Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of endothelial function and its assessment in rheumatoid arthritis

Abstract

Patients with rheumatoid arthritis (RA) have a reduced life expectancy when compared with the general population, largely attributable to cardiovascular disease. Factors that contribute to this increased cardiovascular risk include traditional risk factors, which account for only part of the excess, along with manifestations of the disease itself. RA is characterized by inflammation, which also is a key component in the development of atherosclerosis. Inflammation leads to the activation of endothelial cells, which, through an increase in the expression of leukocyte adhesion molecules, promotes a pro-atherosclerotic environment. Endothelial dysfunction is an early preclinical marker of atherosclerosis, and is commonly found in patients with RA. Several methods are available for the assessment of endothelial function, such as flow-mediated dilatation and laser Doppler flowmetry combined with iontophoresis, each with its own advantages and limitations. Studies have shown that endothelial dysfunction in RA is closely associated with inflammation, and therapeutic reduction of inflammation leads to improvements in endothelial function. As such, assessments of endothelial function could prove to be useful tools in the identification and monitoring of cardiovascular risk in patients with RA. Given the increase in cardiovascular mortality associated with RA, effective management must involve prevention of cardiovascular risk, in addition to control of disease activity and inflammation.

Key Points

  • Rheumatoid arthritis (RA) is associated with increased and premature cardiovascular mortality, which cannot be fully explained by conventional risk factors

  • Manifestations of RA itself, such as the extent of inflammation and severity of the disease, are associated with increased cardiovascular risk in RA

  • Levels of early preclinical markers of atherosclerosis, such as those that reflect endothelial dysfunction, are commonly found to be higher in RA patients than healthy individuals, and are associated with inflammation

  • As several methods can be used to assess endothelial function, selection of the most appropriate tests should be based on an understanding of the advantages and limitations of each technique

  • Assessment of preclinical atherosclerosis could prove useful for the early identification and monitoring of cardiovascular risk in patients with RA

  • Effective management of RA must involve aggressive management of cardiovascular risk, in addition to controlling disease activity and inflammation

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Endothelial dysfunction in atherogenesis.
Figure 3: Laser Doppler imaging.

Similar content being viewed by others

References

  1. Van Doornum, S., McColl, G. & Wicks, I. P. Accelerated atherosclerosis: an extraarticular feature of rheumatoid arthritis? Arthritis Rheum. 46, 862–873 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Myllykangas-Luosujärvi, R. A., Aho, K. & Isomäki, H. A. Mortality in rheumatoid arthritis. Semin. Arthritis Rheum. 25, 193–202 (1995).

    Article  PubMed  Google Scholar 

  3. Solomon, D. H. et al. Patterns of cardiovascular risk in rheumatoid arthritis. Ann. Rheum. Dis. 65, 1608–1612 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Van Doornum, S., Jennings, G. L. & Wicks, I. P. Reducing the cardiovascular disease burden in rheumatoid arthritis. Med. J. Aust. 184, 287–290 (2006).

    PubMed  Google Scholar 

  5. Belch, J. J., McSwiggan, S. & Lau, C. Macrovascular disease in systemic sclerosis: the tip of an iceberg? Rheumatology 47 (Suppl. 5), 16–17 (2008).

    Article  Google Scholar 

  6. Watson, D. J., Rhodes, T. & Guess, H. A. All-cause mortality and vascular events among patients with rheumatoid arthritis, osteoarthritis, or no arthritis in the UK General Practice Research Database. J. Rheumatol. 30, 1196–1202 (2003).

    PubMed  Google Scholar 

  7. Kvalvik, A. G., Jones, M. A. & Symmons, D. P. Mortality in a cohort of Norwegian patients with rheumatoid arthritis followed from 1977 to 1992. Scand. J. Rheumatol. 29, 29–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Aviña-Zubieta, J. A. et al. Risk of cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of observational studies. Arthritis Rheum. 59, 1690–1697 (2008).

    Article  PubMed  Google Scholar 

  9. Solomon, D. H. et al. Cardiovascular morbidity and mortality in women diagnosed with rheumatoid arthritis. Circulation 107, 1303–1307 (2003).

    Article  Google Scholar 

  10. Maradit-Kremers, H. et al. Increased unrecognized coronary heart disease and sudden deaths in rheumatoid arthritis: a population-based cohort study. Arthritis Rheum. 52, 402–411 (2005).

    Article  Google Scholar 

  11. Goodson, N. J. et al. Mortality in early inflammatory polyarthritis: cardiovascular mortality is increased in seropositive patients. Arthritis Rheum. 46, 2010–2019 (2002).

    Article  Google Scholar 

  12. van Halm, V. P. et al. Lipids and inflammation: serial measurements of the lipid profile of blood donors who later developed rheumatoid arthritis. Ann. Rheum. Dis. 66, 184–188 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Nielen, M. M. et al. Increased levels of C-reactive protein in serum from blood donors before the onset of rheumatoid arthritis. Arthritis Rheum. 50, 2423–2427 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Nurmohamed, M. T. Cardiovascular risk in rheumatoid arthritis. Autoimmun. Rev. 8, 663–667 (2009).

    Article  PubMed  Google Scholar 

  15. Rojas-Villarraga, A. et al. Risk factors associated with different stages of atherosclerosis in Colombian patients with rheumatoid arthritis. Semin. Arthritis Rheum. 38, 71–82 (2008).

    Article  PubMed  Google Scholar 

  16. Sokka, T. et al. Physical inactivity in patients with rheumatoid arthritis: data from twenty-one countries in a cross-sectional, international study. Arthritis Rheum. 59, 42–50 (2008).

    Article  PubMed  Google Scholar 

  17. Han, C. et al. Cardiovascular disease and risk factors in patients with rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis. J. Rheumatol. 33, 2167–2172 (2006).

    PubMed  Google Scholar 

  18. Panoulas, V. F. et al. Hypertension in rheumatoid arthritis. Rheumatology (Oxford) 47, 1286–1298 (2008).

    Article  CAS  Google Scholar 

  19. Panoulas, V. F. et al. Prevalence and associations of hypertension and its control in patients with rheumatoid arthritis. Rheumatology (Oxford) 46, 1477–1482 (2007).

    Article  CAS  Google Scholar 

  20. Dursunoglu, D. et al. Lp(a) lipoprotein and lipids in patients with rheumatoid arthritis: serum levels and relationship to inflammation. Rheumatol. Int. 25, 241–245 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalez, A. et al. Do cardiovascular risk factors confer the same risk for cardiovascular outcomes in rheumatoid arthritis patients as in non-rheumatoid arthritis patients? Ann. Rheum. Dis. 67, 64–69 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Escalante, A., Haas, R. W. & del Rincón, I. Paradoxical effect of body mass index on survival in rheumatoid arthritis: role of comorbidity and systemic inflammation. Arch. Intern. Med. 165, 1624–1629 (2005).

    Article  PubMed  Google Scholar 

  23. Chung, C. P. et al. Inflammation-associated insulin resistance: differential effects in rheumatoid arthritis and systemic lupus erythematosus define potential mechanisms. Arthritis Rheum. 58, 2105–2112 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. DeMaria, A. N. Relative risk of cardiovascular events in patients with rheumatoid arthritis. Am. J. Cardiol. 89 (Suppl. 1), 33–38 (2002).

    Article  Google Scholar 

  25. Johnsen, S. P. et al. Risk of hospitalization for myocardial infarction among users of rofecoxib, celecoxib, and other NSAIDs: a population-based case-control study. Arch. Intern. Med. 165, 978–984 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. García-Gómez, C. et al. High HDL-cholesterol in women with rheumatoid arthritis on low-dose glucocorticoid therapy. Eur. J. Clin. Invest. 38, 686–692 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. del Rincón, I., O'Leary, D. H., Haas, R. W. & Escalante, A. Effect of glucocorticoids on the arteries in rheumatoid arthritis. Arthritis Rheum. 50, 3813–3822 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Davis, J. M. 3rd et al. Glucocorticoids and cardiovascular events in rheumatoid arthritis: a population-based cohort study. Arthritis Rheum. 56, 820–830 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Ridker, P. M. et al. Homocysteine and risk of cardiovascular disease among postmenopausal women. JAMA 281, 1817–1821 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Roubenoff, R. et al. Abnormal homocysteine metabolism in rheumatoid arthritis. Arthritis Rheum. 40, 718–722 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. van Ede, A. E. et al. Homocysteine and folate status in methotrexate-treated patients with rheumatoid arthritis. Rheumatology (Oxford) 41, 658–665 (2002).

    Article  CAS  Google Scholar 

  32. Choi, H. K., Hernán, M. A., Seeger, J. D., Robins, J. M. & Wolfe, F. Methotrexate and mortality in patients with rheumatoid arthritis: a prospective study. Lancet 359, 1173–1177 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Gonzalez-Gay, M. A. et al. HLA-DRB1 and persistent chronic inflammation contribute to cardiovascular events and cardiovascular mortality in patients with rheumatoid arthritis. Arthritis Rheum. 57, 125–132 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Ridker, P. M., Hennekens, C. H., Buring, J. E. & Rifai, N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 342, 836–843 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Ku, I. A., Imboden, J. B., Hsue, P. Y. & Ganz, P. Rheumatoid arthritis: a model of systemic inflammation driving atherosclerosis. Circ. J. 73, 977–985 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Gonzalez-Juanatey, C. et al. Endothelial dysfunction in psoriatic arthritis patients without clinically evident cardiovascular disease or classic atherosclerosis risk factors. Arthritis Rheum. 57, 287–293 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Salmon, J. E. & Roman, M. J. Subclinical atherosclerosis in rheumatoid arthritis and systemic lupus erythematosus. Am. J. Med. 121 (Suppl. 1), S3–S8 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dixon, W. G. & Symmons, D. P. What effects might anti-TNFα treatment be expected to have on cardiovascular morbidity and mortality in rheumatoid arthritis? A review of the role of TNFα in cardiovascular pathophysiology. Ann. Rheum. Dis. 66, 1132–1136 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gonzalez, M. A. & Selwyn, A. P. Endothelial function, inflammation, and prognosis in cardiovascular disease. Am. J. Med. 115 (Suppl. 8A), 99S–106S (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Devaraj, S., Yun, J. M., Adamson, G., Galvez, J. & Jialal, I. C-reactive protein impairs the endothelial glycocalyx resulting in endothelial dysfunction. Cardiovasc. Res. 84, 479–484 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gonzalez-Juanatey, C. et al. HLA-DRB1 status affects endothelial function in treated patients with rheumatoid arthritis. Am. J. Med. 114, 647–652 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Methe, H. & Weis, M. Atherogenesis and inflammation--was Virchow right? Nephrol. Dial. Transpl. 22, 1823–1827 (2007).

    Article  Google Scholar 

  43. Mäki-Patäjä, K. M. et al. Inducible nitric oxide synthase activity is increased in patients with rheumatoid arthritis and contributes to endothelial dysfunction. Int. J. Cardiol. 129, 399–405 (2008).

    Article  Google Scholar 

  44. Ito, A. et al. Novel mechanism for endothelial dysfunction: dysregulation of dimethylarginine dimethylaminohydrolase. Circulation 99, 3092–3095 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Khan, F. et al. Impaired microvascular function in normal children: effects of adiposity and poor glucose handling. J. Physiol. 551, 705–711 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Halcox, J. P. et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation 106, 653–658 (2002).

    Article  PubMed  Google Scholar 

  47. Kumeda, Y. et al. Increased thickness of the arterial intima-media detected by ultrasonography in patients with rheumatoid arthritis. Arthritis Rheum. 46, 1489–1497 (2002).

    Article  PubMed  Google Scholar 

  48. Gonzalez-Gay, M. A. et al. High-grade C-reactive protein elevation correlates with accelerated atherogenesis in patients with rheumatoid arthritis. J. Rheumatol. 32, 1219–1223 (2005).

    CAS  PubMed  Google Scholar 

  49. del Rincón, I. et al. Association between carotid atherosclerosis and markers of inflammation in rheumatoid arthritis patients and healthy subject. Arthritis Rheum. 48, 1833–1840 (2003).

    Article  PubMed  Google Scholar 

  50. del Rincón, I., Freeman, G. L., Haas, R. W., O'Leary, D. H. & Escalante, A. Relative contribution of cardiovascular risk factors and rheumatoid arthritis clinical manifestations to atherosclerosis. Arthritis Rheum. 52, 3413–3423 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Mäki-Patäjä, K. M. et al. Rheumatoid arthritis is associated with increased aortic pulse-wave velocity, which is reduced by anti-tumor necrosis factor-α therapy. Circulation 114, 1185–1192 (2006).

    Article  CAS  Google Scholar 

  52. Galarraga, B., Khan, F., Kumar, P., Pullar, T. & Belch, J. J. Etanercept improves inflammation-associated arterial stiffness in rheumatoid arthritis. Rheumatology (Oxford) 48, 1418–1423 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Ludmer, P. L. et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N. Engl. J. Med. 315, 1046–1051 (1986).

    Article  CAS  PubMed  Google Scholar 

  54. Khan, F. & Coffman, J. D. Enhanced cholinergic cutaneous vasodilation in Raynaud's phenomenon. Circulation 89, 1183–1188 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Anderson, T. J. et al. Close relation of endothelial function in the human coronary and peripheral circulations. J. Am. Coll. Cardiol. 26, 1235–1241 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Shechter, M. et al. Long-term association of brachial artery flow-mediated vasodilation and cardiovascular events in middle-aged subjects with no apparent heart disease. Int. J. Cardiol. 134, 52–58 (2009).

    Article  PubMed  Google Scholar 

  57. Gokce, N. et al. Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J. Am. Coll. Cardiol. 41, 1769–1775 (2003).

    Article  PubMed  Google Scholar 

  58. Karatzis, E. N. et al. Long-term prognostic role of flow-mediated dilatation of the brachial artery after acute coronary syndromes without ST elevation. Am. J. Cardiol. 98, 1424–1428 (2006).

    Article  PubMed  Google Scholar 

  59. Staniloae, C. et al. Pioglitazone improves endothelial function in non-diabetic patients with coronary artery disease. Cardiology 108, 164–169 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Charbonneau, F. et al. Modulation of arterial reactivity using amlodipine and atorvastatin measured by ultrasound examination (MARGAUX). Atherosclerosis 197, 420–427 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Turner, J., Belch, J. J. & Khan, F. Current concepts in assessment of microvascular endothelial function using laser Doppler imaging and iontophoresis. Trends Cardiovasc. Med. 18, 109–116 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Arosio, E. et al. Forearm haemodynamics, arterial stiffness and microcirculatory reactivity in rheumatoid arthritis. J. Hypertens. 25, 1273–1278 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Newton, D. J., Khan, F. & Belch, J. J. Assessment of microvascular endothelial function in human skin. Clin. Sci. 101, 567–572 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Khan, F., Elhadd, T. A., Greene, S. A. & Belch, J. J. Impaired skin microvascular function in children, adolescents, and young adults with type 1 diabetes. Diabetes Care 23, 215–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Ijzerman, R. G. et al. Individuals at increased coronary heart disease risk are characterized by an impaired microvascular function in skin. Eur. J. Clin. Invest. 33, 536–542 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Khan, F., Patterson, D., Belch, J. J., Hirata, K. & Lang, C. C. Relationship between peripheral and coronary function using laser Doppler imaging and transthoracic echocardiography. Clin. Sci. 115, 295–300 (2008).

    Article  PubMed  Google Scholar 

  67. Huang, A. L. et al. Predictive value of reactive hyperemia for cardiovascular events in patients with peripheral arterial disease undergoing vascular surgery. Arterioscler. Thromb. Vasc. Biol. 27, 2113–2119 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wilkinson, I. B. et al. Pulse-wave analysis: clinical evaluation of a noninvasive, widely applicable method for assessing endothelial function. Arterioscler. Thromb. Vasc. Biol. 22, 147–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Chowienczyk, P. J. et al. Photoplethysmographic assessment of pulse wave reflection: blunted response to endothelium-dependent beta2-adrenergic vasodilation in type II diabetes mellitus. J. Am. Coll. Cardiol. 34, 2007–2014 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Belch, J. J. et al. The white blood cell adhesion molecule E-selectin predicts restenosis in patients with intermittent claudication undergoing percutaneous transluminal angioplasty. Circulation 95, 2027–2031 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Hope, S. A. & Meredith, I. T. Cellular adhesion molecules and cardiovascular disease. Part II. Their association with conventional and emerging risk factors, acute coronary events and cardiovascular risk prediction. Intern. Med. J. 33, 450–462 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. McLaren, M., Elhadd, T. A., Greene, S. A. & Belch, J. J. Elevated plasma vascular endothelial cell growth factor and thrombomodulin in juvenile diabetic patients. Clin. Appl. Thromb. Hemost. 5, 21–24 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Felmeden, D. C., Blann, A. D., Spencer, C. G., Beevers, D. G. & Lip, G. Y. A comparison of flow-mediated dilatation and von Willebrand factor as markers of endothelial cell function in health and in hypertension: relationship to cardiovascular risk and effects of treatment: a substudy of the Anglo-Scandinavian Cardiac Outcomes Trial. Blood Coagul. Fibrinolysis 14, 425–431 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Folsom, A. R. et al. Prospective study of markers of hemostatic function with risk of ischemic stroke. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Circulation 100, 736–742 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Whincup, P. H. et al. von Willebrand factor and coronary heart disease: prospective study and meta-analysis. Eur. Heart J. 23, 1764–1770 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Avouac, J., Uzan, G., Kahan, A., Boileau, C. & Allanore, Y. Endothelial progenitor cells and rheumatic disorders. Joint Bone Spine 75, 131–137 (2008).

    Article  PubMed  Google Scholar 

  77. Ablin, J. N. et al. Effect of anti-TNFα treatment on circulating endothelial progenitor cells (EPCs) in rheumatoid arthritis. Life Sci. 79, 2364–2369 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Hannawi, S., Marwick, T. H. & Thomas, R. Inflammation predicts accelerated brachial arterial wall changes in patients with recent-onset rheumatoid arthritis. Arthritis Res. Ther. 11, R51 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vaudo, G. et al. Endothelial dysfunction in young patients with rheumatoid arthritis and low disease activity. Ann. Rheum. Dis. 63, 31–35 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hänsel, S., Lässig, G., Pistrosch, F. & Passauer, J. Endothelial dysfunction in young patients with long-term rheumatoid arthritis and low disease activity. Atherosclerosis 170, 177–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Kerekes G. et al. Endothelial dysfunction and atherosclerosis in rheumatoid arthritis: a multiparametric analysis using imaging techniques and laboratory markers of inflammation and autoimmunity. J. Rheumatol. 35, 398–406 (2008).

    CAS  PubMed  Google Scholar 

  82. Stamatelopoulos, K. S. et al. Atherosclerosis in rheumatoid arthritis versus diabetes: a comparative study. Arterioscler. Thromb. Vasc. Biol. 29, 1702–1708 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Gonzalez-Juanatey, C. et al. Active but transient improvement of endothelial function in rheumatoid arthritis patients undergoing long-term treatment with anti-tumor necrosis factor α antibody. Arthritis Rheum. 51, 447–450 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Hürlimann, D. et al. Anti-tumor necrosis factor-alpha treatment improves endothelial function in patients with rheumatoid arthritis. Circulation 106, 2184–2187 (2002).

    Article  PubMed  Google Scholar 

  85. Bosello, S. et al. TNF-alpha blockade induces a reversible but transient effect on endothelial dysfunction in patients with long-standing severe rheumatoid arthritis. Clin. Rheumatol. 27, 833–839 (2008).

    Article  PubMed  Google Scholar 

  86. Gonzalez-Juanatey, C. et al. Short-term adalimumab therapy improves endothelial function in patients with rheumatoid arthritis refractory to infliximab. Clin. Exp. Rheumatol. 24, 309–312 (2006).

    CAS  PubMed  Google Scholar 

  87. Bilsborough, W. et al. Anti-tumour necrosis factor-alpha therapy over conventional therapy improves endothelial function in adults with rheumatoid arthritis. Rheumatol. Int. 26, 1125–1131 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Sidiropoulos, P. I. et al. Sustained improvement of vascular endothelial function during anti-TNFα treatment in rheumatoid arthritis patients. Scand. J. Rheumatol. 38, 6–10 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Gonzalez-Juanatey, C. et al. Short-term improvement of endothelial function in rituximab-treated rheumatoid arthritis patients refractory to tumor necrosis factor α blocker therapy. Arthritis Rheum. 59, 1821–1824 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Flammer, A. J. et al. Angiotensin-converting enzyme inhibition improves vascular function in rheumatoid arthritis. Circulation 117, 2262–2269 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Syngle, A., Vohra, K., Kaur, L. & Sharma, S. Effects of spironolactone on endothelial dysfunction in rheumatoid arthritis. Scand. J. Rheumatol. 38, 15–22 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Mäki-Petäjä, K. M. et al. Ezetimibe and simvastatin reduce inflammation, disease activity, and aortic stiffness and improve endothelial function in rheumatoid arthritis. J. Am. Coll. Cardiol. 50, 852–858 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Datta, D., Ferrell, W. R., Sturrock, R. D., Jadhav, S. T. & Sattar, N. Inflammatory suppression rapidly attenuates microvascular dysfunction in rheumatoid arthritis. Atherosclerosis 192, 391–395 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Galarraga, B., Khan, F., Kumar, P., Pullar, T. & Belch, J. J. C-reactive protein: the underlying cause of microvascular dysfunction in rheumatoid arthritis. Rheumatology (Oxford) 47, 1780–1784 (2008).

    Article  CAS  Google Scholar 

  95. Galarraga, B., Belch, J. J. C., Pullar, T., Ogston, S. & Khan, F. Clinical improvement in rheumatoid arthritis is associated with healthier microvascular function in patients who respond to antirheumatic therapy. J. Rheumatol. doi:10.3899/jrheum.090417.

  96. Lau, C. S., McLaren, M., Hanslip, J., Kerr, M. & Belch, J. J. Abnormal plasma fibrinolysis in patients with rheumatoid arthritis and impaired endothelial fibrinolytic response in those complicated by vasculitis. Ann. Rheum. Dis. 52, 643–649 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. McLaren, M., Alkaabi, J., Connacher, M., Belch, J. J. & Valenete, E. Activated factor XII in rheumatoid arthritis. Rheumatol. Int. 22, 182–184 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Klimiuk, P. A., Fiedorczyk, M., Sierakowski, S. & Chwiecko, J. Soluble cell adhesion molecules (sICAM-1, sVCAM-1, and sE-selectin) in patients with early rheumatoid arthritis. Scand. J. Rheumatol. 36, 345–350 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Cobankara, V. et al. Successful treatment of rheumatoid arthritis is associated with a reduction in serum sE-selectin and thrombomodulin level. Clin. Rheumatol. 23, 430–434 (2004).

    Article  PubMed  Google Scholar 

  100. Galarraga, B., Mclaren, M., Kennedy, G. & Belch, J. J. E-selectin in rheumatoid arthritis [abstract 19]. Rheumatology (Oxford) 45 (Suppl. 1), i32 (2006).

    Google Scholar 

  101. McEntegart, A. et al. Cardiovascular risk factors, including thrombotic variables, in a population with rheumatoid arthritis. Rheumatology (Oxford) 40, 640–644 (2001).

    Article  CAS  Google Scholar 

  102. Wållberg-Jonsson, S., Cederfelt, M. & Rantapää Dahlqvist, S. Hemostatic factors and cardiovascular disease in active rheumatoid arthritis: an 8 year followup study. J. Rheumatol. 27, 71–75 (2000).

    PubMed  Google Scholar 

  103. Peters, M. J. et al. EULAR evidence-based recommendations for cardiovascular risk management in patients with rheumatoid arthritis and other forms of inflammatory arthritis. Ann. Rheum. Dis. 69, 325–331 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisel Khan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, F., Galarraga, B. & Belch, J. The role of endothelial function and its assessment in rheumatoid arthritis. Nat Rev Rheumatol 6, 253–261 (2010). https://doi.org/10.1038/nrrheum.2010.44

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.44

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing