Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Apoptosis as a therapeutic tool in rheumatoid arthritis

Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory synovitis that is dominated by the presence of macrophages, lymphocytes and synovial fibroblasts, which leads to the destruction of bone and cartilage. The effectiveness of therapies that are directed against tumour-necrosis factor and interleukin-1 has identified macrophages as a crucial target for therapeutic intervention. However, not all patients respond to these therapies, and the benefits of this form of treatment are short lived. Recent work indicates that the insufficient apoptosis of inflammatory cells in the RA joint might contribute to pathogenesis. In this article, I characterize the mechanisms that prevent the apoptosis of chronic inflammatory cells in the RA joint, to identify potential new targets for the treatment of RA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The rheumatoid joint.
Figure 2: Overview of the pathogenesis of rheumatoid arthritis.
Figure 3: Apoptotic pathways.
Figure 4: Essential pathways for maintaining macrophage viability.
Figure 5: Apoptotic pathways in synovial fibroblasts.

Similar content being viewed by others

References

  1. Pope, R. M. & Perlman, H. Current Molecular Medicine: Principles of Molecular Rheumatology (ed. Tsokos, G. C.) 325–361 (Humana Press, Totowa, New Jersey, 2000).

    Book  Google Scholar 

  2. Bathon, J. M. et al. Comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N. Engl. J. Med. 343, 1586–1593 (2000).

    Article  CAS  Google Scholar 

  3. Feldmann, M. Pathogenesis of arthritis: recent research progress. Nature Immunol. 2, 771–773 (2001).

    Article  CAS  Google Scholar 

  4. Feldmann, M. & Maini, R. N. Anti-TNFα therapy of rheumatoid arthritis: what have we learned? Annu. Rev. Immunol. 19, 163–196 (2001).

    Article  CAS  Google Scholar 

  5. Lipsky, P. E. et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. N. Engl. J. Med. 343, 1594–1602 (2000).

    Article  CAS  Google Scholar 

  6. Sugiyama, M. et al. Localization of apoptosis and expression of apoptosis-related proteins in the synovium of patients with rheumatoid arthritis. Ann. Rheum. Dis. 55, 442–449 (1995).

    Article  Google Scholar 

  7. Nakajima, T. et al. Apoptosis and functional Fas antigen in rheumatoid arthritis synoviocytes. Arthritis Rheum. 38, 485–491 (1995).

    Article  CAS  Google Scholar 

  8. Matsumoto, S., Muller-Ladner, U., Gay, R. E., Nishioka, K. & Gay, S. Ultrastructural demonstration of apoptosis, Fas and Bcl-2 expression of rheumatoid synovial fibroblasts. J. Rheumatol. 23, 1345–1352 (1996).

    CAS  PubMed  Google Scholar 

  9. Firestein, G. S. Apoptosis in rheumatoid arthritis synovium. J. Clin. Invest. 96, 1631–1638 (1995).

    Article  CAS  Google Scholar 

  10. Fraser, A., Fearon, U., Reece, R., Emery, P. & Veale, D. J. Matrix metalloproteinase 9, apoptosis and vascular morphology in early arthritis. Arthritis Rheum. 44, 2024–2028 (2001).

    Article  CAS  Google Scholar 

  11. Firestein, G. S. et al. Apoptosis in rheumatoid arthritis: p53 overexpression in rheumatoid arthritis synovium. Am. J. Pathol. 149, 2143–2151 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Perlman, H. et al. Differential expression pattern of the anti-apoptotic proteins, Bcl-2 and Flip in experimental arthritis. Arthritis Rheum. 44, 2899–2908 (2001).

    Article  CAS  Google Scholar 

  13. Tak, P. P., Zvaifler, N. J., Green, D. R. & Firestein, G. S. Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol. Today 21, 78–82 (2000).

    Article  CAS  Google Scholar 

  14. Lawrence, T., Gilroy, D. W., Colville-Nash, P. R. & Willoughby, D. A. Possible new role for NF-κB in the resolution of inflammation. Nature Med. 7, 1291–1297 (2001).

    Article  CAS  Google Scholar 

  15. Savill, J. Apoptosis in resolution of inflammation. J. Leukocyte Biol. 61, 375–380 (1997).

    Article  CAS  Google Scholar 

  16. Fadok, V. A., Bratton, D. L. & Henson, P. M. Phagocyte receptors for apoptotic cells: recognition, uptake and consequences. J. Clin. Invest. 108, 957–962 (2001).

    Article  CAS  Google Scholar 

  17. van Lent, P. L. et al. Uptake of apoptotic leukocytes by synovial lining macrophages inhibits immune-complex-mediated arthritis. J. Leukocyte Biol. 70, 708–714 (2001).

    CAS  PubMed  Google Scholar 

  18. Perlman, H. et al. Flice-inhibitory protein expression during macrophage differentiation confers resistance to Fas-mediated apoptosis. J. Exp. Med. 190, 1679–1688 (1999).

    Article  CAS  Google Scholar 

  19. Perlman, H. et al. Rheumatoid arthritis synovial macrophages express the Fas-associated death domain-like interleukin-1β-converting enzyme-inhibitory protein and are refractory to Fas-mediated apoptosis. Arthritis Rheum. 44, 21–30 (2001).

    Article  CAS  Google Scholar 

  20. Yeh, W.-C. et al. Requirement for casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12, 633–642 (2000).

    Article  CAS  Google Scholar 

  21. Hohlbaum, A. M., Gregory, M. S., Ju, S. T. & Marshak-Rothstein, A. Fas ligand engagement of resident peritoneal macrophages in vivo induces apoptosis and the production of neutrophil chemotactic factors. J. Immunol. 167, 6217–6224 (2001).

    Article  CAS  Google Scholar 

  22. Pagliari, L. J., Perlman, H., Liu, H. & Pope, R. M. Macrophages require constitutive NF-κB activation to maintain A1 expression and mitochondrial homeostasis. Mol. Cell. Biol. 20, 8855–8865 (2000).

    Article  CAS  Google Scholar 

  23. Liu, H. et al. TNF-α gene expression in macrophages: regulation by NF-κB is independent of c-Jun or C/EBPβ. J. Immunol. 164, 4277–4285 (2000).

    Article  CAS  Google Scholar 

  24. Liu, H., Perlman, H., Pagliari, L. & Pope, R. Constitutively activated Akt-1 is vital for the survival of human monocyte-differentiated macrophages: role of Mcl-1, independent of NF-κB, Bad or caspase activation. J. Exp. Med. 194, 113–125 (2001).

    Article  CAS  Google Scholar 

  25. Handel, M. L., McMorrow, L. B. & Gravallese, E. M. Nuclear factor-κB in rheumatoid synovium. Arthritis Rheum. 38, 1762–1770 (1995).

    Article  CAS  Google Scholar 

  26. Davis, R. E., Brown, K. D., Siebenlist, U. & Staudt, L. M. Constitutive nuclear factor-κB activity is required for survival of active B-cell-like diffuse large B-cell lymphoma cells. J. Exp. Med. 194, 1861–1874 (2001).

    Article  CAS  Google Scholar 

  27. Georganas, C. et al. Regulation of IL-6 and IL-8 expression in rheumatoid arthritis synovial fibroblasts: the dominant role for NF-κB but not C/EBPβ or c-Jun. J. Immunol. 165, 7199–7206 (2000).

    Article  CAS  Google Scholar 

  28. Foxwell, B. et al. Efficient adenoviral infection with IκBα reveals that macrophage tumor necrosis factor-α production in rheumatoid arthritis is NF-κB dependent. Proc. Natl Acad. Sci. USA 95, 8211–8215 (1998).

    Article  CAS  Google Scholar 

  29. Bondeson, J., Browne, K. A., Brennan, F. M., Foxwell, B. M. J. & Feldmann, M. Selective regulation of cytokine induction by adenoviral gene transfer of IκBα into human macrophages: lipopolysaccharide-induced, but not zymosan-induced, proinflammatory cytokines are inhibited, but IL-10 is nuclear factor-κB independent. J. Immunol. 162, 2939–2945 (1999).

    CAS  PubMed  Google Scholar 

  30. Kawakami, A. et al. Inhibition of Fas-antigen-mediated apoptosis of rheumatoid synovial cells in vitro by transforming growth factor-β1. Arthritis Rheum. 39, 1267–1276 (1996).

    Article  CAS  Google Scholar 

  31. Kobayashi, T. et al. Differential regulation of Fas-mediated apoptosis of rheumatoid synoviocytes by tumor necrosis factor-κ and basic fibroblast growth factor is associated with the expression of apoptosis-related molecules. Arthritis Rheum. 43, 1106–1114 (2000).

    Article  CAS  Google Scholar 

  32. Franz, J. K. et al. Expression of sentrin, a novel antiapoptotic molecule, at sites of synovial invasion in rheumatoid arthritis. Arthritis Rheum. 43, 599–607 (2000).

    Article  CAS  Google Scholar 

  33. Kobayashi, T. et al. Tumor necrosis factor-α regulation of the FAS-mediated apoptosis-signaling pathway in synovial cells. Arthritis Rheum. 42, 519–526 (1999).

    Article  CAS  Google Scholar 

  34. Zhang, H.-G. et al. Gene therapy that inhibits nuclear translocation of nuclear factor-κB results in tumor necrosis factor-α-induced apoptosis of human synovial fibroblasts. Arthritis Rheum. 43, 1094–1105 (2000).

    Article  CAS  Google Scholar 

  35. De Smaele, E. et al. Induction of gadd45β by NF-κB downregulates pro-apoptotic JNK signalling. Nature 414, 308–313 (2001).

    Article  CAS  Google Scholar 

  36. Tang, G. et al. Inhibition of JNK activation through NF-κB target genes. Nature 414, 313–317 (2001).

    Article  CAS  Google Scholar 

  37. Zhang, H. G. et al. Regulation of tumor necrosis factor-α-mediated apoptosis in rheumatoid arthritis synovial fibroblasts by the protein kinase Akt. Arthritis Rheum. 44, 1555–1567 (2001).

    Article  CAS  Google Scholar 

  38. Pap, T. et al. Activation of synovial fibroblasts in rheumatoid arthritis: lack of expression of the tumour suppressor PTEN at sites of invasive growth and destruction. Arthritis Res. 2, 59–64 (2000).

    Article  CAS  Google Scholar 

  39. Tak, P. P. et al. p53 overexpression in synovial tissue from patients with early and longstanding rheumatoid arthritis compared with patients with reactive arthritis and osteoarthritis. Arthritis Rheum. 42, 948–953 (1999).

    Article  CAS  Google Scholar 

  40. Firestein, G. S., Echeverri, F., Yeo, M., Zvaifler, N. J. & Green, D. R. Somatic mutations in the p53 tumor suppressor gene in rheumatoid arthritis synovium. Proc. Natl Acad. Sci. USA 94, 10895–10900 (1997).

    Article  CAS  Google Scholar 

  41. Aupperle, K. R. et al. Regulation of synoviocyte proliferation, apoptosis and invasion by the p53 tumor suppressor gene. Am. J. Pathol. 152, 1091–1098 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Han, Z., Boyle, D. L., Shi, Y., Green, D. R. & Firestein, G. S. Dominant-negative p53 mutations in rheumatoid arthritis. Arthritis Rheum. 42, 1088–1092 (1999).

    Article  CAS  Google Scholar 

  43. Pap, T., Aupperle, K. R., Gay, S., Firestein, G. S. & Gay, R. E. Invasiveness of synovial fibroblasts is regulated by p53 in the SCID mouse in vivo model of cartilage invasion. Arthritis Rheum. 44, 676–681 (2001).

    Article  CAS  Google Scholar 

  44. Yamanishi, Y. et al. Regulation of joint destruction and inflammation by p53 in collagen-induced arthritis. Am. J. Pathol. 169, 123–130 (2002).

    Article  Google Scholar 

  45. Smolen, J. S. & Steiner, G. Rheumatoid arthritis is more than cytokines: autoimmunity and rheumatoid arthritis. Arthritis Rheum. 44, 2218–2220 (2001).

    Article  CAS  Google Scholar 

  46. Salmon, M. et al. Inhibition of T-cell apoptosis in the rheumatoid synovium. J. Clin. Invest. 99, 439–446 (1997).

    Article  CAS  Google Scholar 

  47. Cantwell, M. J., Hua, T., Zvaifler, N. J. & Kipps, T. J. Deficient Fas ligand expression by synovial lymphocytes from patients with rheumatoid arthritis. Arthritis Rheum. 40, 1644–1652 (1997).

    Article  CAS  Google Scholar 

  48. Kolenko, V. et al. Inhibition of NF-κB activity in human T lymphocytes induces caspase-dependent apoptosis without detectable activation of caspase-1 and -3. J. Immunol. 163, 590–598 (1999).

    CAS  PubMed  Google Scholar 

  49. Moreland, L. W. et al. Double-blind, placebo-controlled multicenter trial using chimeric monoclonal anti-CD4 antibody, cM-T412, in rheumatoid arthritis patients receiving concomitant methotrexate. Arthritis Rheum. 38, 1581–1588 (1995).

    Article  CAS  Google Scholar 

  50. Ito, M. R. et al. Rheumatic diseases in an MRL strain of mice with a deficit in the functional Fas ligand. Arthritis Rheum. 40, 1054–1063 (1997).

    Article  CAS  Google Scholar 

  51. Hsu, H. C. et al. Defective Fas-ligand-mediated apoptosis predisposes to development of a chronic erosive arthritis subsequent to Mycoplasma pulmonis infection. Arthritis Rheum. 44, 2146–2159 (2001).

    Article  CAS  Google Scholar 

  52. Zhang, J., Bardos, T., Mikecz, K., Finnegan, A. & Glant, T. T. Impaired Fas signalling pathway is involved in defective T-cell apoptosis in autoimmune murine arthritis. J. Immunol. 166, 4981–4986 (2001).

    Article  CAS  Google Scholar 

  53. Zhou, T. et al. Bisindolylmaleimide VIII facilitates Fas-mediated apoptosis and inhibits T-cell-mediated autoimmune diseases. Nature Med. 5, 42–48 (1999).

    Article  CAS  Google Scholar 

  54. Harjacek, M. et al. Expression of galectins-1 and -3 correlates with defective mononuclear-cell apoptosis in patients with juvenile idiopathic arthritis. J. Rheumatol. 28, 1914–1922 (2001).

    CAS  PubMed  Google Scholar 

  55. Rabinovich, G. A. et al. Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T-cell apoptosis. J. Exp. Med. 190, 385–398 (1999).

    Article  CAS  Google Scholar 

  56. Zhang, H. et al. Amelioration of collagen-induced arthritis by CD95 (Apo-1/Fas)-ligand gene transfer. J. Clin. Invest. 100, 1951–1957 (1997).

    Article  CAS  Google Scholar 

  57. Yao, Q. et al. Adenoviral-mediated delivery of FAS ligand to arthritic joints causes extensive apoptosis in the synovial lining. J. Gene Med. 2, 210–219 (2000).

    Article  CAS  Google Scholar 

  58. Sakai, K. et al. Potential withdrawal of rheumatoid synovium by the induction of apoptosis using a novel in vivo model of rheumatoid arthritis. Arthritis Rheum. 41, 1251–1257 (1998).

    Article  CAS  Google Scholar 

  59. Okamoto, K. et al. Induction of apoptosis in the rheumatoid synovium by Fas ligand gene transfer. Gene Ther. 5, 331–338 (1998).

    Article  CAS  Google Scholar 

  60. Tomita, T. et al. Suppressed severity of collagen-induced arthritis by in vivo transfection of nuclear factor-κB decoy oligodeoxynucleotides as a gene therapy. Arthritis Rheum. 42, 2532–2542 (1999).

    Article  CAS  Google Scholar 

  61. Tak, P. P. et al. Inhibitor of nuclear factor-κB kinase-β is a key regulator of synovial inflammation. Arthritis Rheum. 44, 1897–1907 (2001).

    Article  CAS  Google Scholar 

  62. Miagkov, A. V. et al. NF-κB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc. Natl Acad. Sci. USA 95, 13859–13864 (1998).

    Article  CAS  Google Scholar 

  63. Yao, Q. et al. Gene transfer of p53 to arthritic joints stimulates synovial apoptosis and inhibits inflammation. Mol. Ther. 3, 901–910 (2001).

    Article  CAS  Google Scholar 

  64. Gerlag, D. M. et al. Suppression of murine collagen-induced arthritis by targeted apoptosis of synovial neovasculature. Arthritis Res. 3, 357–361 (2001).

    Article  CAS  Google Scholar 

  65. Kong, Y. Y., Boyle, W. J. & Penninger, J. M. Osteoprotegerin ligand: a regulator of immune responses and bone physiology. Immunol. Today 21, 495–502 (2000).

    Article  CAS  Google Scholar 

  66. Faouzi, S. et al. Anti-Fas induces hepatic chemokines and promotes inflammation by an NF-κB-independent, caspase-3-dependent pathway. J. Biol. Chem. 276, 49077–49082 (2001).

    Article  CAS  Google Scholar 

  67. Fujii, K., Fujii, Y., Hubscher, S. & Tanaka, Y. CD44 is the physiological trigger of Fas up-regulation on rheumatoid synovial cells. J. Immunol. 167, 1198–1203 (2001).

    Article  CAS  Google Scholar 

  68. Cutolo, M., Sulli, A., Pizzorni, C., Seriolo, B. & Straub, R. H. Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann. Rheum. Dis. 60, 729–735 (2001).

    Article  CAS  Google Scholar 

  69. Nakazawa, F. et al. Methotrexate inhibits rheumatoid synovitis by inducing apoptosis. J. Rheumatol. 28, 1800–1808 (2001).

    CAS  PubMed  Google Scholar 

  70. Cutolo, M. et al. Antiproliferative and antiinflammatory effects of methotrexate on cultured differentiating myeloid monocytic cells (THP-1) but not on synovial macrophages from patients with rheumatoid arthritis. J. Rheumatol. 27, 2551–2557 (2000).

    CAS  PubMed  Google Scholar 

  71. Genestier, L. et al. Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells. J. Clin. Invest. 102, 322–328 (1998).

    Article  CAS  Google Scholar 

  72. Rodenburg, R. J., Ganga, A., van Lent, P. L., van de Putte, L. B. & van Venrooij, W. J. The antiinflammatory drug sulfasalazine inhibits tumor necrosis factor-α expression in macrophages by inducing apoptosis. Arthritis Rheum. 43, 1941–1950 (2000).

    Article  CAS  Google Scholar 

  73. Lugering, A. et al. Infliximab induces apoptosis in monocytes from patients with chronic active Crohn's disease by using a caspase-dependent pathway. Gastroenterology 121, 1145–1157 (2001).

    Article  CAS  Google Scholar 

  74. Frith, J. C., Monkkonen, J., Auriola, S., Monkkonen, H. & Rogers, M. J. The molecular mechanism of action of the antiresorptive and antiinflammatory drug clodronate: evidence for the formation in vivo of a metabolite that inhibits bone resorption and causes osteoclast and macrophage apoptosis. Arthritis Rheum. 44, 2201–2210 (2001).

    Article  CAS  Google Scholar 

  75. Barrera, P. et al. Synovial macrophage depletion with clodronate-containing liposomes in rheumatoid arthritis. Arthritis Rheum. 43, 1951–1959 (2000).

    Article  CAS  Google Scholar 

  76. Gratiot-Deans, J., Ding, L., Turka, L. A. & Nunez, G. Bcl-2 proto-oncogene expression during human T-cell development. Evidence for biphasic regulation. J. Immunol. 151, 83–91 (1993).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez

Mycoplasma pulmonis

LocusLink

A1

AKT1

APAF1

BAD

BAK

BAX

Bcl-2

Bcl-XL

caspase-3

caspase-8

caspase-9

CD44

FADD

FAS

Fas

FASL

FLIP

Flip

GM-CSF

ICAM1

IκBα

IL-1

IL-6

IL-8

IL-15

IL-18

MCL1

MCP1

p53

PIK3

PTEN

sentrin

TGF-β

TNF

VCAM1

XIAP

Medscape DrugInfo

infliximab

methotrexate

sulfasalazine

OMIM

rheumatoid arthritis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pope, R. Apoptosis as a therapeutic tool in rheumatoid arthritis. Nat Rev Immunol 2, 527–535 (2002). https://doi.org/10.1038/nri846

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri846

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing