Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

IL-17 as a future therapeutic target for rheumatoid arthritis

Abstract

The discovery of interleukin (IL)-17 and its major cell source, the type 17 T-helper (TH17) lymphocyte, has been a major step in the understanding of erosive arthritis. This Review summarizes current knowledge of the role of IL-17 in this context derived from both animal models and studies in patients with rheumatoid arthritis. Evidence shows that IL-17 is present at sites of inflammatory arthritis and that, in synergistic interactions, it amplifies the inflammation induced by other cytokines, primarily tumor necrosis factor. In several animal models of arthritis, inhibition of IL-17 limits inflammation and joint erosion. Initial observations from phase I trials show that signs and symptoms of RA are significantly suppressed following treatment with anti-IL-17 antibodies, without notable adverse effects. The emergence of IL-17 blockade as a future therapy in rheumatoid arthritis is highlighted, along with the potential goals and limitations of this therapeutic approach.

Key Points

  • Interleukin 17 (IL-17) is present at sites of inflammatory arthritis

  • In synergistic interactions, IL-17 amplifies the inflammation induced by other cytokines, mostly tumor necrosis factor

  • Inhibition of IL-17 in several animal models of arthritis controls inflammation and joint destruction

  • IL-17 has a role in inflammatory arthritis phenotypes with a destructive disease course

  • In clinical trials, anti-IL-17 antibodies show efficacy in ameliorating the signs and symptoms of human rheumatoid arthritis, in line with preclinical results

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The role and influence of IL-17 in the pathogenesis of rheumatoid arthritis.
Figure 2: Cytokine involvement in various inflammatory processes.

Similar content being viewed by others

References

  1. Yao, Z. et al. Human IL-17: a novel cytokine derived from T cells. J. Immunol. 155, 5483–5486 (1995).

    CAS  PubMed  Google Scholar 

  2. Rouvier, E., Luciani, M. F., Mattei, M. G., Denizot, F. & Golstein, P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpes virus saimiri gene. J. Immunol. 150, 5445–5456 (1993).

    CAS  PubMed  Google Scholar 

  3. Miossec, P. Interleukin-17 in fashion, at last: ten years after its description, its cellular source has been identified. Arthritis Rheum. 56, 2111–2115 (2007).

    Article  CAS  Google Scholar 

  4. Fossiez, F. et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 183, 2593–2603 (1996).

    Article  CAS  Google Scholar 

  5. Kolls, J. K. & Lindén, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    Article  CAS  Google Scholar 

  6. Iwakura, Y., Nakae, S., Saijo, S. & Ishigame, H. The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunol. Rev. 226, 57–79 (2008).

    Article  CAS  Google Scholar 

  7. Kotake, S. et al. IL-17 in synovial fluids from patients with RA is a potent stimulator of osteoclastogenesis. J. Clin. Invest. 103, 1345–1352 (1999).

    Article  CAS  Google Scholar 

  8. Koenders, M. I. et al. Induction of cartilage damage by overexpression of T cell IL-17A in experimental arthritis in mice deficient in IL-1. Arthritis Rheum. 52, 975–983 (2005).

    Article  CAS  Google Scholar 

  9. Gaffen, S. L. An overview of IL-17 function and signaling. Cytokine 43, 402–407 (2008).

    Article  CAS  Google Scholar 

  10. Toy, D. et al. Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J. Immunol. 177, 36–39 (2006).

    Article  CAS  Google Scholar 

  11. Maitra, A. et al. Distinct functional motifs within the IL-17 receptor regulate signal transduction and target gene expression. Proc. Natl Acad. Sci. USA 104, 7507–7511 (2007).

    Article  Google Scholar 

  12. Zrioual, S. et al. IL-17RA and IL-17RC receptors are essential for IL-17A-induced ELR+ CXC chemokine expression in synoviocytes and are overexpressed in rheumatoid blood. J. Immunol. 180, 655–663 (2008).

    Article  CAS  Google Scholar 

  13. Aarvak, T., Chabaud, M., Miossec, P. & Natvig, J. B. IL-17 is produced by some proinflammatory TH1/TH0 cells but not by TH2 cells. J. Immunol. 162, 1246–1251 (1999).

    CAS  PubMed  Google Scholar 

  14. Harrington, L. E. et al. IL-17 producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  Google Scholar 

  15. Weaver, C. T., Harrington, L. E., Mangan, P. R., Gavrieli, M. & Murphy, K. M. TH17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24, 677–688 (2006).

    Article  CAS  Google Scholar 

  16. Bettelli, E., Korn, T., Oukka, M. & Kuchroo, V. K. Induction and effector functions of TH17 cells. Nature 453, 1051–1057 (2008).

    Article  CAS  Google Scholar 

  17. Ivanov, B. S. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  Google Scholar 

  18. Aggarwal, S., Ghilardi, N., Xie, M. H., de Sauvage, F. J. & Gurney, A. L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003).

    Article  CAS  Google Scholar 

  19. Liang, S. C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by TH17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article  CAS  Google Scholar 

  20. Geboes, L. et al. Proinflammatory role of the TH17 cytokine IL-22 in collagen-induced arthritis in C57Bl/6 mice. Arthritis Rheum. 60, 390–395 (2009).

    Article  CAS  Google Scholar 

  21. Lubberts, E. et al. IL-1 independent role of IL-17 in synovial inflammation and joint destruction during collagen induced arthritis. J. Immunol. 167, 1004–1013 (2001).

    Article  CAS  Google Scholar 

  22. Miossec, P. Interleukin-17 in rheumatoid arthritis: if T cells were to contribute to inflammation and destruction through synergy. Arthritis Rheum. 48, 594–601 (2003).

    Article  CAS  Google Scholar 

  23. Sato, K. et al. TH17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673–2682 (2006).

    Article  CAS  Google Scholar 

  24. Koenders, M. I., Joosten, L. A. & van den Berg, W. B. Potential new targets in arthritis therapy: interleukin (IL)-17 and its relations to tumour necrosis factor and IL-1 in experimental arthritis. Ann. Rheum. Dis. 65 (Suppl. 3), iii29–iii33 (2006).

    PubMed  PubMed Central  Google Scholar 

  25. Koenders, M. I. et al. Interleukin-17 acts independently of TNF-α under arthritic conditions. J. Immunol. 176, 6262–6269 (2006).

    Article  CAS  Google Scholar 

  26. Nakae, S., Nambu, A., Sudo, K. & Iwakura, Y. Suppression of immune induction of collagen-induced arthritis in Il-17 deficient mice. J. Immunol. 171, 6173–6177 (2003).

    Article  CAS  Google Scholar 

  27. Bush, K. A., Farmer, K. M., Walker, J. S. & Kirkham, B. W. Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with IL-17 receptor IgG1 Fc fusion protein. Arthritis Rheum. 46, 802–805 (2002).

    Article  CAS  Google Scholar 

  28. Lubberts, E. et al. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen induced arthritis reduces joint inflammation, cartilage destruction and bone erosion. Arthritis Rheum. 50, 650–659 (2004).

    Article  CAS  Google Scholar 

  29. Koenders, M. I. et al. Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. Am. J. Pathol. 167, 141–149 (2005).

    Article  CAS  Google Scholar 

  30. Abdollahi-Roodsaz, S. et al. Shift from Toll-like receptor 2 (TLR2) toward TLR-4 dependency in the erosive stage of chronic streptococcal cell wall arthritis coincident with TLR-4-mediated interleukin-17 production. Arthritis Rheum. 58, 3753–3764 (2008).

    Article  CAS  Google Scholar 

  31. Ogura, H. et al. Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity 29, 628–636 (2008).

    Article  CAS  Google Scholar 

  32. Iwakura, Y. & Ishigame, H. The IL-23/IL-17 axis in inflammation. J. Clin. Invest. 116, 1218–1222 (2006).

    Article  CAS  Google Scholar 

  33. Hirota, K. et al. T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+ TH cells that cause autoimmune arthritis. J. Exp. Med. 204, 41–47 (2007).

    Article  CAS  Google Scholar 

  34. Nakae, S. et al. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc. Natl Acad. Sci. USA 100, 5986–5990 (2003).

    Article  CAS  Google Scholar 

  35. Koenders, M. I. et al. IL-1 drives pathogenic TH17 cells during spontaneous arthritis in interleukin-1 receptor antagonist-deficient mice. Arthritis Rheum. 58, 3461–3470 (2008).

    Article  CAS  Google Scholar 

  36. Abdollahi-Roodsaz, S. et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J. Clin. Invest. 118, 205–216 (2008).

    Article  CAS  Google Scholar 

  37. Abdollahi-Roodsaz, S. et al. Inhibition of Toll-like receptor 4 breaks the inflammatory loop in autoimmune destructive arthritis. Arthritis Rheum. 56, 2957–2967 (2007).

    Article  CAS  Google Scholar 

  38. Chabaud, M. et al. Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 42, 963–970 (1999).

    Article  CAS  Google Scholar 

  39. Chabaud, M. & Miossec, P. The combination of tumor necrosis factor-α blockade with interleukin-1 and interleukin-17 blockade is more effective for controlling synovial inflammation and bone resorption in an ex vivo model. Arthritis Rheum. 44, 1293–1303 (2001).

    Article  CAS  Google Scholar 

  40. Chabaud, M., Lubberts, E., Joosten, L., van den Berg, W. B. & Miossec, P. IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res. 3, 168–177 (2001).

    Article  CAS  Google Scholar 

  41. Andersson, M. K. et al. Effects on osteoclast and osteoblast activities in cultured mouse calvarial bones by synovial fluids from patients with a loose joint prothesis and from osteoarthritis patients. Arthritis Res. Ther. 9, R18 (2007).

    Article  Google Scholar 

  42. Annunziato, F. et al. Phenotypic and functional features of human TH17 cells. J. Exp. Med. 204, 1849–1861 (2007).

    Article  CAS  Google Scholar 

  43. Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30, 155–167 (2009).

    Article  Google Scholar 

  44. Lee, Y. K. et al. Late developmental plasticity in the T helper 17 lineage. Immunity 30, 92–107 (2009).

    Article  CAS  Google Scholar 

  45. Martin-Orozco, N., Chung, Y., Chang, S. H., Wang, Y. H. & Dong, C. TH17 cells promote pancreatic inflammation but only induces diabetes efficiently in lymphopenic hosts after conversion into TH1 cells. Eur. J. Immunol. 39, 216–224 (2009).

    Article  CAS  Google Scholar 

  46. Bending, D. et al. Highly purified TH17 cells from BDC2.5NOD mice convert into TH1-like cells in NOD/SCID recipient mice. J. Clin. Invest. 119, 565–572 (2009).

    Article  CAS  Google Scholar 

  47. Kirkham, B. W. et al. Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis: a two-year prospective study (the DAMAGE study cohort). Arthritis Rheum. 54, 1122–1131 (2006).

    Article  CAS  Google Scholar 

  48. Raza, K. et al. Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal origin. Arthritis Res. Ther. 7, R784–R795 (2005).

    Article  CAS  Google Scholar 

  49. Yamada, H. et al. TH1 but not TH17 cells predominate in the joints of patients with rheumatoid arthritis. Ann. Rheum. Dis. 67, 1299–1304 (2008).

    Article  CAS  Google Scholar 

  50. Pène, J. et al. Chronically inflamed human tissues are infiltrated by highly differentiated TH17 lymphocytes. J. Immunol. 180, 7423–7430 (2008).

    Article  Google Scholar 

  51. Nishala, K. et al. Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis Rheum. 58, 875–887 (2008).

    Article  Google Scholar 

  52. Shahrara, S., Huang, Q. Q., Mandelin, A. M. & Pope, R. M. TH17 cells in rheumatoid arthritis. Arthritis Res. Ther. 10, R93 (2008).

    Article  Google Scholar 

  53. Evans, H. G. et al. In vivo activated monocytes from the site of inflammation in humans specifically promote TH17 responses. Proc. Natl Acad. Sci. USA 106, 6232–6237 (2009).

    Article  CAS  Google Scholar 

  54. Egan, P. J., van Nieuwenhuijzen, A., Campbell, I. K. & Wicks, I. P. Promotion of the local differentiation of murine TH17 cells by synovial macrophages during acute inflammatory arthritis. Arthritis Rheum. 58, 3720–3729 (2008).

    Article  CAS  Google Scholar 

  55. Peng, M. Y. et al. Interleukin-17 producing γδ T cells increased in patients with active pulmonary tuberculosis. Cell. Mol. Immunol. 5, 203–208 (2008).

    Article  Google Scholar 

  56. Roark, C. L., Simonian, P. L., Fontenot, A. P., Born, W. K. & O'Brien, R. L. γδ T cells: an important source of IL-17. Curr. Opin. Immunol. 20, 353–357 (2008).

    Article  CAS  Google Scholar 

  57. Michel, M. L. et al. Critical role of ROR-γt in a new thymic pathway leading to IL-17 producing invariant NKT cell differentiation. Proc. Natl Acad. Sci. USA 105, 19845–19850 (2008).

    Article  CAS  Google Scholar 

  58. Takahashi, N. et al. IL-17 produced by Paneth cells drives TNF-induced shock. J. Exp. Med. 8, 1755–1761 (2008).

    Article  Google Scholar 

  59. Ishigame, H. et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30, 108–119 (2009).

    Article  CAS  Google Scholar 

  60. Milner, J. D. et al. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452, 773–776 (2008).

    Article  CAS  Google Scholar 

  61. Luger, D. et al. Either a TH17 or a TH1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J. Exp. Med. 205, 1517–1522 (2008).

    Article  Google Scholar 

  62. Doodes, P. D. et al. Development of proteoglycan-induced arthritis is independent of IL-17. J. Immunol. 181, 329–337 (2008).

    Article  CAS  Google Scholar 

  63. Van den Berg, W. B., van Lent, P. L., Joosten, L. A., Abdollahi-Roodsaz, S. & Koenders, M. I. Amplifying elements of arthritis and joint destruction. Ann. Rheum. Dis. 66 (Suppl. 3), iii45–iii48 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ivanov, S. & Linden, A. Interleukin-17 as drug target in human disease. Trends Pharmacol. Sci. 30, 95–103 (2009).

    Article  CAS  Google Scholar 

  65. Miossec, P. Diseases that may benefit from manipulating the TH17 pathway. Eur. J. Immunol. 39, 667–669 (2009).

    Article  CAS  Google Scholar 

  66. Durez, P. et al. AIN457, an anti-IL-17 antibody, shows good safety and induces clinical responses in patients with active rheumatoid arthritis (RA) despite methotrexate therapy in a randomized, double-blind, proof-of-concept trial [abstract LB0002]. Ann. Rheum. Dis. 68 (Suppl. 3), 125 (2009).

    Google Scholar 

  67. Sloan-Lancaster, J., Genovese, M. C., Roberson, S. A. & van den Bosch, F. Safety, tolerability and evidence of efficacy of intravenous LY2439821 in patients with rheumatoid arthritis receiving background oral DMARDs [abstract OP-0160]. Ann. Rheum. Dis. 68 (Suppl. 3), 123 (2009).

    Google Scholar 

  68. Firestein, G. S. Evolving concepts of rheumatoid arthritis. Nature 423, 356–361 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim B. van den Berg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Berg, W., Miossec, P. IL-17 as a future therapeutic target for rheumatoid arthritis. Nat Rev Rheumatol 5, 549–553 (2009). https://doi.org/10.1038/nrrheum.2009.179

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2009.179

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing