Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune regulation by SLAM family receptors and SAP-related adaptors

Key Points

  • There is increasing evidence that SLAM family receptors and SAP-related adaptors play important and complex roles in normal immune regulation.

  • SLAM family receptors associate through their cytoplasmic domain with the SRC homology 2 (SH2) domain of SAP-related adaptors. This association is crucial for SLAM family receptor functions.

  • The SAP gene is mutated and inactivated in X-linked lymphoproliferative (XLP) disease, a human immunodeficiency characterized by an abnormal immune response to Epstein?Barr virus (EBV) infection.

  • XLP seems to result from defective cytotoxic activity towards EBV-infected cells, due to reduced SLAM family receptor functions in natural killer (NK) cells and, perhaps, CD8+ T cells. Defects in NKT cells might also be implicated.

  • Experiments with SAP-deficient humans and mice showed that SAP and, presumably, SLAM family receptors are also required for T helper 2 (TH2)-cell priming, immunoglobulin isotype switching and maintenance of long-term antibody-secreting cells.

  • SAP operates as a result of its capacity to couple SLAM-related receptors to the SRC family kinase FYNT, by way of a second binding surface centered on arginine 78 in the SAP SH2 domain that interacts directly with the SH3 domain of FYNT. The resulting tyrosine phosphorylation signals enable SLAM family receptors to augment responses such as NK-cell activation and TH2-cell priming.

  • In contrast to SAP, the SAP-related adaptors EAT2 and ERT signal by way of tyrosine phosphorylation sites in their C-terminal tail. In NK cells, these signals allow SLAM family receptors to inhibit NK-cell activation.

  • Differential binding of SLAM family receptors to SAP or EAT2 and ERT enables these receptors to mediate alternative and, at least in some cases, opposite immune functions.

Abstract

The signalling lymphocytic activation molecule (SLAM) family of receptors is expressed by a wide range of immune cells. Through their cytoplasmic domain, SLAM family receptors associate with SLAM-associated protein (SAP)-related molecules, a group of cytoplasmic adaptors composed almost exclusively of an SRC homology 2 domain. SAP, the prototype of the SAP family, is mutated in a human immunodeficiency named X-linked lymphoproliferative (XLP) disease. Recent observations indicate that SLAM family receptors, in association with SAP family adaptors, have crucial roles during normal immune reactions in innate and adaptive immune cells. The latest progress in this field is reviewed here.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunoreceptors and their functions.
Figure 2: Structure, chromosomal localization and expression pattern of SAP-related adaptors.
Figure 3: Mechanism of action of SAP and EAT2.
Figure 4: SLAM-mediated regulation of T helper 2 cytokine production.
Figure 5: A possible model for the stimulatory and inhibitory functions of 2B4.
Figure 6: SAP-dependent functions in immune regulation.

Similar content being viewed by others

References

  1. Cambier, J. C. Antigen and Fc receptor signalling. The awesome power of the immunoreceptor tyrosine-based activation motif (ITAM). J. Immunol. 155, 3281?3285 (1995).

    CAS  PubMed  Google Scholar 

  2. Chan, A. C., Desai, D. M. & Weiss, A. The role of protein tyrosine kinases and protein tyrosine phosphatases in T cell antigen receptor signal transduction. Annu. Rev. Immunol. 12, 555?592 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Latour, S. & Veillette, A. Proximal protein tyrosine kinases in immunoreceptor signalling. Curr. Opin. Immunol. 13, 299?306 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Lanier, L. L. NK Cell Recognition. Annu. Rev. Immunol. 23, 225?274 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Sharpe, A. H. & Freeman, G. J. The B7-CD28 superfamily. Nature Rev. Immunol. 2, 116?126 (2002).

    Article  CAS  Google Scholar 

  6. Cocks, B. G. et al. A novel receptor involved in T-cell activation. Nature 376, 260?263 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Engel, P., Eck, M. J. & Terhorst, C. The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Nature Rev. Immunol. 3, 813?821 (2003).

    Article  CAS  Google Scholar 

  8. Veillette, A. & Latour, S. The SLAM family of immune-cell receptors. Curr. Opin. Immunol. 15, 277?285 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Nichols, K. E., Ma, C. S., Cannons, J. L., Schwartzberg, P. L. & Tangye, S. G. Molecular and cellular pathogenesis of X-linked lymphoproliferative disease. Immunol. Rev. 203, 180?199 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Latour, S. & Veillette, A. The SAP family of adaptors in immune regulation. Semin. Immunol. 16, 409?419 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Sayos, J. et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395, 462?469 (1998). This paper was the first to report the association between SLAM and SAP; along with references 12 and 13, it also described the existence of mutations of the SAP gene in patients with XLP.

    Article  CAS  PubMed  Google Scholar 

  12. Nichols, K. E. et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc. Natl Acad. Sci. USA 95, 13765?13770 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Coffey, A. J. et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nature Genet. 20, 129?135 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Thompson, A. D. et al. EAT-2 is a novel SH2 domain containing protein that is upregulated by Ewing's sarcoma EWS/FLI1 fusion gene. Oncogene 13, 2649?2658 (1996).

    CAS  PubMed  Google Scholar 

  15. Sayos, J. et al. Potential pathways for regulation of NK and T cell responses: differential X-linked lymphoproliferative syndrome gene product SAP interactions with SLAM and 2B4. Int. Immunol. 12, 1749?1757 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Nichols, K. E. et al. Regulation of NKT cell development by SAP, the protein defective in XLP. Nature Med. 11, 340?345 (2005). This paper, in addition to references 44 and 45, describes the lack of NKT cells in SAP-deficient humans and mice.

    Article  CAS  PubMed  Google Scholar 

  17. Mikhalap, S. V. et al. CDw150 associates with src-homology 2-containing inositol phosphatase and modulates CD95-mediated apoptosis. J. Immunol. 162, 5719?5727 (1999).

    CAS  PubMed  Google Scholar 

  18. Munitz, A. et al. 2B4 (CD244) is expressed and functional on human eosinophils. J. Immunol. 174, 110?118 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Morra, M. et al. Defective B cell responses in the absence of SH2D1A. Proc. Natl Acad. Sci. USA 102, 4819?4823 (2005). This paper, along with reference 37, suggested the existence of an intrinsic B-cell defect in SAP-deficient mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nanda, N. et al. Platelet aggregation induces platelet aggregate stability via SLAM family receptor signalling. Blood 106, 3028?3034 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Roncagalli, R. et al. Negative regulation of natural killer cell functions by EAT-2, a SAP-related adaptor. Nature Immunol. 6, 1002?1010 (2005). The paper reported analyses of NK-cell functions in mice lacking EAT2 or ERT. It also described the existence of ERT, the third member of the SAP family.

    Article  CAS  Google Scholar 

  22. Morra, M. et al. Structural basis for the interaction of the free SH2 domain EAT-2 with SLAM receptors in hematopoietic cells. EMBO J. 20, 5840?5852 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tangye, S. G., Nichols, K. E., Hare, N. J. & van de Weerdt, B. C. Functional requirements for interactions between CD84 and Src homology 2 domain-containing proteins and their contribution to human T cell activation. J. Immunol. 171, 2485?2495 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Latour, S. & Veillette, A. Molecular and immunological basis of X-linked lymphoproliferative disease. Immunol. Rev. 192, 212?224 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Purtilo, D. T., Cassel, C. K., Yang, J. P. & Harper, R. X-linked recessive progressive combined variable immunodeficiency (Duncan's disease). Lancet 1, 935?940 (1975).

    Article  CAS  PubMed  Google Scholar 

  26. Seemayer, T. A. et al. X-linked lymphoproliferative disease: twenty-five years after the discovery. Pediatr. Res. 38, 471?478 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Wu, C. et al. SAP controls T cell responses to virus and terminal differentiation of TH2 cells. Nature Immunol. 2, 410?414 (2001). This paper, in addition to references 28?33 and 43, provides analyses of immune cell dysfunctions in mice lacking expression of SAP.

    Article  CAS  Google Scholar 

  28. Czar, M. J. et al. Altered lymphocyte responses and cytokine production in mice deficient in the X-linked lymphoproliferative disease gene SH2D1A/DSHP/SAP. Proc. Natl Acad. Sci. USA 98, 7449?7454 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yin, L. et al. Mice deficient in the X-linked lymphoproliferative disease gene sap exhibit increased susceptibility to murine γ-herpesvirus-68 and hypo-γ-globulinemia. J. Med. Virol. 71, 446?455 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Davidson, D. et al. Genetic evidence linking SAP, the X-linked lymphoproliferative gene product, to Src-related kinase FynT in TH2 cytokine regulation. Immunity 21, 707?717 (2004). This paper, together with reference 32, reported on genetic evidence supporting the involvement of SRC-related kinase FYNT in SAP-mediated functions in vivo.

    Article  CAS  PubMed  Google Scholar 

  31. Crotty, S., Kersh, E. N., Cannons, J., Schwartzberg, P. L. & Ahmed, R. SAP is required for generating long-term humoral immunity. Nature 421, 282?287 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Cannons, J. L. et al. SAP regulates T(H)2 differentiation and PKC-φ-mediated activation of NF-κB1. Immunity 21, 693?706 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Hron, J. D., Caplan, L., Gerth, A. J., Schwartzberg, P. L. & Peng, S. L. SH2D1A regulates T-dependent humoral autoimmunity. J. Exp. Med. 200, 261?266 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Malbran, A. et al. Loss of circulating CD27+ memory B cells and CCR4+ T cells occurring in association with elevated EBV loads in XLP patients surviving primary EBV infection. Blood 103, 1625?1631 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Ma, C. S. et al. Impaired humoral immunity in X-linked lymphoproliferative disease is associated with defective IL-10 production by CD4+T cells. J. Clin. Invest. 115, 1049?1059 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shlapatska, L. M. et al. CD150 association with either the SH2-containing inositol phosphatase or the SH2-containing protein tyrosine phosphatase is regulated by the adaptor protein SH2D1A. J. Immunol. 166, 5480?5487 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Al-Alem et al. Impaired Ig class switch in mice deficient for the X-linked lymphoproliferative disease gene sap. Blood 106, 2069?2075 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Dupre, L. et al. SAP controls the cytolytic activity of CD8+ T cells against EBV-infected cells. Blood 105, 4383?4389 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, G. et al. Signalling lymphocyte activation molecule-associated protein is a negative regulator of the CD8 T cell response in mice. J. Immunol. 175, 2212?2218 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Tangye, S. G., Phillips, J. H., Lanier, L. L. & Nichols, K. E. Functional requirement for SAP in 2B4-mediated activation of human natural killer cells as revealed by the X-linked lymphoproliferative syndrome. J. Immunol. 165, 2932?2936 (2000). This paper, combined with references 41 and 42, describes defects in 2B4-mediated functions in NK cells from SAP-deficient patients with XLP.

    Article  CAS  PubMed  Google Scholar 

  41. Benoit, L., Wang, X., Pabst, H. F., Dutz, J. & Tan, R. Defective NK cell activation in X-linked lymphoproliferative disease. J. Immunol. 165, 3549?3553 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Nakajima, H. et al. Patients with X-linked lymphoproliferative disease have a defect in 2B4 receptor-mediated NK cell cytotoxicity. Eur. J. Immunol. 30, 3309?3318 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Bloch-Queyrat, C. et al. Regulation of natural cytotoxicity by the adaptor SAP and the Src-related kinase Fyn. J. Exp. Med. 202, 181?192 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chung, B., Aoukaty, A., Dutz, J., Terhorst, C. & Tan, R. Signalling lymphocytic activation molecule-associated protein controls NKT cell functions. J. Immunol. 174, 3153?3157 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Pasquier, B. et al. Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J. Exp. Med. 201, 695?701 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brigl, M. & Brenner, M. B. CD1: Antigen presentation and T cell function. Annu. Rev. Immunol. 22, 817?890 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Lee, K. M. et al. 2B4 acts as a non-major histocompatibility complex binding inhibitory receptor on mouse natural killer cells. J. Exp. Med. 199, 1245?1254 (2004). This paper, in combination with references 72?74, describes analyses of NK-cell functions in 2B4-deficient mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sivori, S. et al. Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation. Proc. Natl Acad. Sci. USA 99, 4526?4531 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brown, M. H. et al. 2B4, the natural killer and T cell immunoglobulin superfamily surface protein, is a ligand for CD48. J. Exp. Med. 188, 2083?2090 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Latchman, Y., McKay, P. F. & Reiser, H. Identification of the 2B4 molecule as a counter-receptor for CD48. J. Immunol. 161, 5809?5812 (1998).

    CAS  PubMed  Google Scholar 

  51. Tatsuo, H., Ono, N., Tanaka, K. & Yanagi, Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature 406, 893?897 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Hsu, E. C., Iorio, C., Sarangi, F., Khine, A. A. & Richardson, C. D. CDw150 (SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 279, 9?21 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Sayos, J. et al. Cell surface receptors Ly-9 and CD84 recruit the X-linked lymphoproliferative disease gene product SAP. Blood 97, 3867?3874 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Latour, S. et al. Regulation of SLAM-mediated signal transduction by SAP, the X-linked lymphoproliferative gene product. Nature Immunol. 2, 681?690 (2001). This paper was the first to report the involvement of FYNT in SAP-mediated signal transduction.

    Article  CAS  Google Scholar 

  55. Chen, R. et al. Molecular dissection of 2B4 signalling: implications for signal transduction by SLAM-related receptors. Mol. Cell. Biol. 24, 5144?5156 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Poy, F. et al. Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition. Mol. Cell 4, 555?561 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Li, S. C. et al. Novel mode of ligand binding by the SH2 domain of the human XLP disease gene product SAP/SH2D1A. Curr. Biol. 9, 1355?1362 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Li, C., Iosef, C., Jia, C. Y., Han, V. K. & Li, S. S. Dual functional roles for the X-linked lymphoproliferative syndrome gene product SAP/SH2D1A in signalling through the signalling lymphocyte activation molecule (SLAM) family of immune receptors. J. Biol. Chem. 278, 3852?3859 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Parolini, S. et al. X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein?Barr virus-infected cells. J. Exp. Med. 192, 337?346 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Simarro, M. et al. SAP increases FynT kinase activity and is required for phosphorylation of SLAM and Ly9. Int. Immunol. 16, 727?736 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Latour, S. et al. Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signalling in immune regulation. Nature Cell Biol. 5, 149?154 (2003). This paper, along with reference 62, elucidated the molecular basis of the interaction between SAP and FYNT.

    Article  CAS  PubMed  Google Scholar 

  62. Chan, B. et al. SAP couples Fyn to SLAM immune receptors. Nature Cell Biol. 5, 155?160 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Castro, A. G. et al. Molecular and functional characterization of mouse signalling lymphocytic activation molecule (SLAM): differential expression and responsiveness in TH1 and TH2 cells. J. Immunol. 163, 5860?5870 (1999).

    CAS  PubMed  Google Scholar 

  64. Wang, N. et al. The cell surface receptor SLAM controls T cell and macrophage functions. J. Exp. Med. 199, 1255?1264 (2004). This paper, in addition to reference 30, analysed immune phenotypes in SLAM-deficient mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kruse, M. et al. Signalling lymphocytic activation molecule is expressed on mature CD83+ dendritic cells and is upregulated by IL-1β. J. Immunol 167, 1989?1995 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Bleharski, J. R., Niazi, K. R., Sieling, P. A., Cheng, G. & Modlin, R. L. Signalling lymphocytic activation molecule is expressed on CD40 ligand-activated dendritic cells and directly augments production of inflammatory cytokines. J. Immunol. 167, 3174?3181 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109?1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Mathew, P. A. et al. Cloning and characterization of the 2B4 gene encoding a molecule associated with non-MHC-restricted killing mediated by activated natural killer cells and T cells. J. Immunol. 151, 5328?5337 (1993).

    CAS  PubMed  Google Scholar 

  69. Valiante, N. M. & Trinchieri, G. Identification of a novel signal transduction surface molecule on human cytotoxic lymphocytes. J. Exp. Med. 178, 1397?1406 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Garni-Wagner, B. A., Purohit, A., Mathew, P. A., Bennett, M. & Kumar, V. A novel function-associated molecule related to non-MHC-restricted cytotoxicity mediated by activated natural killer cells and T cells. J. Immunol. 151, 60?70 (1993).

    CAS  PubMed  Google Scholar 

  71. Nakajima, H., Cella, M., Langen, H., Friedlein, A. & Colonna, M. Activating interactions in human NK cell recognition: the role of 2B4-CD48. Eur. J. Immunol. 29, 1676?1683 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Vaidya, S. V. et al. Targeted disruption of the 2B4 gene in mice reveals an in vivo role of 2B4 (CD244) in the rejection of B16 melanoma cells. J. Immunol. 174, 800?807 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. McNerney, M. E., Guzior, D. & Kumar, V. 2B4 (CD244)- CD48 interactions provide a novel MHC class I-independent system for NK cell self-tolerance in mice. Blood 106, 1337?1340 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee, K. M. et al. Requirement of homotypic NK cell interactions through 2B4 (CD244)/CD48 in the generation of NK effector functions. Blood 19 May 2005 (10.1182/blood-2005-01-0185).

  75. Tangye, S. G. et al. Cutting edge: human 2B4, an activating NK cell receptor, recruits the protein tyrosine phosphatase SHP-2 and the adaptor signalling protein SAP. J. Immunol. 162, 6981?6985 (1999).

    CAS  PubMed  Google Scholar 

  76. Roda-Navarro, P. et al. Dynamic redistribution of the activating 2B4/SAP complex at the cytotoxic NK cell immune synapse. J. Immunol. 173, 3640?3646 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Eissmann, P. et al. Molecular basis for positive and negative signalling by the natural killer cell receptor 2B4 (CD244). Blood 105, 4722?4729 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Schatzle, J. D. et al. Characterization of inhibitory and stimulatory forms of the murine natural killer cell receptor 2B4. Proc. Natl Acad. Sci. USA 96, 3870?3875 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kumar, V. & McNerney, M. E. A new self: MHC-class-I-independent Natural-killer-cell self-tolerance. Nature Rev. Immunol. 5, 363?374 (2005).

    Article  CAS  Google Scholar 

  80. Fernandez, N. C. et al. A subset of natural killer cells achieve self-tolerance without expressing inhibitory receptors specific for self MHC molecules. Blood 105, 4416?4423 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bottino, C. et al. NTB-A, a novel SH2D1A-associated surface molecule contributing to the inability of natural killer cells to kill Epstein-Barr virus-infected B cells in X-linked lymphoproliferative disease. J. Exp. Med. 194, 235?246 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Falco, M. et al. Homophilic interaction of NTBA, a member of the CD2 molecular family: induction of cytotoxicity and cytokine release in human NK cells. Eur. J. Immunol. 34, 1663?1672 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Flaig, R. M., Stark, S. & Watzl, C. Cutting edge: NTB-A activates NK cells via homophilic interaction. J. Immunol. 172, 6524?6527 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Valdez, P. A. et al. NTB-A, a new activating receptor in T cells that regulates autoimmune disease. J. Biol. Chem. 279, 18662?18669 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Howie, D. et al. Cutting edge: the SLAM family receptor Ly108 controls T cell and neutrophil functions. J. Immunol. 174, 5931?5935 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Constant, S. L. & Bottomly, K. Induction of TH1 and TH2 CD4+ T cell responses: the alternative approaches. Annu. Rev. Immunol. 15, 297?322 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Bouchon, A., Cella, M., Grierson, H. L., Cohen, J. I. & Colonna, M. Cutting edge: activation of NK cell-mediated cytotoxicity by a SAP-independent receptor of the CD2 family. J. Immunol. 167, 5517?5521 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Kumaresan, P., Lai, W., Chuang, S., Bennett, M. & Mathew, P. CS1, a novel member of the CD2 family, is homophilic and regulates NK cell function. Mol. Immunol. 39, 1?8 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Eberl, G., Lowin-Kropf, B. & MacDonald, H. R. Cutting edge: NKT cell development is selectively impaired in Fyn- deficient mice. J. Immunol. 163, 4091?4094 (1999).

    CAS  PubMed  Google Scholar 

  90. Gadue, P., Morton, N. & Stein, P. L. The Src family tyrosine kinase Fyn regulates natural killer T cell development. J. Exp. Med. 190, 1189?1196 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wandstrat, A. E. et al. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity 21, 769?780 (2004). This paper describes polymorphisms in the Slam -gene locus in a lupus-susceptible mouse strain.

    Article  CAS  PubMed  Google Scholar 

  92. Punnonen, J. et al. Soluble and membrane-bound forms of signalling lymphocytic activation molecule (SLAM) induce proliferation and Ig synthesis by activated human B lymphocytes. J. Exp. Med. 185, 993?1004 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Howie, D. et al. The role of SAP in murine CD150 (SLAM)-mediated T-cell proliferation and interferon-γ production. Blood 100, 2899?2907 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Mavaddat, N. et al. Signalling lymphocytic activation molecule (CDw150) is homophilic but self-associates with very low affinity. J. Biol. Chem. 275, 28100?28109 (2000).

    CAS  PubMed  Google Scholar 

  95. Erlenhoefer, C. et al. CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. J. Virol. 75, 4499?4505 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Speiser, D. E. et al. The activatory receptor 2B4 is expressed in vivo by human CD8+ effector αβ T cells. J. Immunol. 167, 6165?6170 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Kambayashi, T., Assarsson, E., Chambers, B. J. & Ljunggren, H. G. Cutting edge: regulation of CD8+ T cell proliferation by 2B4/CD48 interactions. J. Immunol. 167, 6706?6710 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Aoukaty, A. & Tan, R. Association of the X-linked lymphoproliferative disease gene product SAP/SH2D1A with 2B4, a natural killer cell-activating molecule, is dependent on phosphoinositide 3-kinase. J. Biol. Chem. 277, 13331?13337 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Watzl, C., Stebbins, C. C. & Long, E. O. NK cell inhibitory receptors prevent tyrosine phosphorylation of the activation receptor 2B4 (CD244). J. Immunol. 165, 3545?3548 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Klem, J., Verrett, P. C., Kumar, V. & Schatzle, J. D. 2B4 is constitutively associated with linker for the activation of T cells in glycolipid-enriched microdomains: properties required for 2B4 lytic function. J. Immunol. 169, 55?62 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. de la Fuente, M. A. et al. Molecular characterization and expression of a novel human leukocyte cell-surface marker homologous to mouse Ly-9. Blood 97, 3513?3520 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Martin, M., Del Valle, J. M., Saborit, I. & Engel, P. Identification of Grb2 as a novel binding partner of the signalling lymphocytic activation molecule-associated protein binding receptor CD229. J. Immunol. 174, 5977?5986 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. de la Fuente, M. A., Pizcueta, P., Nadal, M., Bosch, J. & Engel, P. CD84 leukocyte antigen is a new member of the Ig superfamily. Blood 90, 2398?2405 (1997).

    CAS  PubMed  Google Scholar 

  104. Martin, M. et al. CD84 functions as a homophilic adhesion molecule and enhances IFN-γ secretion: adhesion is mediated by Ig-like domain 1. J. Immunol. 167, 3668?3676 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Tangye, S. G., van de Weerdt, B. C., Avery, D. T. & Hodgkin, P. D. CD84 is upregulated on a major population of human memory B cells and recruits the SH2 domain containing proteins SAP and EAT-2. Eur. J. Immunol. 32, 1640?1649 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Tovar, V. et al. Mouse novel Ly9: a new member of the expanding CD150 (SLAM) family of leukocyte cell-surface receptors. Immunogenetics 54, 394?402 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Boles, K. S., Stepp, S. E., Bennett, M., Kumar, V. & Mathew, P. A. 2B4 (CD244) and CS1: novel members of the CD2 subset of the immunoglobulin superfamily molecules expressed on natural killer cells and other leukocytes. Immunol. Rev. 181, 234?249 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I apologize for not being able to cite and discuss all papers published on this topic, owing to space limitation. I thank M.-C. Zhong, M.-E. Cruz-Munoz, R. Roncagalli, R. Chen and D. Davidson for reading of the manuscript. Work in my laboratory is supported by grants from the Canadian Institutes of Health Research, the National Cancer Institute of Canada and the CANVAC National Centre of Excellence. I am the recipient of the Canada Research Chair in Signalling in the Immune System.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Genetic disease information

X-linked lymphoproliferative (XLP) disease

Glossary

Immunoreceptor tyrosine-based activation motif

(ITAM). A sequence that is present in the cytoplasmic domains of the invariant chains of various cell-surface immune receptors, such as the T-cell receptor, the B-cell receptor, the receptor for IgE (FcεR) and natural-killer-cell activating receptors. Following phosphorylation of their tyrosine residues, ITAMs function as docking sites for SRC homology 2 (SH2)-domain-containing tyrosine kinases, thereby favouring intracellular-signalling cascades.

ZAP70/SYK

A family of cytoplasmic protein tyrosine kinases implicated in the amplification of immunoreceptor signalling. By way of tandem SRC homology 2 (SH2) domains at their N-terminus, they interact with immunoreceptor tyrosine-based activation motifs (ITAMs) that are doubly tyrosine phosphorylated.

BTK family

A class of cytoplasmic protein tyrosine kinases involved in the amplification of immunoreceptor signalling. It includes BTK, ITK, TEC, RLK and BMX. Most are recruited to the plasma membrane through interaction of their N-terminal pleckstrin homology domain with phosphatidylinositol-3,4,5-trisphosphate, which is generated on activation of phosphatidylinositol 3-kinase.

SRC homology 2 (SH2) domain

Domain of 100 amino acids found in a variety of enzymes and adaptor molecules. It controls multiple signalling processes by interacting with phosphotyrosine-containing motifs.

Infectious mononucleosis

Illness typically induced by Epstein?Barr virus (EBV). It is normally a self-contained episode of sore throat, fever, and enlargement of spleen (splenomegaly) and lymph nodes (lymphadenopathy).

Common variable immunodeficiency

(CVID). A disease characterized by a deficiency in various immunoglobulins including IgM, IgG and IgA. Some cases are inherited, whereas others are sporadic. In most cases, the cause is unknown. Patients with CVID have an increased susceptibility to infections.

T-cell-dependent antigens

Antigens that require T-cell help to trigger antibody production by B cells.

T-cell-independent antigens

Antigens, usually microbial in nature, that do not require T cells to trigger antibody production by B cells. This is because of the ability of the microbial constituents to stimulate B cells directly through pathogen-associated determinants such as bacterial lipopolysaccharide.

Immunoglobulin circular transcripts

RNA transcripts produced by 'looped-out' DNA segments during the immunoglobulin gene recombination events leading to isotype switching.

Immunoglobulin-like domain

Domain with two β-sheets linked by disulphide bonds reminiscent of the structure of immunoglobulins. It is present in several proteins involved in cell?cell interactions.

Morbillivirus

Viral genus of the Paramyxoviridae family. It includes measles virus (in humans), canine distemper virus (in dogs) and rinderpest virus (in cows). Morbilliviruses mainly infect lymphoid cells. Several members of the genus use signalling lymphocytic activation molecule (SLAM) for entry into lymphoid cells.

SRC homology 3 (SH3) domain

Domain of 60 amino acids present in signalling molecules, including enzymes and adaptors. It binds proline-rich sequences and, in some cases, arginine-based motifs.

SRC family

A class of cytoplasmic protein tyrosine kinases involved in the initiation of immunoreceptor signalling. It includes LCK, FYNT, LYN, HCK, BLK, C-YES, C-SRC, C-FGR and YRK.

Pristane-induced auto-antibody production

Pristane is an isoprenoid alkane capable of inducing lupus-like diseases in mice. Manifestations include auto-antibody production and renal inflammation (glomerulonephritis).

NZM2410

Mouse strain that is highly prone to spontaneous lupus. Several genetic loci named Sle1a, Sle1b and so on seem implicated in this increased susceptibility.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veillette, A. Immune regulation by SLAM family receptors and SAP-related adaptors. Nat Rev Immunol 6, 56–66 (2006). https://doi.org/10.1038/nri1761

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1761

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing