Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dysregulation of germinal centres in autoimmune disease

Key Points

  • Long-lived high-affinity antibody responses are key components of adaptive immunity.

  • High-affinity antibodies are the products of somatic hypermutation and selection in specialized microenvironments of lymphoid tissues called germinal centres.

  • In this complex microenvironment, germinal centre B cells that are stimulated by antigen and dedicated helper T cells (T follicular helper cells) differentiate into memory B cells and long-lived plasma cells.

  • Many autoantibodies exhibit characteristics of germinal centre origin, indicating that defective selection of germinal centre B cells is instrumental in their formation.

  • Analysis of patients with autoimmune diseases, and mouse models of these diseases, reveal that autoantibodies can result from abnormalities in antigen availability, T cell help or the threshold at which B cells respond to these stimuli in germinal centres.

  • Qualitative and quantitative variation in antigen availability and T cell help determine germinal centre longevity and autoantibody formation.

Abstract

In germinal centres, somatic hypermutation and B cell selection increase antibody affinity and specificity for the immunizing antigen, but the generation of autoreactive B cells is an inevitable by-product of this process. Here, we review the evidence that aberrant selection of these autoreactive B cells can arise from abnormalities in each of the germinal centre cellular constituents — B cells, T follicular helper cells, follicular dendritic cells and tingible body macrophages — or in the supply of antigen. As the progeny of germinal centre B cells includes long-lived plasma cells, selection of autoreactive B cells can propagate long-lived autoantibody responses and cause autoimmune diseases. Elucidation of crucial molecular signals in germinal centres has led to the identification of novel therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Germinal centre cell types and events.
Figure 2: Molecular basis of germinal centre events and potential therapeutic intervention.

Similar content being viewed by others

References

  1. Primi, D., Hammarstrom, L., Smith, C. I. & Moller, G. Characterization of self-reactive B cells by polyclonal B-cell activators. J. Exp. Med. 145, 21–30 (1977).

    Article  CAS  PubMed  Google Scholar 

  2. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Dighiero, G. et al. High frequency of natural autoantibodies in normal newborn mice. J. Immunol. 134, 765–771 (1985).

    CAS  PubMed  Google Scholar 

  4. Cote, R. J. et al. Specificity analysis of human monoclonal antibodies reactive with cell surface and intracellular antigens. Proc. Natl Acad. Sci. USA 83, 2959–2963 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shlomchik, M. et al. Anti-DNA antibodies from autoimmune mice arise by clonal expansion and somatic mutation. J. Exp. Med. 171, 265–292 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Marion, T. N., Bothwell, A. L., Briles, D. E. & Janeway, C. A. Jr. IgG anti-DNA autoantibodies within an individual autoimmune mouse are the products of clonal selection. J. Immunol. 142, 4269–4274 (1989).

    CAS  PubMed  Google Scholar 

  7. Behar, S. M., Lustgarten, D. L., Corbet, S. & Scharff, M. D. Characterization of somatically mutated S107 VH11-encoded anti-DNA autoantibodies derived from autoimmune (NZB x NZW)F1 mice. J. Exp. Med. 173, 731–741 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Allen, C. D., Okada, T. & Cyster, J. G. Germinal-center organization and cellular dynamics. Immunity 27, 190–202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. MacLennan, I. C. & Gray, D. Antigen-driven selection of virgin and memory B cells. Immunol. Rev. 91, 61–85 (1986). An important summary of seminal studies of B cell responses to foreign antigens by the authors and their collaborators, as well as a prescient description of GC function.

    Article  CAS  PubMed  Google Scholar 

  10. Thorbecke, G. J. Some histological and functional aspects of lymphoid tissue in germfree animals. I. Morphological studies. Ann. NY Acad. Sci. 78, 237–246 (1959).

    Article  CAS  PubMed  Google Scholar 

  11. Gearhart, P. J., Johnson, N. D., Douglas, R. & Hood, L. IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts. Nature 291, 29–34 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Bothwell, A. L. et al. Heavy chain variable region contribution to the NPb family of antibodies: somatic mutation evident in a γ2a variable region. Cell 24, 625–637 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. Toellner, K. M. et al. T helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching. J. Exp. Med. 187, 1193–1204 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karrer, U. et al. Antiviral B cell memory in the absence of mature follicular dendritic cell networks and classical germinal centers in TNFR1-/- mice. J. Immunol. 164, 768–778 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Matsumoto, M., Fu, Y. X., Molina, H. & Chaplin, D. D. Lymphotoxin-α-deficient and TNF receptor-I-deficient mice define developmental and functional characteristics of germinal centers. Immunol. Rev. 156, 137–144 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Ray, S. K., Putterman, C. & Diamond, B. Pathogenic autoantibodies are routinely generated during the response to foreign antigen: a paradigm for autoimmune disease. Proc. Natl Acad. Sci. USA 93, 2019–2024 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tiller, T. et al. Autoreactivity in human IgG+ memory B cells. Immunity 26, 205–213 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tarlinton, D., Radbruch, A., Hiepe, F. & Dorner, T. Plasma cell differentiation and survival. Curr. Opin. Immunol. 20, 162–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Rose, N. R. & Bona, C. Defining criteria for autoimmune diseases (Witebsky's postulates revisited). Immunol. Today 14, 426–430 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. McHeyzer-Williams, M. G., McLean, M. J., Lalor, P. A. & Nossal, G. J. Antigen-driven B cell differentiation in vivo. J. Exp. Med. 178, 295–307 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Diamond, B. & Scharff, M. D. Somatic mutation of the T15 heavy chain gives rise to an antibody with autoantibody specificity. Proc. Natl Acad. Sci. USA 81, 5841–5844 (1984). This paper shows that protective antimicrobial antibodies can convert into pathogenic autoantibodies through single point mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jacobson, B. A., Rothstein, T. L. & Marshak-Rothstein, A. Unique site of IgG2a and rheumatoid factor production in MRL/lpr mice. Immunol. Rev. 156, 103–110 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. William, J., Euler, C., Christensen, S. & Shlomchik, M. J. Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science 297, 2066–2070 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Mandik-Nayak, L. et al. MRL-lpr/lpr mice exhibit a defect in maintaining developmental arrest and follicular exclusion of anti-double-stranded DNA B cells. J. Exp. Med. 189, 1799–1814 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eaton-Bassiri, A. S. et al. Alterations in splenic architecture and the localization of anti-double-stranded DNA B cells in aged mice. Int. Immunol. 12, 915–926 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Groom, J. R. et al. BAFF and MyD88 signals promote a lupuslike disease independent of T cells. J. Exp. Med. 204, 1959–1971 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsao, P. Y., Jiao, J., Ji, M. Q., Cohen, P. L. & Eisenberg, R. A. T cell-independent spontaneous loss of tolerance by anti-double-stranded DNA B cells in C57BL/6 mice. J. Immunol. 181, 7770–7777 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Fazilleau, N., Mark, L., McHeyzer-Williams, L. J. & McHeyzer-Williams, M. G. Follicular helper T cells: lineage and location. Immunity 30, 324–335 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pereira, J. P., Kelly, L. M., Xu, Y. & Cyster, J. G. EBI2 mediates B cell segregation between the outer and centre follicle. Nature 460, 1122–1126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gatto, D., Paus, D., Basten, A., Mackay, C. R. & Brink, R. Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses. Immunity 31, 259–269 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Staudt, L. M., Dent, A. L., Shaffer, A. L. & Yu, X. Regulation of lymphocyte cell fate decisions and lymphomagenesis by BCL-6. Int. Rev. Immunol. 18, 381–403 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Fazilleau, N., McHeyzer-Williams, L. J., Rosen, H. & McHeyzer-Williams, M. G. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nature Immunol. 10, 375–384 (2009).

    Article  CAS  Google Scholar 

  33. Schwartzberg, P. L., Mueller, K. L., Qi, H. & Cannons, J. L. SLAM receptors and SAP influence lymphocyte interactions, development and function. Nature Rev. Immunol. 9, 39–46 (2009).

    Article  CAS  Google Scholar 

  34. King, C. New insights into the development and function of T follicular helper cells. Nature Rev. Immunol. 9, 757–766 (2009).

    Article  CAS  Google Scholar 

  35. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper lineage commitment. Immunity 31, 457–468 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Allen, C. D. et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nature Immunol. 5, 943–952 (2004).

    CAS  Google Scholar 

  37. Caron, G., Le Gallou, S., Lamy, T., Tarte, K. & Fest, T. CXCR4 expression functionally discriminates centroblasts versus centrocytes within human germinal center B cells. J. Immunol. 182, 7595–7602 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Kosco-Vilbois, M. H. & Scheidegger, D. Follicular dendritic cells: antigen retention, B cell activation, and cytokine production. Curr. Top. Microbiol. Immunol. 201, 69–82 (1995).

    CAS  PubMed  Google Scholar 

  39. Hauser, A. E., Shlomchik, M. J. & Haberman, A. M. In vivo imaging studies shed light on germinal-centre development. Nature Rev. Immunol. 7, 499–504 (2007).

    Article  CAS  Google Scholar 

  40. Tarlinton, D. B-cell memory: are subsets necessary? Nature Rev. Immunol. 6, 785–790 (2006).

    Article  CAS  Google Scholar 

  41. Delgado, P. et al. Essential function for the GTPase TC21 in homeostatic antigen receptor signaling. Nature Immunol. 10, 880–888 (2009).

    CAS  Google Scholar 

  42. Koopman, G. et al. Adhesion through the LFA-1 (CD11a/CD18)–ICAM-1 (CD54) and the VLA-4 (CD49d)–VCAM-1 (CD106) pathways prevents apoptosis of germinal center B cells. J. Immunol. 152, 3760–3767 (1994).

    CAS  PubMed  Google Scholar 

  43. Carrasco, Y. R., Fleire, S. J., Cameron, T., Dustin, M. L. & Batista, F. D. LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation. Immunity 20, 589–599 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Randall, K. et al. DOCK8 mutations cripple B cell immune synapse, germinal centers and long-lived antibody production. Nature Immunol. 8 Nov 2009 (doi:10.1038/ni1820).

  45. Vinuesa, C. G., Tangye, S. G., Moser, B. & Mackay, C. R. Follicular B helper T cells in antibody responses and autoimmunity. Nature Rev. Immunol. 5, 853–865 (2005).

    Article  CAS  Google Scholar 

  46. Takahashi, Y., Ohta, H. & Takemori, T. Fas is required for clonal selection in germinal centers and the subsequent establishment of the memory B cell repertoire. Immunity 14, 181–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Hao, Z. et al. Fas receptor expression in germinal-center B cells is essential for T and B lymphocyte homeostasis. Immunity 29, 615–627 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shlomchik, M. J., Marshak-Rothstein, A., Wolfowicz, C. B., Rothstein, T. L. & Weigert, M. G. The role of clonal selection and somatic mutation in autoimmunity. Nature 328, 805–811 (1987). The first demonstration that autoimmune disease-related autoantibodies are not simply the product of generalized polyclonal B cell activation. Instead, similar to responses induced by exogenous immunizations, rheumatoid factor autoantibodies are shown to be the product of somatically mutated, antigen-selected oligoclonal B cells.

    Article  CAS  PubMed  Google Scholar 

  49. Olee, T. et al. Genetic analysis of self-associating immunoglobulin G rheumatoid factors from two rheumatoid synovia implicates an antigen-driven response. J. Exp. Med. 175, 831–842 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. McIntosh, R. S., Asghar, M. S., Watson, P. F., Kemp, E. H. & Weetman, A. P. Cloning and analysis of IgG kappa and IgG lambda anti-thyroglobulin autoantibodies from a patient with Hashimoto's thyroiditis: evidence for in vivo antigen-driven repertoire selection. J. Immunol. 157, 927–935 (1996).

    CAS  PubMed  Google Scholar 

  51. Hershberg, U., Uduman, M., Shlomchik, M. J. & Kleinstein, S. H. Improved methods for detecting selection by mutation analysis of Ig V region sequences. Int. Immunol. 20, 683–694 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Neeli, I. et al. Divergent members of a single autoreactive B cell clone retain specificity for apoptotic blebs. Mol. Immunol. 44, 1914–1921 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Wellmann, U. et al. The evolution of human anti-double-stranded DNA autoantibodies. Proc. Natl Acad. Sci. USA 102, 9258–9263 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Luzina, I. G. et al. Spontaneous formation of germinal centers in autoimmune mice. J. Leukoc. Biol. 70, 578–584 (2001). A comprehensive histological survey of mouse strains that are prone to SLE-like disease.

    CAS  PubMed  Google Scholar 

  55. Victoratos, P. & Kollias, G. Induction of autoantibody-mediated spontaneous arthritis critically depends on follicular dendritic cells. Immunity 30, 130–142 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Aloisi, F. & Pujol-Borrell, R. Lymphoid neogenesis in chronic inflammatory diseases. Nature Rev. Immunol. 6, 205–217 (2006).

    Article  CAS  Google Scholar 

  57. Cantaert, T. et al. B lymphocyte autoimmunity in rheumatoid synovitis is independent of ectopic lymphoid neogenesis. J. Immunol. 181, 785–794 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Anolik, J. H. et al. Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. Arthritis Rheum. 56, 3044–3056 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Anolik, J. H. et al. Restoration of proper germinal center regulation of autoreactive B cells in human SLE after B cell depletion therapy. Arthritis Rheum. 54, S806 (2006).

    Google Scholar 

  60. Weyand, C. M., Kurtin, P. J. & Goronzy, J. J. Ectopic lymphoid organogenesis: a fast track for autoimmunity. Am. J. Pathol. 159, 787–793 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Armengol, M. P. et al. Thyroid autoimmune disease: demonstration of thyroid antigen-specific B cells and recombination-activating gene expression in chemokine-containing active intrathyroidal germinal centers. Am. J. Pathol. 159, 861–873 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stott, D. I., Hiepe, F., Hummel, M., Steinhauser, G. & Berek, C. Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with Sjogren's syndrome. J. Clin. Invest. 102, 938–946 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Salomonsson, S. et al. Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjogren's syndrome. Arthritis Rheum. 48, 3187–3201 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Humby, F. et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med. 6, e1 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Meyer, O. et al. Serial determination of cyclic citrullinated peptide autoantibodies predicted five-year radiological outcomes in a prospective cohort of patients with early rheumatoid arthritis. Arthritis Res. Ther. 8, R40 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Herlands, R. A., Christensen, S. R., Sweet, R. A., Hershberg, U. & Shlomchik, M. J. T cell-independent and toll-like receptor-dependent antigen-driven activation of autoreactive B cells. Immunity 29, 249–260 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Christensen, S. R. et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Eckl-Dorna, J. & Batista, F. D. BCR-mediated uptake of antigen linked to TLR9 ligand stimulates B-cell proliferation and antigen-specific plasma cell formation. Blood 113, 3969–3977 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Bubier, J. A. et al. A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. Proc. Natl Acad. Sci. USA 106, 1518–1523 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Adelstein, S. et al. Induction of self-tolerance in T cells but not B cells of transgenic mice expressing little self antigen. Science 251, 1223–1225 (1991).

    Article  CAS  PubMed  Google Scholar 

  71. Fulcher, D. A. et al. The fate of self-reactive B cells depends primarily on the degree of antigen receptor engagement and availability of T cell help. J. Exp. Med. 183, 2313–2328 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Cook, M. C., Basten, A. & Fazekas de St. Groth, B. Outer periarteriolar lymphoid sheath arrest and subsequent differentiation of both naive and tolerant immunoglobulin transgenic B cells is determined by B cell receptor occupancy. J. Exp. Med. 186, 631–643 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lesley, R. et al. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity 20, 441–453 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Ang, C. W., Jacobs, B. C. & Laman, J. D. The Guillain-Barre syndrome: a true case of molecular mimicry. Trends Immunol. 25, 61–66 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Meyer-Bahlburg, A. & Rawlings, D. J. B cell autonomous TLR signaling and autoimmunity. Autoimmun. Rev. 7, 313–316 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Leadbetter, E. A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Lau, C. M. et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202, 1171–1177 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Barrat, F. J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131–1139 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Barr, T. A., Brown, S., Mastroeni, P. & Gray, D. B cell intrinsic MyD88 signals drive IFN-γ production from T cells and control switching to IgG2c. J. Immunol. 183, 1005–1012 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Meyer-Bahlburg, A., Khim., S. & Rawlings, D. J. B cell intrinsic TLR signals amplify but are not required for humoral immunity. J. Exp. Med. 204, 3095–3101 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kondo, E. & Yoshino, T. Expression of apoptosis regulators in germinal centers and germinal center-derived B-cell lymphomas: insight into B-cell lymphomagenesis. Pathol. Int. 57, 391–397 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Smith, K. G. et al. bcl-2 transgene expression inhibits apoptosis in the germinal center and reveals differences in the selection of memory B cells and bone marrow antibody-forming cells. J. Exp. Med. 191, 475–484 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hande, S., Notidis, E. & Manser, T. Bcl-2 obstructs negative selection of autoreactive, hypermutated antibody V regions during memory B cell development. Immunity 8, 189–198 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Takahashi, Y. et al. Relaxed negative selection in germinal centers and impaired affinity maturation in bcl-x L transgenic mice. J. Exp. Med. 190, 399–410 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fischer, S. F. et al. Proapoptotic BH3-only protein Bim is essential for developmentally programmed death of germinal center-derived memory B cells and antibody-forming cells. Blood 110, 3978–3984 (2007). References 83–85, together with reference 55, illustrate how GC B cell survival is limited through controlled expression of BCL-2 family members to prevent the selection of B cells with autoreactive BCRs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Blatt, N. B. et al. Benzodiazepine-induced superoxide signals B cell apoptosis: mechanistic insight and potential therapeutic utility. J. Clin. Invest. 110, 1123–1132 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rahman, Z. S. et al. Expression of the autoimmune Fcgr2b NZW allele fails to be upregulated in germinal center B cells and is associated with increased IgG production. Genes Immun. 8, 604–612 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Jiang, Y. et al. Genetically determined aberrant down-regulation of FcγRIIB1 in germinal center B cells associated with hyper-IgG and IgG autoantibodies in murine systemic lupus erythematosus. Int. Immunol. 11, 1685–1691 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Mackay, M. et al. Selective dysregulation of the FcγIIB receptor on memory B cells in SLE. J. Exp. Med. 203, 2157–2164 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Su, K. et al. Expression profile of FcγRIIb on leukocytes and its dysregulation in systemic lupus erythematosus. J. Immunol. 178, 3272–3280 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Yuasa, T. et al. Deletion of fcγ receptor IIB renders H-2b mice susceptible to collagen-induced arthritis. J. Exp. Med. 189, 187–194 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bolland, S. & Ravetch, J. V. Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis. Immunity 13, 277–285 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Tsao, B. P. Lupus susceptibility genes on human chromosome 1. Int. Rev. Immunol. 19, 319–334 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. McGaha, T. L., Sorrentino, B. & Ravetch, J. V. Restoration of tolerance in lupus by targeted inhibitory receptor expression. Science 307, 590–593 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Shokat, K. M. & Goodnow, C. C. Antigen-induced B-cell death and elimination during germinal-centre immune responses. Nature 375, 334–338 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Pulendran, B., Kannourakis, G., Nouri, S., Smith, K. G. & Nossal, G. J. Soluble antigen can cause enhanced apoptosis of germinal-centre B cells. Nature 375, 331–334 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Han, S., Zheng, B., Dal Porto, J. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. IV. Affinity-dependent, antigen-driven B cell apoptosis in germinal centers as a mechanism for maintaining self-tolerance. J. Exp. Med. 182, 1635–1644 (1995). References 95–97 describe soluble-antigen-induced death of GC B cells, highlighting the need for accessory selection signals at the time of antigen encounter, presumably from FDCs.

    Article  CAS  PubMed  Google Scholar 

  98. Drayton, D. L., Liao, S., Mounzer, R. H. & Ruddle, N. H. Lymphoid organ development: from ontogeny to neogenesis. Nature Immunol. 7, 344–353 (2006).

    Article  CAS  Google Scholar 

  99. Ansel, K. M. et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406, 309–314 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Douglas, K. B. et al. Complement receptor 2 polymorphisms associated with systemic lupus erythematosus modulate alternative splicing. Genes Immun. 10, 457–469 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fliedner, T., Kesse, M., Cronkite, E. P. & Robertson, J. S. Cell proliferation in germinal centers of the rat spleen. Ann. NY Acad. Sci. 113, 578–594 (1964).

    Article  CAS  PubMed  Google Scholar 

  102. Casciola-Rosen, L. A., Anhalt, G. & Rosen, A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med. 179, 1317–1330 (1994). This paper brought about a major conceptual advance in understanding the specificity of autoantibody responses in SLE and their relation to apoptosis.

    Article  CAS  PubMed  Google Scholar 

  103. Kranich, J. et al. Follicular dendritic cells control engulfment of apoptotic bodies by secreting Mfge8. J. Exp. Med. 205, 1293–1302 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Taylor, P. R. et al. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J. Exp. Med. 192, 359–366 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Scott, R. S. et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411, 207–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Napirei, M. et al. Features of systemic lupus erythematosus in Dnase1-deficient mice. Nature Genet. 25, 177–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Toth, B. et al. Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells. J. Immunol. 182, 2084–2092 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Plotz, P. H. The autoantibody repertoire: searching for order. Nature Rev. Immunol. 3, 73–78 (2003).

    Article  CAS  Google Scholar 

  109. Tomer, Y., Greenberg, D. A., Concepcion, E., Ban, Y. & Davies, T. F. Thyroglobulin is a thyroid specific gene for the familial autoimmune thyroid diseases. J. Clin. Endocrinol. Metab. 87, 404–407 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Ban, Y. et al. Amino acid substitutions in the thyroglobulin gene are associated with susceptibility to human and murine autoimmune thyroid disease. Proc. Natl Acad. Sci. USA 100, 15119–15124 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dechairo, B. M. et al. Association of the TSHR gene with Graves' disease: the first disease specific locus. Eur. J. Hum. Genet. 13, 1223–1230 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Utz, P. J., Gensler, T. J. & Anderson, P. Death, autoantigen modifications, and tolerance. Arthritis Res. 2, 101–114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Marriq, C., Arnaud, C., Rolland, M. & Lissitzky, S. An approach to the structure of thyroglobulin. Hormone-forming sequences in porcine thyroglobulin. Eur. J. Biochem. 111, 33–47 (1980).

    Article  CAS  PubMed  Google Scholar 

  114. Mizutori, Y., Chen, C. R., Latrofa, F., McLachlan, S. M. & Rapoport, B. Evidence that shed thyrotropin receptor A subunits drive affinity maturation of autoantibodies causing Graves' disease. J. Clin. Endocrinol. Metab. 94, 927–935 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Chazenbalk, G. D. et al. Thyroid-stimulating autoantibodies in Graves disease preferentially recognize the free A subunit, not the thyrotropin holoreceptor. J. Clin. Invest. 110, 209–217 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Giraud, M. et al. Genetic control of autoantibody expression in autoimmune myasthenia gravis: role of the self-antigen and of HLA-linked loci. Genes Immun. 5, 398–404 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Kearney, E. R., Pape, K. A., Loh, D. Y. & Jenkins, M. K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327–339 (1994).

    Article  CAS  PubMed  Google Scholar 

  118. Meyer-Hermann, M. E., Maini, P. K. & Iber, D. An analysis of B cell selection mechanisms in germinal centers. Math. Med. Biol. 23, 255–277 (2006).

    Article  PubMed  Google Scholar 

  119. Brocker, T. et al. CD4 T cell traffic control: in vivo evidence that ligation of OX40 on CD4 T cells by OX40-ligand expressed on dendritic cells leads to the accumulation of CD4 T cells in B follicles. Eur. J. Immunol. 29, 1610–1616 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Murata, K. et al. Constitutive OX40/OX40 ligand interaction induces autoimmune-like diseases. J. Immunol. 169, 4628–4636 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Vinuesa, C. G. et al. A novel RING-type ubiquitin ligase family member essential to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Subramanian, S. et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl Acad. Sci. USA 103, 9970–9975 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Linterman, M. et al. Follicular helper T cells are required for systemic autoimmunity J. Exp. Med. 206, 561–576 (2009). The first paper to highlight that aberrant positive selection can lead to autoimmunity, showing that excessive accumulation of T FH cells due to homozygosity for Roquinsan/san supports the formation of spontaneous GCs, double-stranded DNA-specific autoantibodies and end-organ tissue damage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Takahashi, T. et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76, 969–976 (1994).

    Article  CAS  PubMed  Google Scholar 

  125. Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317 (1992).

    Article  CAS  PubMed  Google Scholar 

  126. Shlomchik, M. J., Madaio, M. P., Ni, D., Trounstein, M. & Huszar, D. The role of B cells in lpr/lpr-induced autoimmunity. J. Exp. Med. 180, 1295–1306 (1994).

    Article  CAS  PubMed  Google Scholar 

  127. Alabyev, B., Vuyyuru, R. & Manser, T. Influence of Fas on the regulation of the response of an anti-nuclear antigen B cell clonotype to foreign antigen. Int. Immunol. 20, 1279–1287 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hsu, H. C. et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nature Immunol. 9, 166–175 (2008).

    CAS  Google Scholar 

  129. Tarlinton, D. IL-17 drives germinal center B cells? Nature Immunol. 9, 124–126 (2008).

    Article  CAS  Google Scholar 

  130. Wu, H. Y., Quintana, F. J. & Weiner, H. L. Nasal anti-CD3 antibody ameliorates lupus by inducing an IL-10-secreting CD4+ CD25 LAP+ regulatory T cell and is associated with down-regulation of IL-17+ CD4+ ICOS+ CXCR5+ follicular helper T cells. J. Immunol. 181, 6038–6050 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Fairhurst, A. M. et al. Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur. J. Immunol. 38, 1971–1978 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pisitkun, P. et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312, 1669–1672 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Odegard, J. M. et al. ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. J. Exp. Med. 205, 2873–2886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chan, T. D. et al. Antigen affinity controls rapid T-dependent antibody production by driving the expansion rather than the differentiation or extrafollicular migration of early plasmablasts. J. Immunol. 183, 3139–3149 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Lim, H., Hillsamer, P. & Kim, C. H. Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses. J. Clin. Invest. 114, 1640–1649 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Walker, L. S. et al. Established T cell-driven germinal center B cell proliferation is independent of CD28 signaling but is tightly regulated through CTLA-4. J. Immunol. 170, 91–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Cambridge, G. et al. Serologic changes following B lymphocyte depletion therapy for rheumatoid arthritis. Arthritis Rheum. 48, 2146–2154 (2003).

    Article  PubMed  Google Scholar 

  138. Grammer, A. C. et al. Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154–CD40 interactions. J. Clin. Invest. 112, 1506–1520 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Huang, W. et al. The effect of anti-CD40 ligand antibody on B cells in human systemic lupus erythematosus. Arthritis Rheum. 46, 1554–1562 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Anolik, J. H. et al. Cutting edge: anti-tumor necrosis factor therapy in rheumatoid arthritis inhibits memory B lymphocytes via effects on lymphoid germinal centers and follicular dendritic cell networks. J. Immunol. 180, 688–692 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Gaipl, U. S. et al. Clearance of apoptotic cells in human SLE. Curr. Dir Autoimmun 9, 173–187 (2006).

    CAS  PubMed  Google Scholar 

  142. Baumann, I. et al. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum. 46, 191–201 (2002). References 105, 106 and 142 extend the findings of reference 102, proving that inefficient disposal of apoptotic cells can be immunogenic.

    Article  PubMed  Google Scholar 

  143. Chang, M. K. et al. Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J. Exp. Med. 200, 1359–1370 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Munoz, L. E. et al. Remnants of secondarily necrotic cells fuel inflammation in systemic lupus erythematosus. Arthritis Rheum. 60, 1733–1742 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Kalaaji, M., Mortensen, E., Jorgensen, L., Olsen, R. & Rekvig, O. P. Nephritogenic lupus antibodies recognize glomerular basement membrane-associated chromatin fragments released from apoptotic intraglomerular cells. Am. J. Pathol. 168, 1779–1792 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mietzner, B. et al. Autoreactive IgG memory antibodies in patients with systemic lupus erythematosus arise from nonreactive and polyreactive precursors. Proc. Natl Acad. Sci. USA 105, 9727–9732 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Litinskiy, M. B. et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nature Immunol. 3, 822–829 (2002).

    Article  CAS  Google Scholar 

  148. Shlomchik, M. J. Sites and stages of autoreactive B cell activation and regulation. Immunity 28, 18–28 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Cappione, A., 3rd. et al. Germinal center exclusion of autoreactive B cells is defective in human systemic lupus erythematosus. J. Clin. Invest. 115, 3205–3216 (2005). The first direct analysis of the fate of human SLE-associated B cells in the GCs of healthy subjects and subjects with other autoimmune diseases. Autoreactive 9G4 B cells were found to be strictly censored in GCs from normal tonsils. By contrast, this censoring is defective in SLE but not in other autoimmune diseases, including rheumatoid arthritis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pugh-Bernard, A. E. et al. Regulation of inherently autoreactive VH4-34 B cells in the maintenance of human B cell tolerance. J. Clin. Invest. 108, 1061–1070 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Simpson, N. et al. Expansion of circulating T cells resembling TFH cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum. (In the press). This work shows that a subset of patients with SLE have expanded CXCR5+PD1hiICOShiCD4+ cells in the blood, suggestive of a dysregulated T FH cell pathway, and this cellular phenotype correlates with disease severity.

  152. Wong, C. K., Ho, C. Y., Li, E. K. & Lam, C. W. Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus 9, 589–593 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Doreau, A. et al. Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nature Immunol. 10, 778–785 (2009).

    Article  CAS  Google Scholar 

  154. Hoyer, B. F. et al. Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. J. Exp. Med. 199, 1577–1584 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. William, J., Euler, C. & Shlomchik, M. J. Short-lived plasmablasts dominate the early spontaneous rheumatoid factor response: differentiation pathways, hypermutating cell types, and affinity maturation outside the germinal center. J. Immunol. 174, 6879–6887 (2005).

    Article  CAS  Google Scholar 

  156. Ferraro, A. J., Drayson, M. T., Savage, C. O. & MacLennan, I. C. Levels of autoantibodies, unlike antibodies to all extrinsic antigen groups, fall following B cell depletion with Rituximab. Eur. J. Immunol. 38, 292–298 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Moller, B. et al. Class-switched B cells display response to therapeutic B-cell depletion in rheumatoid arthritis. Arthritis Res. Ther. 11, R62 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Jacobi, A. M. et al. Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 48, 1332–1342 (2003).

    Article  PubMed  Google Scholar 

  159. Arce, E. et al. Increased frequency of pre-germinal center B cells and plasma cell precursors in the blood of children with systemic lupus erythematosus. J. Immunol. 167, 2361–2369 (2001).

    Article  CAS  PubMed  Google Scholar 

  160. Mukundan . et al. PPAR-δ senses and orchestrates clearance of apoptotic cells to promote tolerance. Nature Med. 15, 1266–1272 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.G.V. and M.C.C. are funded by the Australian National Health and Medical Research Council, and C.G.V. is a recipient of a Viertel Senior Medical Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carola G. Vinuesa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Carola G. Vinuesa's homepage

Glossary

Autoantibody

Antibody directed against an organisms own tissues.

Antinuclear antibodies

(ANAs). Heterogeneous autoantibodies against one or more antigens present in the nucleus, including chromatin, nucleosomes and ribonuclear proteins. ANAs are found in association with many different autoimmune diseases.

Centroblast

A proliferating germinal centre B cell with rearranged variable-region immunoglobulin genes that are undergoing somatic hypermutation.

Somatic hypermutation

(SHM). A programmed process of mutation targeting the variable regions of immunoglobulin genes that allows the selection of B cells that express immunoglobulin receptors with highest affinity for foreign antigens.

Immunoglobulin class switching

(also known as class switch recombination (CSR)). A process that changes the constant region portion of the antibody heavy chain from one class (that is, IgM, IgD, IgG or IgA) to another, enabling the antibody to perform different effector functions and leaving the variable region of the heavy chain – and thus antigen specificity – unchanged.

T follicular helper (TFH) cell

A type of helper T cell that differentiates on Bcl-6 expression, localizes to follicles owing to high expression of CXCR5 and CXCR4 and provides CD40L- and IL-21-mediated selection and survival signals to germinal centre B cells.

Centrocyte

The non-dividing progeny of a centroblast. These cells need to be selected on the basis of their affinity for antigen, following interaction with immune complexes that are associated with follicular dendritic cells, and their ability to elicit help from TFH cells.

Complementarity-determining regions

A short amino acid sequence found in the variable domains of antigen receptor proteins that complements an antigen and therefore provides the receptor with its specificity for that particular antigen.

Rheumatoid factor

An autoantibody against the Fc portion of IgG present at high levels in 80% of patients with rheumatoid arthritis and almost 100% of patients with Sjgrens syndrome. Rheumatoid factor and IgG join to form immune complexes, which contribute to disease.

MRL/lpr mice

A mouse strain that spontaneously develops glomerulonephritis and other symptoms of SLE. The lpr mutation causes a defect in CD95, preventing the apoptosis of activated lymphocytes; the MRL strain contributes disease-associated mutations that have yet to be identified.

Systemic lupus erythematosus

(SLE). A chronic autoimmune disease in which autoantibodies against double-stranded DNA contribute to inflammation and tissue damage, usually affecting the heart, joints, skin, lungs, blood vessels, liver, kidneys and nervous system.

NZB mice

An inbred autoimmunity-prone mouse strain that spontaneously develops an SLE-like disease, characterized by autoimmune (Coombs test-positive) haemolytic anaemia and glomerulonephritis. F1 hybrids with NZW (derived from the same outbred stock as NZB) develop a disease that closely resembles human SLE, characterized by high titres of autoantibodies and glomerulonephritis.

K/BxN mice

Mice that express both the KRN T cell receptor transgene and the NOD-derived MHC class II molecule I-Ag7 and develop severe inflammatory arthritis as a result of the specificity of the transgenic TCR for a peptide derived from the ubiquitously expressed self protein glucose-6-phosphate isomerase in the context of I-Ag7.

Ectopic lymphoid structures

(Also known as tertiary lymphoid organs). Organized lymphocytic aggregates that form at sites of chronic inflammation. Typically, B cell- and T cell-rich zones are segregated, and dendritic cells (DCs), germinal centres with follicular DC (FDC) networks and specialized endothelia are present.

9G4 B cells

B cells that make autoreactive antibodies that target the I/i blood group antigen and related determinants present in CD45 and other self glycoproteins. High titres of these antibodies are found in patients with active SLE and contribute a significant fraction of native double-stranded DNA-specific antibodies in these patients.

BXSB/Yaa mice

An autoimmunity-prone strain of mouse (BXSB) with the Y chromosome-linked autoimmune accelerator (Yaa) mutation, which is a duplication and translocation of a segment of the X chromosome that contains several genes, including Toll-like receptor 7 (Tlr7), to the Y chromosome. Male BXSB mice develop a severe form of SLE with a much higher incidence than their female counterparts.

Anergy

A state of non-responsiveness to antigen. Anergic B or T cells cannot respond to their cognate antigens under optimal conditions of stimulation.

Bz423

A pro-apoptotic 1,4-benzodiazepine that induces cell cycle arrest and apoptosis by promoting the formation of superoxide in the mitochondrial respiratory chain, which leads to the activation of pro-apoptotic proteins. It has been used in mouse models of SLE in which it seems to selectively target autoreactive lymphocytes.

Erythroblastic islands

Specialized bone marrow niches comprising erythroblasts surrounding a central macrophage where erythroid precursors proliferate, differentiate and enucleate.

Tingible body macrophages

(TBMs). A type of macrophage that is specifically located in GCs. TBMs are found in close proximity to follicular dendritic cells, and engulf lymphocytes that undergo apoptosis in the GCs. TBMs can also have an inhibitory effect on the B cell-mediated stimulation of T cell responses when added to ex vivo co-cultures.

MRL/gld

Mice that have a naturally occurring mutation in CD95 ligand that causes a generalized lymphoproliferative disease, similar to that of MRL/lpr mice.

BXD2 mice

One of several recombinant inbred mouse strains generated by inbreeding the intercross progeny of C57BL/6J and DBA/2J mice for more than 20 generations. The BXD2 phenotype includes spontaneous erosive arthritis, circulating immune complexes and glomerulonephritis.

Double-stranded DNA-specific antibodies

A subset of antinuclear antibodies specific for double-stranded DNA that are expressed in 4050% of patients with SLE and are seldom found in association with other autoimmune diseases.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinuesa, C., Sanz, I. & Cook, M. Dysregulation of germinal centres in autoimmune disease. Nat Rev Immunol 9, 845–857 (2009). https://doi.org/10.1038/nri2637

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2637

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing