Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Developmental cell biology

Eph receptor signalling casts a wide net on cell behaviour

An Erratum to this article was published on 01 July 2005

Key Points

  • The Eph receptors are a large family of receptor tyrosine kinases that bind membrane-anchored ligands, called ephrins, and influence many cellular functions.

  • Eph–ephrin complexes at sites of cell–cell contact can progressively assemble into tetramers that contain two receptor and two ephrin molecules and into larger aggregates. Clusters of different sizes might have different signalling properties.

  • Clustered Eph-receptor–ephrin complexes become phosphorylated on the cytoplasmic domain of both the receptor and the ephrin, and can generate bidirectional signals that propagate in both the Eph- and ephrin-expressing cells. The Eph receptors mediate 'forward' signals through their kinase activity and associated signalling proteins, and the ephrins mediate 'reverse' signals through associated tyrosine kinases and other signalling proteins. The actin cytoskeleton is an important target of these signals.

  • Because Eph receptors and ephrins are both membrane-anchored, their interaction — which is of high affinity — can mediate cell–cell adhesion. The ensuing signalling pathways can either mediate attractive effects, including increased cell–substrate adhesion, cell migration and axon extension, or cause repulsive effects, including separation of the two cell surfaces away from each other, retraction of cell processes and decreased cell–substrate adhesion. The different signalling outcomes probably depend in part on the intensity of the Eph signals that are generated and crosstalk that occurs with other signalling pathways.

  • The best studied activity of Eph receptors and ephrins is in the establishment of topographically organized synaptic connections in many regions of the developing nervous system through effects on growth cone guidance, axon branching and fasciculation.

  • Eph receptors and ephrins also influence cell shape within and outside the nervous system. For example, they regulate dendritic spine morphogenesis and remodelling, epithelial branching morphogenesis, and remodelling of embryonic blood and lymphatic vessels.

  • Repulsive Eph signals drive the sorting, and prevent the intermingling, of cell subpopulations marked by differential Eph or ephrin expression. Eph signals can also regulate cell-fate determination, in some cases by regulating access to an appropriate embryonic environment.

  • Given the large number of Eph and ephrin genes and their multiple effects on the behaviour of many cell types, mutations in these genes could be implicated in several human genetic diseases. Furthermore, increasing evidence indicates that Eph receptors and ephrins could be exploited as disease targets. These areas of research are only beginning to be explored.

Abstract

Eph receptor tyrosine kinases mould the behaviour of many cell types by binding membrane-anchored ligands, ephrins, at sites of cell–cell contact. Eph signals affect both of the contacting cells and can produce diverse biological responses. New models explain how quantitative variations in the densities and signalling abilities of Eph receptors and ephrins could account for the different effects that are elicited on axon guidance, cell adhesion and cell migration during development, homeostasis and disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain structure and binding interfaces of Eph receptors and ephrins.
Figure 2: Protein interactions in Eph signalling.
Figure 3: Steps in cell-contact-dependent Eph bidirectional signalling.
Figure 4: Mechanisms of Eph signal attenuation and termination.
Figure 5: Eph-mediated mesenchymal–epithelial transition during somite morphogenesis.
Figure 6: Chromosomal map of human Eph and ephrin genes.

Similar content being viewed by others

References

  1. Murai, K. K. & Pasquale, E. B. 'Eph'ective signaling: forward, reverse and crosstalk. J. Cell Sci. 116, 2823–2832 (2003).

    CAS  PubMed  Google Scholar 

  2. Pasquale, E. B. Eph–ephrin promiscuity is now crystal clear. Nature Neurosci. 7, 417–418 (2004).

    CAS  PubMed  Google Scholar 

  3. Zisch, A. H. & Pasquale, E. B. The Eph family: a multitude of receptors that mediate cell recognition signals. Cell Tissue Res. 290, 217–226 (1997).

    CAS  PubMed  Google Scholar 

  4. Himanen, J. P. et al. Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. Nature Neurosci. 7, 501–509 (2004).

    CAS  PubMed  Google Scholar 

  5. Flanagan, J. G. & Vanderhaeghen, P. The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci. 21, 309–345 (1998).

    CAS  PubMed  Google Scholar 

  6. Wilkinson, D. G. Multiple roles of Eph receptors and ephrins in neural development. Nature Rev. Neurosci. 2, 155–164 (2001).

    CAS  Google Scholar 

  7. Kullander, K. & Klein, R. Mechanisms and functions of Eph and ephrin signalling. Nature Rev. Mol. Cell Biol. 3, 475–486 (2002).

    CAS  Google Scholar 

  8. Himanen, J. P. & Nikolov, D. B. Eph signaling: a structural view. Trends Neurosci. 26, 46–51 (2003).

    CAS  PubMed  Google Scholar 

  9. Himanen, J. P. et al. Crystal structure of an Eph receptor–ephrin complex. Nature 414, 933–938 (2001). Identifies two binding interfaces between EphB2 and ephrin-B2 and determines their high resolution structure. On the basis of the structural findings, it proposes that Eph-receptor–ephrin signalling complexes form tetramers that can further assemble into larger signalling clusters.

    CAS  PubMed  Google Scholar 

  10. Toth, J. et al. Crystal structure of an ephrin ectodomain. Dev. Cell 1, 83–92 (2001).

    CAS  PubMed  Google Scholar 

  11. Smith, F. M. et al. Dissecting the EphA3/Ephrin-A5 interactions using a novel functional mutagenesis screen. J. Biol. Chem. 279, 9522–9531 (2004).

    CAS  PubMed  Google Scholar 

  12. Wimmer-Kleikamp, S. H., Janes, P. W., Squire, A., Bastiaens, P. I. & Lackmann, M. Recruitment of Eph receptors into signaling clusters does not require ephrin contact. J. Cell Biol. 164, 661–666 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kalo, M. S. & Pasquale, E. B. Signal transfer by Eph receptors. Cell Tissue Res. 298, 1–9 (1999).

    CAS  PubMed  Google Scholar 

  14. Knoll, B. & Drescher, U. Src family kinases are involved in EphA receptor-mediated retinal axon guidance. J. Neurosci. 24, 6248–6257 (2004).

    PubMed  PubMed Central  Google Scholar 

  15. Zisch, A. H. et al. Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses. Oncogene 19, 177–187 (2000).

    CAS  PubMed  Google Scholar 

  16. Wybenga-Groot, L. E. et al. Structural basis for autoinhibition of the EphB2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell 106, 745–757 (2001).

    CAS  PubMed  Google Scholar 

  17. Palmer, A. et al. EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol. Cell 9, 725–737 (2002).

    CAS  PubMed  Google Scholar 

  18. Song, J. Tyrosine phosphorylation of the well packed ephrinB cytoplasmic β-hairpin for reverse signaling. Structural consequences and binding properties. J. Biol. Chem. 278, 24714–24720 (2003).

    CAS  PubMed  Google Scholar 

  19. Brantley-Sieders, D., Parker, M. & Chen, J. Eph receptor tyrosine kinases in tumor and tumor microenvironment. Curr. Pharm. Des. 10, 3431–3442 (2004).

    CAS  PubMed  Google Scholar 

  20. Prevost, N., Woulfe, D., Tognolini, M. & Brass, L. F. Contact-dependent signaling during the late events of platelet activation. J. Thromb. Haemost. 1, 1613–1627 (2003).

    CAS  PubMed  Google Scholar 

  21. Noren, N. K. & Pasquale, E. B. Eph receptor–ephrin bidirectional signals that target Ras and Rho proteins. Cell Signal. 16, 655–666 (2004).

    CAS  PubMed  Google Scholar 

  22. Kikawa, K. D., Vidale, D. R., Van Etten, R. L. & Kinch, M. S. Regulation of the EphA2 kinase by the low molecular weight tyrosine phosphatase induces transformation. J. Biol. Chem. 277, 39274–39279 (2002).

    CAS  PubMed  Google Scholar 

  23. Walker-Daniels, J., Riese, D. J. II & Kinch, M. S. c-Cbl-dependent EphA2 protein degradation is induced by ligand binding. Mol. Cancer Res. 1, 79–87 (2002).

    CAS  PubMed  Google Scholar 

  24. Wang, Y. et al. Negative regulation of EphA2 receptor by Cbl. Biochem. Biophys. Res. Commun. 296, 214–220 (2002).

    CAS  PubMed  Google Scholar 

  25. Freywald, A., Sharfe, N. & Roifman, C. M. The kinase-null EphB6 receptor undergoes transphosphorylation in a complex with EphB1. J. Biol. Chem. 277, 3823–3828 (2002).

    CAS  PubMed  Google Scholar 

  26. Gu, C. & Park, S. The EphA8 receptor regulates integrin activity through p110γ phosphatidylinositol-3 kinase in a tyrosine kinase activity-independent manner. Mol. Cell. Biol. 21, 4579–4597 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Miao, H. et al. Inhibition of integrin-mediated cell adhesion but not directional cell migration requires catalytic activity of EphB3 receptor tyrosine kinase: role of Rho family small GTPases. J. Biol. Chem. 280, 923–932 (2005).

    CAS  PubMed  Google Scholar 

  28. Yin, Y. et al. EphA receptor tyrosine kinases interact with co-expressed ephrin-A ligands in cis. Neurosci. Res. 48, 285–296 (2004).

    CAS  PubMed  Google Scholar 

  29. Wu, C., Butz, S., Ying, Y. & Anderson, R. G. Tyrosine kinase receptors concentrated in caveolae-like domains from neuronal plasma membrane. J. Biol. Chem. 272, 3554–3559 (1997).

    CAS  PubMed  Google Scholar 

  30. Bruckner, K. et al. EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron 22, 511–524 (1999).

    CAS  PubMed  Google Scholar 

  31. Huai, J. & Drescher, U. An ephrin-A-dependent signaling pathway controls integrin function and is linked to the tyrosine phosphorylation of a 120-kDa protein. J. Biol. Chem. 276, 6689–6694 (2001).

    CAS  PubMed  Google Scholar 

  32. Gauthier, L. R. & Robbins, S. M. Ephrin signaling: one raft to rule them all? One raft to sort them? One raft to spread their call and in signaling bind them? Life Sci. 74, 207–216 (2003).

    CAS  PubMed  Google Scholar 

  33. Knoll, B. & Drescher, U. Ephrin-As as receptors in topographic projections. Trends Neurosci. 25, 145–149 (2002).

    CAS  PubMed  Google Scholar 

  34. Holmberg, J., Clarke, D. L. & Frisen, J. Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature 408, 203–206 (2000).

    CAS  PubMed  Google Scholar 

  35. Dravis, C. et al. Bidirectional signaling mediated by ephrin-B2 and EphB2 controls urorectal development. Dev. Biol. 271, 272–290 (2004).

    CAS  PubMed  Google Scholar 

  36. Santiago, A. & Erickson, C. A. Ephrin-B ligands play a dual role in the control of neural crest cell migration. Development 129, 3621–3632 (2002).

    CAS  PubMed  Google Scholar 

  37. Hindges, R., McLaughlin, T., Genoud, N., Henkemeyer, M. & O'Leary, D. EphB forward signaling controls directional branch extension and arborization required for dorsal–ventral retinotopic mapping. Neuron 35, 475–487 (2002).

    CAS  PubMed  Google Scholar 

  38. McLaughlin, T., Hindges, R., Yates, P. A. & O'Leary, D. D. Bifunctional action of ephrin-B1 as a repellent and attractant to control bidirectional branch extension in dorsal–ventral retinotopic mapping. Development 130, 2407–2418 (2003).

    CAS  PubMed  Google Scholar 

  39. Eberhart, J. et al. Ephrin-A5 exerts positive or inhibitory effects on distinct subsets of EphA4-positive motor neurons. J. Neurosci. 24, 1070–1078 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Weinl, C., Drescher, U., Lang, S., Bonhoeffer, F. & Loschinger, J. On the turning of Xenopus retinal axons induced by ephrin-A5. Development 130, 1635–1643 (2003).

    CAS  PubMed  Google Scholar 

  41. Davenport, R. W., Thies, E. & Cohen, M. L. Neuronal growth cone collapse triggers lateral extensions along trailing axons. Nature Neurosci. 2, 254–259 (1999).

    CAS  PubMed  Google Scholar 

  42. Castellani, V., Yue, Y., Gao, P. P., Zhou, R. & Bolz, J. Dual action of a ligand for Eph receptor tyrosine kinases on specific populations of axons during the development of cortical circuits. J. Neurosci. 18, 4663–4672 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yates, P. A., Roskies, A. L., McLaughlin, T. & O'Leary, D. D. Topographic-specific axon branching controlled by ephrin-As is the critical event in retinotectal map development. J. Neurosci. 21, 8548–8563 (2001). Provides evidence that an important effect of ephrin-A ligands in the regulation of topographic synaptic connections in the visual system involves inhibition of collateral branching rather than only growth cone repulsion, as was previously believed.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sakurai, T., Wong, E., Drescher, U., Tanaka, H. & Jay, D. G. Ephrin-A5 restricts topographically specific arborization in the chick retinotectal projection in vivo. Proc. Natl Acad. USA 99, 10795–10800 (2002).

    CAS  Google Scholar 

  45. Hansen, M. J., Dallal, G. E. & Flanagan, J. G. Retinal axon response to ephrin-As shows a graded, concentration-dependent transition from growth promotion to inhibition. Neuron 42, 717–730 (2004). Shows that ephrin-A ligands can promote retinal axon outgrowth when present on the substrate at low density, in contrast to the inhibitory effects of these ligands when they are at high density. The concentration of EphA receptors on the axons also influences axon growth promotion versus inhibition.

    CAS  PubMed  Google Scholar 

  46. Hattori, M., Osterfield, M. & Flanagan, J. G. Regulated cleavage of a contact-mediated axon repellent. Science 289, 1360–1365 (2000). Identifies ephrin-A proteolysis as a mechanism to allow cell separation following formation of transcellular Eph–ephrin adhesive complexes.

    CAS  PubMed  Google Scholar 

  47. Zimmer, M., Palmer, A., Kohler, J. & Klein, R. EphB–ephrinB bi-directional endocytosis terminates adhesion allowing contact mediated repulsion. Nature Cell Biol. 5, 869–878 (2003).

    CAS  PubMed  Google Scholar 

  48. Mann, F., Miranda, E., Weinl, C., Harmer, E. & Holt, C. E. B-type Eph receptors and ephrins induce growth cone collapse through distinct intracellular pathways. J. Neurobiol. 57, 323–336 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Marston, D. J., Dickinson, S. & Nobes, C. D. Rac-dependent trans-endocytosis of ephrinBs regulates Eph–ephrin contact repulsion. Nature Cell Biol. 5, 879–888 (2003). References 47 and 49 identify endocytosis as a mechanism to remove intact Eph-receptor–ephrin adhesive complexes from sites of cell contact, thereby facilitating cell separation.

    CAS  PubMed  Google Scholar 

  50. Pascall, J. C. & Brown, K. D. Intramembrane cleavage of ephrinB3 by the human rhomboid family protease, RHBDL2. Biochem. Biophys. Res. Commun. 317, 244–252 (2004).

    CAS  PubMed  Google Scholar 

  51. Stein, E. et al. Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 12, 667–678 (1998). First article to propose that the degree of Eph receptor clustering can change cellular responses to Eph signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mann, F., Ray, S., Harris, W. & Holt, C. Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through Ephrin-B ligands. Neuron 35, 461–473 (2002).

    CAS  PubMed  Google Scholar 

  53. Nagashima, K. et al. Adaptor protein Crk is required for Ephrin-B1-induced membrane ruffling and focal complex assembly of human aortic endothelial cells. Mol. Biol. Cell 13, 4231–4242 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Huynh-Do, U. et al. Surface densities of ephrin-B1 determine EphB1-coupled activation of cell attachment through αvβ3 and α5β1 integrins. EMBO J. 18, 2165–2173 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Noren, N. K., Lu, M., Freeman, A. L., Koolpe, M. & Pasquale, E. B. Interplay between EphB4 on tumor cells and vascular ephrin-B2 regulates tumor growth. Proc. Natl Acad. Sci. USA 101, 5583–5588 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Fuller, T., Korff, T., Kilian, A., Dandekar, G. & Augustin, H. G. Forward EphB4 signaling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells. J. Cell Sci. 116, 2461–2470 (2003).

    PubMed  Google Scholar 

  57. Prevost, N., Woulfe, D., Tanaka, T. & Brass, L. F. Interactions between Eph kinases and ephrins provide a mechanism to support platelet aggregation once cell-to-cell contact has occurred. Proc. Natl Acad. Sci. USA 99, 9219–9224 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Suh, L. H., Oster, S. F., Soehrman, S. S., Grenningloh, G. & Sretavan, D. W. L1/Laminin modulation of growth cone response to EphB triggers growth pauses and regulates the microtubule destabilizing protein SCG10. J. Neurosci. 24, 1976–1986 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dufour, A. et al. Area specificity and topography of thalamocortical projections are controlled by ephrin/Eph genes. Neuron 39, 453–465 (2003).

    CAS  PubMed  Google Scholar 

  60. Frisen, J., Holmberg, J. & Barbacid, M. Ephrins and their Eph receptors: multitalented directors of embryonic development. EMBO J. 18, 5159–5165 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Drescher, U. et al. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82, 359–370 (1995). Identifies ephrin-A5 as the long sought-after repellent for retinal axons by biochemical purification from posterior chicken tectum.

    CAS  PubMed  Google Scholar 

  62. Brown, A. et al. Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling. Cell 102, 77–88 (2000).

    CAS  PubMed  Google Scholar 

  63. Reber, M., Burrola, P. & Lemke, G. A relative signalling model for the formation of a topographic neural map. Nature 431, 847–853 (2004).

    CAS  PubMed  Google Scholar 

  64. Honda, H. Competition between retinal ganglion axons for targets under the servomechanism model explains abnormal retinocollicular projection of Eph receptor-overexpressing or ephrin-lacking mice. J. Neurosci. 23, 10368–10377 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Koulakov, A. A. & Tsigankov, D. N. A stochastic model for retinocollicular map development. BMC Neurosci. 5, 30–47 (2004).

    PubMed  PubMed Central  Google Scholar 

  66. Yates, P. A., Holub, A. D., McLaughlin, T., Sejnowski, T. J. & O'Leary, D. D. Computational modeling of retinotopic map development to define contributions of EphA–ephrinA gradients, axon–axon interactions, and patterned activity. J. Neurobiol. 59, 95–113 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Feldheim, D. A. et al. Loss-of-function analysis of EphA receptors in retinotectal mapping. J. Neurosci. 24, 2542–2550 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Feldheim, D. A. et al. Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping. Neuron 25, 563–574 (2000).

    CAS  PubMed  Google Scholar 

  69. Frisen, J. et al. Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. Neuron 20, 235–243 (1998).

    CAS  PubMed  Google Scholar 

  70. Birgbauer, E., Cowan, C. A., Sretavan, D. W. & Henkemeyer, M. Kinase independent function of EphB receptors in retinal axon pathfinding to the optic disc from dorsal but not ventral retina. Development 127, 1231–1241 (2000).

    CAS  PubMed  Google Scholar 

  71. Williams, S. E. et al. Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm. Neuron 39, 919–935 (2003).

    CAS  PubMed  Google Scholar 

  72. Nakagawa, S. et al. Ephrin-B regulates the ipsilateral routing of retinal axons at the optic chiasm. Neuron 25, 599–610 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. McLaughlin, T., Hindges, R., Yates, P. A. & O'Leary, D. D. Bifunctional action of ephrin-B1 as a repellent and attractant to control bidirectional branch extension in dorsal–ventral retinotopic mapping. Development 130, 2407–2418 (2003).

    CAS  PubMed  Google Scholar 

  74. Winslow, J. W. et al. Cloning of AL-1, a ligand for an Eph-related tyrosine kinase receptor involved in axon bundle formation. Neuron 14, 973–981 (1995).

    CAS  PubMed  Google Scholar 

  75. Chen, Z. Y. et al. Abnormal hippocampal axon bundling in EphB receptor mutant mice. J. Neurosci. 24, 2366–2374 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Murai, K. K. & Pasquale, E. B. Eph receptors, ephrins, and synaptic function. Neuroscientist 10, 304–314 (2004).

    CAS  PubMed  Google Scholar 

  77. Yamaguchi, Y. & Pasquale, E. B. Eph receptors in the adult brain. Curr. Opin. Neurobiol. 14, 288–296 (2004).

    CAS  PubMed  Google Scholar 

  78. Ethell, I. M. et al. EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron 31, 1001–1013 (2001).

    CAS  PubMed  Google Scholar 

  79. Henkemeyer, M., Itkis, O. S., Ngo, M., Hickmott, P. W. & Ethell, I. M. Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J. Cell Biol. 163, 1313–1326 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Penzes, P. et al. Rapid induction of dendritic spine morphogenesis by trans-synaptic EphrinB–EphB receptor activation of the Rho-GEF kalirin. Neuron 37, 263–274 (2003).

    CAS  PubMed  Google Scholar 

  81. Dalva, M. B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 945–956 (2000).

    CAS  PubMed  Google Scholar 

  82. Murai, K. K., Nguyen, L. N., Irie, F., Yamaguchi, Y. & Pasquale, E. B. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nature Neurosci. 6, 153–160 (2003). Identifies a form of neuroglial crosstalk that regulates dendritic spine shape through repulsive signalling by an EphA receptor on hippocampal pyramidal neurons and an ephrin-A ligand on glial cells.

    CAS  PubMed  Google Scholar 

  83. Zhou, F. Q. & Cohan, C. S. How actin filaments and microtubules steer growth cones to their targets. J. Neurobiol. 58, 84–91 (2004).

    CAS  PubMed  Google Scholar 

  84. Gu, J., Sumida, Y., Sanzen, N. & Sekiguchi, K. Laminin-10/11 and fibronectin differentially regulate integrin-dependent Rho and Rac activation via p130(Cas)–CrkII–DOCK180 pathway. J. Biol. Chem. 276, 27090–27097 (2001).

    CAS  PubMed  Google Scholar 

  85. Thies, E. & Davenport, R. W. Independent roles of Rho-GTPases in growth cone and axonal behavior. J. Neurobiol. 54, 358–369 (2003).

    CAS  PubMed  Google Scholar 

  86. Birchmeier, C., Birchmeier, W., Gherardi, E. & Vande Woude, G. F. Met, metastasis, motility and more. Nature Rev. Mol. Cell Biol. 4, 915–925 (2003).

    CAS  Google Scholar 

  87. Miao, H. et al. EphA kinase activation regulates HGF-induced epithelial branching morphogenesis. J. Cell Biol. 162, 1281–1292 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Stein, E., Schoecklmann, H. & Daniel, T. O. Eph family receptors and ligands in vascular cell targeting and assembly. Trends Cardiovasc. Med. 7, 329–334 (1997).

    CAS  PubMed  Google Scholar 

  89. Wang, H. U., Chen, Z. F. & Anderson, D. J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998). Identifies ephrin-B2 as a marker for embryonic arterial endothelial cells and, together with reference 90, reveals the essential role in cardiovascular development of this ephrin and the EphB4 receptor in venous endothelial cells.

    CAS  PubMed  Google Scholar 

  90. Gerety, S. S., Wang, H. U., Chen, Z. F. & Anderson, D. J. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol. Cell 4, 403–414 (1999).

    CAS  PubMed  Google Scholar 

  91. Adams, R. H. et al. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 13, 295–306 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Makinen, T. et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev. 19, 397–410 (2005). Reports an essential role for ephrin-B2 in the formation of the lymphatic vasculature and begins to identify the reverse signalling pathways involved using genetic approches.

    PubMed  PubMed Central  Google Scholar 

  93. Pandey, A., Shao, H., Marks, R. M., Polverini, P. J. & Dixit, V. M. Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-α-induced angiogenesis. Science 268, 567–569 (1995). First demonstration that an Eph receptor, EphA2, has a role in pathological angiogenesis in the adult.

    CAS  PubMed  Google Scholar 

  94. Brantley, D. M. et al. Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene 21, 7011–7026 (2002).

    CAS  PubMed  Google Scholar 

  95. Dobrzanski, P. et al. Antiangiogenic and antitumor efficacy of EphA2 receptor antagonist. Cancer Res. 64, 910–919 (2004).

    CAS  PubMed  Google Scholar 

  96. Brantley-Sieders, D. M. et al. EphA2 receptor tyrosine kinase regulates endothelial cell migration and vascular assembly through phosphoinositide 3-kinase-mediated Rac1 GTPase activation. J. Cell Sci. 117, 2037–2049 (2004).

    CAS  PubMed  Google Scholar 

  97. Cowan, C. A. et al. Ephrin-B2 reverse signaling is required for axon pathfinding and cardiac valve formation but not early vascular development. Dev. Biol. 271, 263–271 (2004).

    CAS  PubMed  Google Scholar 

  98. Compagni, A., Logan, M., Klein, R. & Adams, R. H. Control of skeletal patterning by ephrinB1–EphB interactions. Dev. Cell 5, 217–230 (2003). This article and reference 99 demonstrate the crucial role of ephrin-B1 in embryonic patterning by the formation of tissue boundaries.

    CAS  PubMed  Google Scholar 

  99. Davy, A., Aubin, J. & Soriano, P. Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev 18, 572–583 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Twigg, S. R. et al. Mutations of ephrin-B1 (EFNB1), a marker of tissue boundary formation, cause craniofrontonasal syndrome. Proc. Natl Acad. Sci. USA 101, 8652–8657 (2004). This article and reference 101 implicate ephrin-B1 mutations in a human genetic disease, craniofrontonasal syndrome. The disease phenotype is probably the result of abnormalities in the formation of embryonic tissue boundaries (see also references 98 and 99).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wieland, I. et al. Mutations of the ephrin-B1 gene cause craniofrontonasal syndrome. Am. J. Hum. Genet. 74, 1209–1215 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Batlle, E. et al. β-Catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/EphrinB. Cell 111, 251–263 (2002).

    CAS  PubMed  Google Scholar 

  103. Sharfe, N., Freywald, A., Toro, A., Dadi, H. & Roifman, C. Ephrin stimulation modulates T cell chemotaxis. Eur. J. Immunol. 32, 3745–3755 (2002).

    CAS  PubMed  Google Scholar 

  104. Lu, Q., Sun, E. E., Klein, R. S. & Flanagan, J. G. Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell 105, 69–79 (2001).

    CAS  PubMed  Google Scholar 

  105. Huynh-Do, U. et al. Ephrin-B1 transduces signals to activate integrin-mediated migration, attachment and angiogenesis. J. Cell Sci. 115, 3073–3081 (2002).

    CAS  PubMed  Google Scholar 

  106. Vindis, C., Cerretti, D. P., Daniel, T. O. & Huynh-Do, U. EphB1 recruits c-Src and p52Shc to activate MAPK/ERK and promote chemotaxis. J. Cell Biol. 162, 661–671 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Vindis, C., Teli, T., Cerretti, D. P., Turner, C. E. & Huynh-Do, U. EphB1-mediated cell migration requires the phosphorylation of paxillin at Tyr-31/Tyr-118. J. Biol. Chem. 279, 27965–27970 (2004).

    CAS  PubMed  Google Scholar 

  108. Lickliter, J. D., Smith, F. M., Olsson, J. E., Mackwell, K. L. & Boyd, A. W. Embryonic stem cells express multiple Eph-subfamily receptor tyrosine kinases. Proc. Natl Acad. Sci. USA 93, 145–150 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).

    CAS  PubMed  Google Scholar 

  110. Aoki, M., Yamashita, T. & Tohyama, M. EphA receptors direct the differentiation of mammalian neural precursor cells through a mitogen-activated protein kinase-dependent pathway. J. Biol. Chem. 279, 32643–32650 (2004).

    CAS  PubMed  Google Scholar 

  111. Suenobu, S. et al. A role of EphB4 receptor and its ligand, ephrin-B2, in erythropoiesis. Biochem. Biophys. Res. Commun. 293, 1124–1131 (2002).

    CAS  PubMed  Google Scholar 

  112. Wang, Z. et al. Receptor tyrosine kinase, EphB4 (HTK), accelerates differentiation of select human hematopoietic cells. Blood 99, 2740–2747 (2002).

    CAS  PubMed  Google Scholar 

  113. Wang, Z. et al. Ephrin receptor, EphB4, regulates ES cell differentiation of primitive mammalian hemangioblasts, blood, cardiomyocytes, and blood vessels. Blood 103, 100–109 (2004).

    CAS  PubMed  Google Scholar 

  114. Conover, J. C. et al. Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nature Neurosci. 3, 1091–1097 (2000).

    CAS  PubMed  Google Scholar 

  115. Holmberg, J. et al. Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev. 19, 462–471 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Moore, K. B., Mood, K., Daar, I. O. & Moody, S. A. Morphogenetic movements underlying eye field formation require interactions between the FGF and ephrinB1 signaling pathways. Dev. Cell 6, 55–67 (2004).

    CAS  PubMed  Google Scholar 

  117. Xu, Q., Alldus, G., Macdonald, R., Wilkinson, D. G. & Holder, N. Function of the Eph-related kinase rtk1 in patterning of the zebrafish forebrain. Nature 381, 319–322 (1996).

    CAS  PubMed  Google Scholar 

  118. Barrios, A. et al. Eph/Ephrin signaling regulates the mesenchymal-to-epithelial transition of the paraxial mesoderm during somite morphogenesis. Curr. Biol. 13, 1571–1582 (2003).

    CAS  PubMed  Google Scholar 

  119. Rosenberg, I. M., Goke, M., Kanai, M., Reinecker, H. C. & Podolsky, D. K. Epithelial cell kinase-B61: an autocrine loop modulating intestinal epithelial migration and barrier function. Am. J. Physiol. 273, G824–G832 (1997).

    CAS  PubMed  Google Scholar 

  120. Huusko, P. et al. Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nature Genet. 36, 979–983 (2004).

    CAS  PubMed  Google Scholar 

  121. Sulman, E. P. et al. ECK, a human EPH-related gene, maps to 1p36.1, a common region of alteration in human cancers. Genomics 40, 371–374 (1997).

    CAS  PubMed  Google Scholar 

  122. Bardelli, A. et al. Mutational analysis of the tyrosine kinome in colorectal cancers. Science 300, 949 (2003).

    CAS  PubMed  Google Scholar 

  123. Noblitt, L. W. et al. Decreased tumorigenic potential of EphA2-overexpressing breast cancer cells following treatment with adenoviral vectors that express EphrinA1. Cancer Gene Ther. 11, 757–766 (2004).

    CAS  PubMed  Google Scholar 

  124. Henkemeyer, M. et al. Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86, 35–46 (1996).

    CAS  PubMed  Google Scholar 

  125. Holland, S. J. et al. Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature 383, 722–725 (1996).

    CAS  PubMed  Google Scholar 

  126. Bruckner, K., Pasquale, E. B. & Klein, R. Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 275, 1640–1643 (1997).

    CAS  PubMed  Google Scholar 

  127. Carles-Kinch, K., Kilpatrick, K. E., Stewart, J. C. & Kinch, M. S. Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res. 62, 2840–2847 (2002).

    CAS  PubMed  Google Scholar 

  128. Koolpe, M., Burgess, R., Dail, M. & Pasquale, E. B. EphB receptor-binding peptides identified by phage display enable design of an antagonist with ephrin-like affinity. J. Biol. Chem. 280, 17301–17311 (2005).

    CAS  PubMed  Google Scholar 

  129. Koolpe, M., Dail, M. & Pasquale, E. B. An ephrin mimetic peptide that selectively targets the EphA2 receptor. J. Biol. Chem. 277, 46974–46979 (2002).

    CAS  PubMed  Google Scholar 

  130. Mao, W. et al. EphB2 as a therapeutic antibody drug target for the treatment of colorectal cancer. Cancer Res. 64, 781–788 (2004).

    CAS  PubMed  Google Scholar 

  131. Goldshmit, Y., Galea, M. P., Wise, G., Bartlett, P. F. & Turnley, A. M. Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J. Neurosci. 24, 10064–10073 (2004). Proposes that EphA4 receptor signalling contributes to the failure of axon regeneration after spinal cord injury mainly by mediating the formation of a glial scar.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Marquardt, T. et al. Coexpressed EphA receptors and ephrin-A ligands mediate opposing actions on growth cone navigation from distinct membrane domains. Cell 121, 127–139 (2005). Shows that EphA receptors and ephrin-A ligands expressed on the same growth cone segregate laterally into distinct membrane subdomains and both contribute to axon guidance: the EphA receptors by mediating repulsive effects, and the ephrin-A molecules by mediating attractive effects.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks N. Noren for comments on the manuscript. Work in the author's laboratory is supported by the National Institutes of Health and the Department of Defense.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

OMIM

Craniofrontonasal syndrome

Swiss-Prot

Cbl

EphA3

EphA4

EphA10

EphB2

EphB3

EphB6

ephrin-A2

ephrin-A5

ephrin-B2

FURTHER INFORMATION

Elena Pasquale's research report

Glossary

ANGIOGENESIS

The growth and proliferation of new blood vessels from existing vasculature.

FIBRONECTIN TYPE-III REPEAT

A 90-amino-acid section that is repeated 15–17 times in the fibronectin molecule. It is a common motif in many cell-surface proteins.

STERILE α-MOTIF

A domain of 70 amino acids that is roughly conserved in many proteins and thought to participate in protein–protein interactions.

GPI-ANCHOR

The function of this post-translational modification is to attach proteins to the exoplasmic leaflet of membranes, possibly to specific domains therein. The anchor is made of a molecule of phosphatidylinositol, a carbohydrate chain and an ethanolamine phosphate moiety attached to the C terminus of the protein.

PDZ-DOMAIN

A protein–protein interaction domain of 90 amino acids that binds particularly to motifs in the C terminus of polypeptides.

TRANSPHOSPHORYLATION

The transfer of a phosphate group by a protein kinase to a residue in a different kinase molecule.

SRC-FAMILY KINASES

Members of the Src family of tyrosine kinases, the largest of the non-receptor-tyrosine-kinase families.

SRC-HOMOLOGY-2 DOMAIN

A domain of 100 amino acids that binds to phosphorylated tyrosine sequences in proteins.

GUANINE NUCLEOTIDE-EXCHANGE FACTOR

A protein that facilitates the exchange of GDP for GTP in the nucleotide-binding pocket of a GTP-binding protein.

UBIQUITIN LIGASE

An enzyme that couples the small protein ubiquitin to lysine residues on a target protein, marking that protein for destruction by the proteasome or the lysosome.

LIPID RAFTS

Microdomains of the plasma membrane enriched in cholesterol and glycosphingolipids, where signalling proteins tend to concentrate. Different subsets of lipid rafts have been identified, based on distinctive molecular compositions.

NEURAL CREST CELLS

Cells that originate from the neural crest region of a vertebrate embryo. They migrate outward and are progenitors of many mature cell types, including peripheral neurons.

GROWTH CONE

A specialized region at the tip of an axonal process that controls the direction of axon growth by responding to guidance cues.

EXTRACELLULAR MATRIX

(ECM). The complex, multi-molecular material that surrounds cells. The ECM comprises a scaffold on which tissues are organized, it provides cellular microenvironments and it regulates various cellular functions.

HAEMOSTATIC PLUG

Aggregate of platelets that forms at sites of vascular injury and blocks blood loss.

TOPOGRAPHIC MAP

In the nervous system, a topographic map is a spatially organized array of synaptic connections that map one structure onto another. It precisely preserves the spatial relationships among neurons in one structure in their connections with neurons in the other structure.

TERMINATION ZONE

Topographically appropriate location where axon collateral branches arborize and make synaptic connections with target cells.

STRIPE ASSAY

In vitro assay used to study molecules involved in axon guidance. Neural tissue explants are positioned near a surface coated with alternating stripes of different substrates, such as anterior and posterior tectal membranes. The pattern of neurite outgrowth or branching on the stripes allows evaluation of the effects of different substrates.

FILOPODIA

Thin cellular processes containing long, unbranched, parallel bundles of actin filaments.

DENDRITIC SPINES

Knob-like extensions of the dendritic surface that can receive synaptic input. The actin cytoskeleton within dendritic spines undergoes constant remodelling, giving rise to dynamic shape changes.

GLIAL CELLS

Non-neuronal cells of the central nervous system, which comprise astrocytes, oligodendrocytes, microglia and ependymal cells.

RHO-FAMILY GTPases

A family of small (21 kDa) GTP-binding proteins that are related to Ras, and that regulate the cytoskeleton. The nucleotide-bound state is regulated by GTPase-activating proteins, which catalyse hydrolysis of the bound GTP, and guanine nucleotide-exchange factors, which catalyse GDPGTP exchange.

ANIMAL CAPS

(Animal-cap assay). An experimental culture system that uses the animal cap of the blastula of amphibians and zebrafish. Historically used to study how early embryonic cells respond to inductive signals to produce differentiated tissues, it can also be used to study how surface molecules drive cell segregation in a three-dimensional model system.

X-INACTIVATION

Random inactivation of one of the two X chromosomes in females to preserve an appropriate level of expression of the genes on the X chromosome.

DIENCEPHALON

A subdivision of the vertebrate brain. The eye develops from a protrusion of the embryonic diencephalon, therefore the diencephalic region of the developing brain surrounds the region destined to become the eye, known as the eye field.

PARAXIAL MESODERM

Mesodermal tissue that lies on either side of the neural tube and gives rise to somites, which organize the segmental pattern of vertebrate embryos.

SOMITES

A series of paired blocks of cells that form during early vertebrate development and give rise to the backbone and body muscle.

ADHERENS JUNCTION

A cell–cell adhesion complex that contains classical cadherins and catenins that are attached to cytoplasmic actin filaments.

NONSENSE-MEDIATED DECAY

A surveillance mechanism that degrades mRNAs containing premature termination codons, thereby limiting the synthesis of abnormal proteins.

GLIAL SCAR

Scar tissue composed of astrocytes and extracellular matrix molecules that forms in response to mechanical injury to the adult central nervous system. It represents a considerable obstacle to axonal regeneration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasquale, E. Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol 6, 462–475 (2005). https://doi.org/10.1038/nrm1662

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1662

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing