Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Who puts the tubercle in tuberculosis?

Key Points

  • Mycobacterium tuberculosis probably evolved from a founder strain similar to the TB-like strains found today in central Africa, and invaded mankind prior to the spread of humans out of Africa. Contrary to popular literature, TB did not evolve from Mycobacterium bovis that was acquired from cows during the evolution of animal husbandry in the Fertile Crescent.

  • Mycobacterium tuberculosis infections result in the formation of granulomas at the established infection site. The progression of these granulomas determines, locally, the outcome of the infection and not all granulomas in the same host progress in the same way.

  • Granulomas can resolve, mineralize, or progress to yield a productive infection. A productive infection is achieved when the centre of the granuloma caseates, degenerates and spills live infectious bacteria into the lung airways inducing a cough and transmission through aerosol droplets.

  • The peripheral cell-wall lipids from Mycobacterium tuberculosis are potent immunomodulating agents that, when inoculated into experimental animals, induce tissue pathology that is reminiscent of the granulomas produced in a viable infection.

  • Mycobacterium tuberculosis releases peripheral cell-wall lipids inside the infected host macrophage. The macrophage sequesters these lipids into the membranes of internal vesicles in the multi-vesicular lysosomes and releases these vesicles as exosomes.

  • The release and trafficking of bioactive lipids might be an active mechanism whereby Mycobacterium tuberculosis exacerbates the pathology of the infection, driving granuloma progression, and ultimately leading to caseation and spread.

Abstract

Tuberculosis (TB), an illness that mainly affects the respiratory system, is one of the world's most pernicious diseases. TB currently infects one-third of the world's population and kills approximately 1.7 million people each year. Most infected individuals fail to progress to full-blown disease because the TB bacilli are 'walled off' by the immune system inside a tissue nodule known as a granuloma. The granuloma's primary function is one of containment and it prevents the dissemination of the mycobacteria. But what is the role of the TB bacillus in the progression of the granuloma? This Review explores how Mycobacterium tuberculosis influences granuloma formation and maintenance, and ensures the spread of the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trafficking of Mycobacterium tuberculosis bacilli in cells.
Figure 2: Release and trafficking of bacterial lipids.
Figure 3: The lipid-bead granuloma model.

Similar content being viewed by others

References

  1. Corbett, E. L. et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch. Intern. Med. 163, 1009–1021 (2003).

    Article  PubMed  Google Scholar 

  2. Frieden, T. R., Sterling, T. R., Munsiff, S. S., Watt, C. J. & Dye, C. Tuberculosis. Lancet 362, 887–899 (2003).

    PubMed  Google Scholar 

  3. Harries, A. D. & Dye, C. Tuberculosis. Ann. Trop. Med. Parasitol. 100, 415–431 (2006).

    CAS  PubMed  Google Scholar 

  4. Dye, C. Global epidemiology of tuberculosis. Lancet 367, 938–940 (2006).

    PubMed  Google Scholar 

  5. Sreevatsan, S. et al. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc. Natl Acad. Sci. USA 94, 9869–9874 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Diamond, J. Guns, Germs and Steel, (W. W. Norton & Company, New York, 1997).

    Google Scholar 

  7. Casanova, J. L. & Abel, L. Genetic dissection of immunity to mycobacteria: the human model. Annu. Rev. Immunol. 20, 581–620 (2002).

    CAS  PubMed  Google Scholar 

  8. Cooke, G. S. & Hill, A. V. Genetics of susceptibility to human infectious disease. Nature Rev. Genet. 2, 967–977 (2001).

    CAS  PubMed  Google Scholar 

  9. Fulton, S. A. et al. Inhibition of major histocompatibility complex II expression and antigen processing in murine alveolar macrophages by Mycobacterium bovis BCG and the 19-kilodalton mycobacterial lipoprotein. Infect. Immun. 72, 2101–2110 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Baghdadi, J. E. et al. An autosomal dominant major gene confers predisposition to pulmonary tuberculosis in adults. J. Exp. Med. 203, 1679–1684 (2006).

    PubMed  PubMed Central  Google Scholar 

  11. Malik, S. et al. Variants of the SFTPA1 and SFTPA2 genes and susceptibility to tuberculosis in Ethiopia. Hum. Genet. 118, 752–759 (2006).

    CAS  PubMed  Google Scholar 

  12. Bornman, L. et al. Vitamin D receptor polymorphisms and susceptibility to tuberculosis in West Africa: a case-control and family study. J. Infect. Dis. 190, 1631–1641 (2004).

    CAS  PubMed  Google Scholar 

  13. Cervino, A. C. et al. Fine mapping of a putative tuberculosis-susceptibility locus on chromosome 15q11–13 in African families. Hum. Mol. Genet. 11, 1599–1603 (2002).

    CAS  PubMed  Google Scholar 

  14. Brosch, R. et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl Acad. Sci. USA 99, 3684–3689 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gutierrez, M. C. et al. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog. 1, e5 (2005). Although not the original paper proposing that the 'founder strain' for tuberculosis came from central Africa and predated the speciation of M. bovis , this paper contains a thorough and extremely accessible discussion of the key issues.

  16. Mostowy, S., Cousins, D., Brinkman, J., Aranaz, A. & Behr, M. A. Genomic deletions suggest a phylogeny for the Mycobacterium tuberculosis complex. J. Infect. Dis. 186, 74–80 (2002).

    CAS  PubMed  Google Scholar 

  17. Mostowy, S. & Behr, M. A. The origin and evolution of Mycobacterium tuberculosis. Clin. Chest. Med. 26, 207–216 (2005).

    PubMed  Google Scholar 

  18. Ulrichs, T. & Kaufmann, S. H. New insights into the function of granulomas in human tuberculosis. J. Pathol. 208, 261–269 (2006).

    CAS  PubMed  Google Scholar 

  19. Flynn, J. L. & Chan, J. What's good for the host is good for the bug. Trends Microbiol. 13, 98–102 (2005).

    CAS  PubMed  Google Scholar 

  20. Algood, H. M., Lin, P. L. & Flynn, J. L. Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis. Clin. Infect. Dis. 41 (Suppl. 3), 189–193 (2005).

    Google Scholar 

  21. Algood, H. M., Chan, J. & Flynn, J. L. Chemokines and tuberculosis. Cytokine Growth Factor Rev. 14, 467–477 (2003).

    CAS  PubMed  Google Scholar 

  22. Ulrichs, T. et al. Differential organization of the local immune response in patients with active cavitary tuberculosis or with nonprogressive tuberculoma. J. Infect. Dis. 192, 89–97 (2005).

    PubMed  Google Scholar 

  23. Fenhalls, G. et al. Distribution of IFN-γ, IL-4 and TNF-α protein and CD8 T cells producing IL-12p40 mRNA in human lung tuberculous granulomas. Immunology 105, 325–335 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tully, G. et al. Highly focused T cell responses in latent human pulmonary Mycobacterium tuberculosis infection. J. Immunol. 174, 2174–2184 (2005).

    CAS  PubMed  Google Scholar 

  25. Kaplan, G. et al. Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infect. Immun. 71, 7099–7108 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dheda, K. et al. Lung remodeling in pulmonary tuberculosis. J. Infect. Dis. 192, 1201–1209 (2005).

    CAS  PubMed  Google Scholar 

  27. Lin, P. L. et al. Early events in Mycobacterium tuberculosis infection in cynomolgus macaques. Infect. Immun. 74, 3790–3803 (2006). Temporal studies on granuloma development are extremely challenging, particularly in higher primates. Therefore this study by Lin and colleagues on infections in macaques is extremely valuable and questions some of the accepted dogma of granuloma progression.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Alatas, F. et al. Vascular endothelial growth factor levels in active pulmonary tuberculosis. Chest 125, 2156–2159 (2004).

    CAS  PubMed  Google Scholar 

  29. Ragno, S. et al. Changes in gene expression in macrophages infected with Mycobacterium tuberculosis: a combined transcriptomic and proteomic approach. Immunology 104, 99–108 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsai, M. C. et al. Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell. Microbiol. 8, 218–232 (2006).

    CAS  PubMed  Google Scholar 

  31. Fenhalls, G. et al. In situ detection of Mycobacterium tuberculosis transcripts in human lung granulomas reveals differential gene expression in necrotic lesions. Infect. Immun. 70, 6330–6338 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. McKinney, J. D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735–738 (2000).

    CAS  PubMed  Google Scholar 

  33. Deretic, V. et al. Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell. Microbiol. 8, 719–727 (2006).

    CAS  PubMed  Google Scholar 

  34. Russell, D. G. Mycobacterium tuberculosis: here today, and here tomorrow. Nature Rev. Mol. Cell Biol. 2, 569–577 (2001).

    CAS  Google Scholar 

  35. Russell, D. G., Purdy, G. E., Owens, R. M., Rohde, K. & Yates, R. M. Mycobacterium tuberculosis and the concept of the '4 minute' phagosome. ASM News 71, 459–463 (2005).

    Google Scholar 

  36. Sturgill-Koszycki, S., Schaible, U. E. & Russell, D. G. Mycobacterium-containing phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis. EMBO J. 15, 6960–6968 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Russell, D. G., Dant, J. & Sturgill-Koszycki, S. Mycobacterium avium- and Mycobacterium tuberculosis-containing vacuoles are dynamic, fusion-competent vesicles that are accessible to glycosphingolipids from the host cell plasmalemma. J. Immunol. 156, 4764–4773 (1996).

    CAS  PubMed  Google Scholar 

  38. Mwandumba, H. C. et al. Mycobacterium tuberculosis resides in nonacidified vacuoles in endocytically competent alveolar macrophages from patients with tuberculosis and HIV infection. J. Immunol. 172, 4592–4598 (2004). This study demonstrates that the non-acidification of M. tuberculosis vacuoles in macrophages in culture is reciprocated in infected macrophages isolated by broncholavage from tuberculosis patients.

    CAS  PubMed  Google Scholar 

  39. Pethe, K. et al. Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proc. Natl Acad. Sci. USA 101, 13642–13647 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. MacMicking, J. D., Taylor, G. A. & McKinney, J. D. Immune control of tuberculosis by IFN-γ-inducible LRG-47. Science 302, 654–659 (2003).

    CAS  PubMed  Google Scholar 

  41. Schaible, U. E., Sturgill-Koszycki, S., Schlesinger, P. H. & Russell, D. G. Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J. Immunol. 160, 1290–1296 (1998).

    CAS  PubMed  Google Scholar 

  42. Via, L. E. et al. Effects of cytokines on mycobacterial phagosome maturation. J. Cell Sci. 111, 897–905 (1998).

    CAS  PubMed  Google Scholar 

  43. Munoz-Elias, E. J. et al. Replication dynamics of Mycobacterium tuberculosis in chronically infected mice. Infect. Immun. 73, 546–551 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rees, R. J. & Hart, P. D. Analysis of the host-parasite equilibrium in chronic murine tuberculosis by total and viable bacillary counts. Br. J. Exp. Pathol. 42, 83–88 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ribi, E. et al. Induction of resistance to tuberculosis in mice with defined components of mycobacteria and with some unrelated materials. Immunology 46, 297–305 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hamamoto, Y., Kobara, Y., Kojima, A., Kumazawa, Y. & Yasuhira, K. Experimental production of pulmonary granulomas. I. Immune granulomas induced by chemically modified cell walls and their constituents. Br. J. Exp. Pathol. 62, 259–269 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. McLaughlin, C. A., Parker, R., Hadlow, W. J., Toubiana, R. & Ribi, E. Moieties of mycobacterial mycolates required for inducing granulomatous reactions. Cell. Immunol. 38, 14–24 (1978).

    CAS  PubMed  Google Scholar 

  48. Yamamoto, K. & Karinuma, M. Genetic control of granuloma response to oil-associated BCG cell wall vaccine in mice. Microbiol. Immunol. 22, 335–348 (1978).

    CAS  PubMed  Google Scholar 

  49. Granger, D. L., Yamamoto, K. I. & Ribi, E. Delayed hypersensitivity and granulomatous response after immunization with protein antigens associated with a mycobacterial glycolipid and oil droplets. J. Immunol. 116, 482–488 (1976).

    CAS  PubMed  Google Scholar 

  50. Meyer, T. J., Ribi, E. & Azuma, I. Biologically active components from mycobacterial cell walls. V. Granuloma formation in mouse lungs and guinea pig skin. Cell. Immunol. 16, 11–24 (1975).

    CAS  PubMed  Google Scholar 

  51. Moore, V. L., Myrvik, Q. N. & Kato, M. Role of cord factor (trehalose-6, 6′-dimycolate) in allergic granuloma formation in rabbits. Infect. Immun. 6, 5–8 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bekierkunst, A. et al. Granuloma formation induced in mice by chemically defined mycobacterial fractions. J. Bacteriol. 100, 95–102 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bekierkunst, A. Acute granulomatous response produced in mice by trehalose-6, 6-dimycolate. J. Bacteriol. 96, 958–961 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. White, R. G., Jolles, P., Samour, D. & Lederer, E. Correlation of adjuvant activity and chemical structure of wax D fractions of Mycobacteria. Immunology 7, 158–171 (1964). This paper marks the beginning of our appreciation of the biological activities that reside within the isolated components of the mycobacterial cell wall.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu, S. et al. Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages. J. Immunol. 153, 2568–2578 (1994).

    CAS  PubMed  Google Scholar 

  56. Beatty, W. L. et al. Trafficking and release of mycobacterial lipids from infected macrophages. Traffic 1, 235–247 (2000). This paper documented the intracellular release of cell-wall lipids by live bacteria inside their host macrophage. It demonstrated that these lipids coalesced in the multi-vesicular lysosomes, were exocytosed as vesicular bodies and were internalized by neighbouring cells.

    CAS  PubMed  Google Scholar 

  57. Beatty, W. L., Ullrich, H. J. & Russell, D. G. Mycobacterial surface moieties are released from infected macrophages by a constitutive exocytic event. Eur. J. Cell Biol. 80, 31–40 (2001).

    CAS  PubMed  Google Scholar 

  58. Schaible, U. E. et al. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nature Med. 9, 1039–1046 (2003).

    CAS  PubMed  Google Scholar 

  59. Winau, F., Kaufmann, S. H. & Schaible, U. E. Apoptosis paves the detour path for CD8 T cell activation against intracellular bacteria. Cell. Microbiol. 6, 599–607 (2004).

    CAS  PubMed  Google Scholar 

  60. van den Elzen, P. et al. Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 437, 906–910 (2005).

    CAS  PubMed  Google Scholar 

  61. Rhoades, E. et al. Identification and macrophage-activating activity of glycolipids released from intracellular Mycobacterium bovis BCG. Mol. Microbiol. 48, 875–888 (2003).

    CAS  PubMed  Google Scholar 

  62. Beatty, W. L. & Russell, D. G. Identification of mycobacterial surface proteins released into subcellular compartments of infected macrophages. Infect. Immun. 68, 6997–7002 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ullrich, H. J., Beatty, W. L. & Russell, D. G. Interaction of Mycobacterium avium-containing phagosomes with the antigen presentation pathway. J. Immunol. 165, 6073–6080 (2000).

    CAS  PubMed  Google Scholar 

  64. Arend, S. M. et al. Detection of active tuberculosis infection by T cell responses to early-secreted antigenic target 6-kDa protein and culture filtrate protein 10. J. Infect. Dis. 181, 1850–1854 (2000).

    CAS  PubMed  Google Scholar 

  65. Fortune, S. M. et al. Mutually dependent secretion of proteins required for mycobacterial virulence. Proc. Natl Acad. Sci. USA 102, 10676–10681 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Weldingh, K. et al. Two-dimensional electrophoresis for analysis of Mycobacterium tuberculosis culture filtrate and purification and characterization of six novel proteins. Infect. Immun. 66, 3492–3500 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Moody, D. B. et al. T-cell activation by lipopeptide antigens. Science 303, 527–531 (2004).

    CAS  PubMed  Google Scholar 

  68. Ulrichs, T., Moody, D. B., Grant, E., Kaufmann, S. H. & Porcelli, S. A. T-cell responses to CD1-presented lipid antigens in humans with Mycobacterium tuberculosis infection. Infect. Immun. 71, 3076–3087 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Dascher, C. C. & Brenner, M. B. CD1 antigen presentation and infectious disease. Contrib. Microbiol. 10, 164–182 (2003).

    CAS  PubMed  Google Scholar 

  70. Puissegur, M. P. et al. An in vitro dual model of mycobacterial granulomas to investigate the molecular interactions between mycobacteria and human host cells. Cell Microbiol. 6, 423–33 (2004).

    CAS  PubMed  Google Scholar 

  71. Syed, S. S. & Hunter, R. L. Jr. Studies on the toxic effects of quartz and a mycobacterial glycolipid, trehalose 6, 6′-dimycolate. Ann. Clin. Lab. Sci. 27, 375–383 (1997).

    CAS  PubMed  Google Scholar 

  72. Actor, J. K., Olsen, M., Hunter, R. L. Jr & Geng, Y. J. Dysregulated response to mycobacterial cord factor trehalose-6, 6′-dimycolate in CD1D−/− mice. J. Interferon. Cytokine Res. 21, 1089–1096 (2001).

    CAS  PubMed  Google Scholar 

  73. Behling, C. A., Perez, R. L., Kidd, M. R., Staton, G. W. Jr, & Hunter, R. L. Induction of pulmonary granulomas, macrophage procoagulant activity, and tumor necrosis factor-α by trehalose glycolipids. Ann. Clin. Lab. Sci. 23, 256–266 (1993).

    CAS  PubMed  Google Scholar 

  74. Bentley, A. G. et al. In vitro delayed hypersensitivity granuloma formation: development of an antigen-coated bead model. J. Immunol. 134, 4163–4169 (1985).

    CAS  PubMed  Google Scholar 

  75. Lima, V. M. et al. Role of trehalose dimycolate in recruitment of cells and modulation of production of cytokines and NO in tuberculosis. Infect. Immun. 69, 5305–5312 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sakaguchi, I. et al. Trehalose 6, 6′-dimycolate (Cord factor) enhances neovascularization through vascular endothelial growth factor production by neutrophils and macrophages. Infect. Immun. 68, 2043–2052 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yamagami, H. et al. Trehalose 6, 6′-dimycolate (cord factor) of Mycobacterium tuberculosis induces foreign-body- and hypersensitivity-type granulomas in mice. Infect. Immun. 69, 810–815 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Geisel, R. E., Sakamoto, K., Russell, D. G. & Rhoades, E. R. In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guerin is due principally to trehalose mycolates. J. Immunol. 174, 5007–5015 (2005). This study detailed the systematic analysis of the biological activities of released mycobacterial lipids and concluded that trehalose dimycolate was the most biologically active in a reconstituted granuloma model that facilitated temporal dissection of the cells, cytokines and chemokines responsible for the response.

    CAS  PubMed  Google Scholar 

  79. Rhoades, E. R., Geisel, R. E., Butcher, B. A., McDonough, S. & Russell, D. G. Cell wall lipids from Mycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: characterization of a new model of the granulomatous response to mycobacterial components. Tuberculosis (Edinb) 85, 159–176 (2005).

    CAS  Google Scholar 

  80. Hunter, R. L., Olsen, M., Jagannath, C. & Actor, J. K. Trehalose 6, 6′-dimycolate and lipid in the pathogenesis of caseating granulomas of tuberculosis in mice. Am. J. Pathol. 168, 1249–1261 (2006). This study built on the previous work from this group and noticed that trehalose dimycolate (TDM) associated with large lipid deposits within the granuloma. The formation of macromolecular arrays of TDM enhances its biological activity markedly.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ryll, R., Kumazawa, Y. & Yano, I. Immunological properties of trehalose dimycolate (cord factor) and other mycolic acid-containing glycolipids-a review. Microbiol. Immunol. 45, 801–811 (2001).

    CAS  PubMed  Google Scholar 

  82. Hamasaki, N. et al. In vivo administration of mycobacterial cord factor (Trehalose 6, 6′-dimycolate) can induce lung and liver granulomas and thymic atrophy in rabbits. Infect. Immun. 68, 3704–3709 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Bekierkunst, A. & Yarkoni, E. Granulomatous hypersensitivity to trehalose-6, 6′-dimycolate (cord factor) in mice infected with BCG. Infect. Immun. 7, 631–638 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Glickman, M. S., Cox, J. S. & Jacobs, W. R. Jr. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell 5, 717–727 (2000).

    CAS  PubMed  Google Scholar 

  85. Rao, V., Fujiwara, N., Porcelli, S. A. & Glickman, M. S. Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J. Exp. Med. 201, 535–543 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rao, V., Gao, F., Chen, B., Jacobs, W. R. Jr & Glickman, M. S. Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis-induced inflammation and virulence. J. Clin. Invest. 116, 1660–1667 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Camacho, L. R. et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 276, 19845–19854 (2001).

    CAS  PubMed  Google Scholar 

  88. Camacho, L. R., Ensergueix, D., Perez, E., Gicquel, B. & Guilhot, C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34, 257–267 (1999).

    CAS  PubMed  Google Scholar 

  89. Cox, J. S., Chen, B., McNeil, M. & Jacobs, W. R. Jr. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83 (1999).

    CAS  PubMed  Google Scholar 

  90. Reed, M. B. et al. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431, 84–87 (2004).

    CAS  PubMed  Google Scholar 

  91. Tsenova, L. et al. Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli. J. Infect. Dis. 192, 98–106 (2005).

    PubMed  Google Scholar 

  92. Fuller, C. L., Flynn, J. L. & Reinhart, T. A. In situ study of abundant expression of proinflammatory chemokines and cytokines in pulmonary granulomas that develop in cynomolgus macaques experimentally infected with Mycobacterium tuberculosis. Infect. Immun. 71, 7023–7034 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Rhoades, E. R., Cooper, A. M. & Orme, I. M. Chemokine response in mice infected with Mycobacterium tuberculosis. Infect. Immun. 63, 3871–3877 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Cooper, A. M. et al. Disseminated tuberculosis in interferon γ gene-disrupted mice. J. Exp. Med. 178, 2243–2247 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institute of Allergy and Infectious Diseases and the National Heart, Lung and Blood Institute of the National Institutes of Health, USA. The author would like to acknowledge the work of past and present members of the laboratory, most notably E. Rhoades, R. Geisel and K. Sakamoto.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Mycobacterium bovis

Mycobacterium tuberculosis

FURTHER INFORMATION

David G. Russell's homepage

Glossary

Founder strain

The ancestral species or strain that underwent divergent evolution to produce several new species or strains.

Caseation

The process by which a tuberculous granuloma decays into a structureless mass of cellular debris.

Chemokine

Cytokines involved in specific inflammatory responses. They are differentiated into CC or CXC chemokines on the basis of their primary sequence.

Natural killer (NK) T cell

An NK T cell is a T cell that expresses some NK cell receptors and has some NK-cell-like functions. They also express a T-cell receptor that recognizes CD1b (which binds glycolipids not peptides).

CD4+ cell

A subpopulation of T cells that express the CD4 receptor and respond to antigens presented on the surface of host cells that bear major histocompatibility complex class II molecules. Two distinct subsets of activated CD4+ T cells have been described. T-helper 1 (TH1) cells produce interferon γ, tumour-necrosis factor α and interleukin (IL-)12, and support cell-mediated immunity. TH2 cells produce IL-4, IL-5 and IL-13, support humoral immunity, and downregulate TH1 responses.

CD8+ cell

A subpopulation of T cells that express the CD8 receptor. CD8+ cells recognize antigens that are presented on the surface of host cells by major histocompatibility complex class I molecules, leading to their destruction, and are therefore also known as cytotoxic T cells.

Cytokine

Member of a large family of secreted proteins that bind immune cells through specific receptors. Cytokine production results in the activation of an intracellular-signalling cascade that commonly regulates processes such as immune function and inflammation.

Neovascularization

The formation of new blood vessels in a developing tissue. This process is stimulated by the production of vascular endothelial growth factor. The term is used most frequently in cancer biology in which the tumour develops its own blood supply through neovascularization.

Foamy macrophage

A macrophage loaded with lipid droplets. Such cells are often observed in tissues with chronic proinflammatory stimulus.

Giant cell

A giant, multinucleate macrophage.

Tuberculoma

The tuberculoma is the granuloma that is formed during tuberculosis infection. This term is most frequently used by clinicians and has replaced the more traditional 'tubercle'.

Phagosome

A membrane-bound cytoplasmic vacuole formed around a particle ingested by phagocytosis.

Homotypic fusion

The fusion of identical compartments or vesicles.

Autophagy

A pathway for the recycling of cellular contents, in which materials inside the cell are packaged into vesicles and are then targeted to the vacuole or lysosome for bulk turnover.

Fibrosis

Fibrosis is frequently seen at sites of chronic inflammatory stimulation. Cells lay down a fibrinogen/fibrin skeleton that is augmented with other extracellular matrix proteins like collagen.

Signature-tagged mutagenesis

A technique to screen large numbers of distinct mutants for those that fail to survive an animal infection. Each mutant is tagged with a unique DNA sequence (called a signature tag), which allows a specific mutant to be tracked within a large pool of bacteria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, D. Who puts the tubercle in tuberculosis?. Nat Rev Microbiol 5, 39–47 (2007). https://doi.org/10.1038/nrmicro1538

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1538

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing