Google Scholar 

  7. Beyer, C. & Pisetsky, D. S. The role of microparticles in the pathogenesis of rheumatic diseases. Nat. Rev. Rheumatol. 6, 21–29 (2010).

    Article  CAS  Google Scholar 

  8. Pisetsky, D. S. Immune activation by bacterial DNA: a new genetic code. Immunity 5, 303–310 (1996).

    Article  CAS  Google Scholar 

  9. Krieg, A. M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 6, 546–549 (1995).

    Article  Google Scholar 

  10. Yasuda, K. et al. Requirement for DNA CpG content in TLR9-dependent dendritic cell activation induced by DNA-containing immune complexes. J. Immunol. 183, 3109–3117 (2009).

    Article  CAS  Google Scholar 

  11. Xiao, T. Innate immune recognition of nucleic acids. Immunol. Res. 43, 98–108 (2009).

    Article  CAS  Google Scholar 

  12. Vallin, H., Perers, A., Alm, G. V. & Ronnblom, L. Anti-double-stranded DNA antibodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFN-alpha inducer in systemic lupus erythematosus. J. Immunol. 163, 6306–6313 (1999).

    CAS  Google Scholar 

  13. Boule, M. W. et al. Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J. Exp. Med. 199, 1631–1640 (2004).

    Article  CAS  Google Scholar 

  14. Tian, J. et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 8, 487–496 (2007).

    Article  CAS  Google Scholar 

  15. Yasuda, K. et al. Murine dendritic cell type I IFN production induced by human IgG-RNA immune complexes is IFN regulatory factor (IRF)5 and IRF7 dependent and is required for IL-6 production. J. Immunol. 178, 6876–6885 (2007).

    Article  CAS  Google Scholar 

  16. Jiang, W., Reich, I. C. & Pisetsky, D. S. Mechanisms of activation of the RAW264.7 macrophage cell line by transfected mammalian DNA. Cell. Immunol. 229, 31–40 (2004).

    Article  CAS  Google Scholar 

  17. Jiang, W. & Pisetsky, D. S. The induction of HMGB1 release from RAW 264.7 cells by transfected DNA. Mol. Immunol. 45, 2038–2044 (2008).

    Article  CAS  Google Scholar 

  18. Marques, J. T. et al. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat. Biotechnol. 24, 559–565 (2006).

    Article  CAS  Google Scholar 

  19. Fernandes-Alnemri, T., Yu, J.-W., Datta, P., Wu, J. & Alnemri, E. S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–515 (2009).

    Article  CAS  Google Scholar 

  20. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).

    Article  CAS  Google Scholar 

  21. Crow, Y. J. & Rehwinkel, J. Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Hum. Mol. Gen. 18, R130–R136 (2009).

    Article  CAS  Google Scholar 

  22. Halicka, H. D., Bedner, E. & Darzynkiewicz, Z. Segregation of RNA and separate packaging of DNA and RNA in apoptotic bodies during apoptosis. Exp. Cell Res. 260, 248–256 (2000).

    Article  CAS  Google Scholar 

  23. Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A. & Ratajczak, M. Z. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20, 1487–1495 (2006).

    Article  CAS  Google Scholar 

  24. Piccin, A., Murphy, W. G. & Smith, O. P. Circulating microparticles: pathophysiology and clinical implications. Blood Rev. 21, 157–171 (2007).

    Article  CAS  Google Scholar 

  25. Hasselmann, D. O., Rappl, G., Tilgen, W. & Reinhold, U. Extracellular tyrosinase mRNA within apoptotic bodies is protected from degradation in human serum. Clin. Chem. 47, 1488–1489 (2001).

    CAS  Google Scholar 

  26. Ng, E. K. et al. Presence of filterable and nonfilterable mRNA in the plasma of cancer patients and healthy individuals. Clin. Chem. 48, 1212–1217 (2002).

    CAS  PubMed  Google Scholar 

  27. Reich, C. F. & Pisetsky, D. S. The content of DNA and RNA in microparticles released by Jurkat and HL-60 cells undergoing in vitro apoptosis. Exp. Cell Res. 315, 760–768 (2009).

    CAS  Google Scholar 

  28. De Gregorio, E., D'Oro, U. & Wack, A. Immunology of TLR-independent vaccine adjuvants. Curr. Opin. Immunol. 21, 339–345 (2009).

    Article  CAS  Google Scholar 

  29. Yurasov, S. et al. Defective B cell tolerance checkpoints in systemic lupus erythematosus. J. Exp. Med. 201, 703–711 (2005).

    Article  CAS  Google Scholar 

  30. Jacobi, A. M., Zhang, J., Mackay, M., Aranow, C. & Diamond, B. Phenotypic characterization of autoreactive B cells—checkpoints of B cell tolerance in patients with systemic lupus erythematosus. PLoS ONE 4, e5776 (2009).

    Article  Google Scholar 

  31. Tussiwand, R., Bosco, N., Ceredig, R. & Rolink, A. G. Tolerance checkpoints in B-cell development: Johnny B good. Eur. J. Immunol. 39, 2317–2324 (2009).

    Article  CAS  Google Scholar 

  32. Lee, J., Kuchen, S., Fischer, R., Chang, S. & Lipsky, P. E. Identification and characterization of a human CD5+ pre-naive B cell population. J. Immunol. 182, 4116–4126 (2009).

    Article  CAS  Google Scholar 

  33. Alexander, T. et al. Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood 113, 214–223 (2009).

    Article  CAS  Google Scholar 

  34. Munoz, L. E. et al. SLE-—a disease of clearance deficiency? Rheumatology (Oxford) 44, 1101–1107 (2005).

    Article  CAS  Google Scholar 

  35. Ogden, C. A. & Elkon, K. B. Role of complement and other innate immune mechanisms in the removal of apoptotic cells. Curr. Dir. Autoimmun. 9, 120–142 (2006).

    CAS  PubMed  Google Scholar 

  36. Schiller, M. et al. Autoantigens are translocated into small apoptotic bodies during early stages of apoptosis. Cell Death Differ. 15, 183–191 (2007).

    Article  Google Scholar 

  37. Carrasco, Y. R. & Batista, F. D. B cell recognition of membrane-bound antigen: an exquisite way of sensing ligands. Curr. Opin. Immunol. 18, 286–291 (2006).

    Article  CAS  Google Scholar 

  38. Tolar, P., Sohn, H. W., Liu, W. & Pierce, S. K. The molecular assembly and organization of signaling active B-cell receptor oligomers. Immunol. Rev. 232, 34–52 (2009).

    Article  CAS  Google Scholar 

  39. Gould, S. J., Booth, A. M. & Hildreth, J. E. The Trojan exosome hypothesis. Proc. Natl Acad. Sci. USA 100, 10592–10597 (2003).

    Article  CAS  Google Scholar 

  40. Christensen, S. R. et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417–428 (2006).

    Article  CAS  Google Scholar 

  41. Nickerson, K. M. et al. TLR9 regulates TLR7- and MyD88-dependent autoantibody production and disease in a murine model of lupus. J. Immunol. 184, 1840–1848 (2010).

    Article  CAS  Google Scholar 

  42. Krauss, S. W. et al. Nuclear substructure reorganization during late-stage erythropoiesis is selective and does not involve caspase cleavage of major nuclear substructural proteins. Blood 106, 2200–2205 (2005).

    Article  CAS  Google Scholar 

  43. Napirei, M. et al. Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat. Genet. 25, 177–181 (2000).

    Article  CAS  Google Scholar 

  44. Jiang, N., Reich, C. F. & Pisetsky, D. S. Role of macrophages in the generation of circulating blood nucleosomes from dead and dying cells. Blood 102, 2243–2250 (2003).

    Article  CAS  Google Scholar 

  45. Jungel, A. et al. Microparticles stimulate the synthesis of prostaglandin E(2) via induction of cyclooxygenase 2 and microsomal prostaglandin E synthase 1. Arthritis Rheum. 56, 3564–3574 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Pisetsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pisetsky, D., Lipsky, P. Microparticles as autoadjuvants in the pathogenesis of SLE. Nat Rev Rheumatol 6, 368–372 (2010). https://doi.org/10.1038/nrrheum.2010.66

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.66

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing