Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autoimmunity is triggered by cPR-3(105–201), a protein complementary to human autoantigen proteinase-3

Abstract

It remains unclear how and why autoimmunity occurs. Here we show evidence for a previously unrecognized and possibly general mechanism of autoimmunity. This new finding was discovered serendipitously using material from patients with inflammatory vascular disease caused by antineutrophil cytoplasmic autoantibodies (ANCA) with specificity for proteinase-3 (PR-3). Such patients harbor not only antibodies to the autoantigen (PR-3), but also antibodies to a peptide translated from the antisense DNA strand of PR-3 (complementary PR-3, cPR-3) or to a mimic of this peptide. Immunization of mice with the middle region of cPR-3 resulted in production of antibodies not only to cPR-3, but also to the immunogen's sense peptide counterpart, PR-3. Both human and mouse antibodies to PR-3 and cPR-3 bound to each other, indicating idiotypic relationships. These findings indicate that autoimmunity can be initiated through an immune response against a peptide that is antisense or complementary to the autoantigen, which then induces anti-idiotypic antibodies (autoantibodies) that cross-react with the autoantigen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of a new mechanism for the development of autoimmunity, termed the theory of autoantigen complementarity.
Figure 2: PR-3-ANCA small-vessel vasculitis patients harbor cPR-3(105–201)-specific antibodies.
Figure 3: Antibodies to PR-3 and to cPR-3(105–201) from patients are idiotypic pairs.
Figure 4: Recapitulation of the human idiotypic response in mice.
Figure 5: PR-3 interacts with cPR-3(105–201).
Figure 6: Potential sources of cPR-3(105–201)-like proteins.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Jacobson, D.L., Gange, S.J., Rose, N.R. & Graham, N.M. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin. Immunol. Immunopathol. 84, 223–243 (1997).

    Article  CAS  Google Scholar 

  2. Xiao, H. et al. Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J. Clin. Invest. 110, 955–963 (2002).

    Article  CAS  Google Scholar 

  3. Hellmark, T., Burkhardt, H. & Wieslander, J. Goodpasture disease. Characterization of a single conformational epitope as the target of pathogenic autoantibodies. J. Biol. Chem. 274, 25862–25868 (1999).

    Article  CAS  Google Scholar 

  4. Dau, P.C. et al. Plasmapheresis and immunosuppressive drug therapy in myasthenia gravis. N. Engl. J. Med. 297, 1134–1140 (1977).

    Article  CAS  Google Scholar 

  5. Weetman, A.P. & McGregor, A.M. Autoimmune thyroid disease: further developments in our understanding. Endocr. Rev. 15, 788–830 (1994).

    CAS  PubMed  Google Scholar 

  6. Stassi, G. & De Maria, R. Autoimmune thyroid disease: new models of cell death in autoimmunity. Nat. Rev. Immunol. 2, 195–204 (2002).

    Article  CAS  Google Scholar 

  7. Jennette, J.C. & Falk, R.J. Small-vessel vasculitis. N. Engl. J. Med. 337, 1512–1523 (1997).

    Article  CAS  Google Scholar 

  8. Falk, R.J. & Jennette, J.C. ANCA small-vessel vasculitis. J. Am. Soc. Nephrol. 8, 314–322 (1997).

    CAS  PubMed  Google Scholar 

  9. Falk, R.J. & Jennette, J.C. Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N. Engl. J. Med. 318, 1651–1657 (1988).

    Article  CAS  Google Scholar 

  10. Jennette, J.C., Hoidal, J.R. & Falk, R.J. Specificity of anti-neutrophil cytoplasmic autoantibodies for proteinase 3. Blood 75, 2263–2264 (1990).

    CAS  PubMed  Google Scholar 

  11. Falk, R.J., Terrell, R.S., Charles, L.A. & Jennette, J.C. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc. Natl. Acad. Sci. USA 87, 4115–4119 (1990).

    Article  CAS  Google Scholar 

  12. Charles, L.A., Caldas, M.L., Falk, R.J., Terrell, R.S. & Jennette, J.C. Antibodies against granule proteins activate neutrophils in vitro. J. Leukoc. Biol. 50, 539–546 (1991).

    Article  CAS  Google Scholar 

  13. Mekler, L.B. On the specific mutual interaction of amino acid residues of polypeptide chains and amino acid residues with codons. Oncology 27, 286–288 (1973).

    Article  CAS  Google Scholar 

  14. Heal, J.R., Roberts, G.W., Raynes, J.G., Bhakoo, A. & Miller, A.D. Specific interactions between sense and complementary peptides: the basis for the proteomic code. ChemBioChem 3, 136–151 (2002).

    Article  CAS  Google Scholar 

  15. Jerne, N.K. Towards a network theory of the immune system. Ann. Immunol. (Paris) 125C, 373–389 (1974).

    CAS  Google Scholar 

  16. Smith, L.R., Bost, K.L. & Blalock, J.E. Generation of idiotypic and anti-idiotypic antibodies by immunization with peptides encoded by complementary RNA: a possible molecular basis for the network theory. J. Immunol. 138, 7–9 (1987).

    CAS  PubMed  Google Scholar 

  17. Routsias, J.G. et al. Unmasking the anti-La/SSB response in sera from patients with Sjogren's syndrome by specific blocking of anti-idiotypic antibodies to La/SSB antigenic determinants. Mol. Med. 8, 293–305 (2002).

    Article  CAS  Google Scholar 

  18. Van Der Geld, Y.M. et al. Antineutrophil cytoplasmic antibodies to proteinase 3 in Wegener's granulomatosis: epitope analysis using synthetic peptides. Kidney Int. 59, 147–159 (2001).

    Article  CAS  Google Scholar 

  19. Morales, R. et al. Refined X-ray structures of the oxidized, at 1.3 Å, and reduced, at 1.17 Å, [2Fe-2S] ferredoxin from the cyanobacterium Anabaena PCC7119 show redox-linked conformational changes. Biochemistry 38, 15764–15773 (1999).

    Article  CAS  Google Scholar 

  20. Baranyi, L. et al. The antisense homology box: a new motif within proteins that encodes biologically active peptides. Nat. Med. 1, 894–901 (1995).

    Article  CAS  Google Scholar 

  21. Yelin, R. et al. Widespread occurrence of antisense transcription in the human genome. Nat. Biotechnol. 21, 379–386 (2003).

    Article  CAS  Google Scholar 

  22. LeJohn, H.B., Cameron, L.E., Yang, B. & Rennie, S.L. Molecular characterization of an NAD-specific glutamate dehydrogenase gene inducible by L-glutamine. Antisense gene pair arrangement with L-glutamine-inducible heat shock 70-like protein gene. J. Biol. Chem. 269, 4523–4531 (1994).

    CAS  PubMed  Google Scholar 

  23. Carter, C.W. & Duax, W.L. Did tRNA synthetase classes arise on opposite strands of the same gene? Mol. Cell 10, 705–708 (2002).

    Article  CAS  Google Scholar 

  24. Davies, D.J., Moran, J.E., Niall, J.F. & Ryan, G.B. Segmental necrotising glomerulonephritis with antineutrophil antibody: possible arbovirus aetiology? Br. Med. J. (Clin. Res. Ed.) 285, 606 (1982).

    Article  CAS  Google Scholar 

  25. Stegeman, C.A. et al. Association of chronic nasal carriage of Staphylococcus aureus and higher relapse rates in Wegener granulomatosis. Ann. Intern. Med. 120, 12–17 (1994).

    Article  CAS  Google Scholar 

  26. Pudifin, D.J., Duursma, J., Gathiram, V. & Jackson, T.F. Invasive amoebiasis is associated with the development of anti-neutrophil cytoplasmic antibody. Clin. Exp. Immunol. 97, 48–51 (1994).

    Article  CAS  Google Scholar 

  27. Falk, R.J., Hogan, S., Carey, T.S. & Jennette, J.C. Clinical course of anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis and systemic vasculitis. The Glomerular Disease Collaborative Network. Ann. Intern. Med. 113, 656–663 (1990).

    Article  CAS  Google Scholar 

  28. Benoist, C. & Mathis, D. Autoimmunity. The pathogen connection. Nature 394, 227–228 (1998).

    Article  CAS  Google Scholar 

  29. Oldstone, M.B. Molecular mimicry and autoimmune disease. Cell 50, 819–820 (1987).

    Article  CAS  Google Scholar 

  30. Hemmer, B. et al. Identification of candidate T-cell epitopes and molecular mimics in chronic Lyme disease. Nat. Med. 5, 1375–1382 (1999).

    Article  CAS  Google Scholar 

  31. Lang, H.L. et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat. Immunol. 3, 940–943 (2002).

    Article  CAS  Google Scholar 

  32. Levin, M.C. et al. Autoimmunity due to molecular mimicry as a cause of neurological disease. Nat. Med. 8, 509–513 (2002).

    Article  CAS  Google Scholar 

  33. Kirvan, C.A., Swedo, S.E., Heuser, J.S. & Cunningham, M.W. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nat. Med. 9, 914–920 (2003).

    Article  CAS  Google Scholar 

  34. Shoenfeld, Y. Idiotypic induction of autoimmunity: a new aspect of the idiotypic network. FASEB J. 8, 1296–1301 (1994).

    Article  CAS  Google Scholar 

  35. Mezzano, S. et al. Antineutrophil-cytoplasmic-autoantibodies in poststreptococcal nephritis. Adv. Exp. Med. Biol. 336, 449–453 (1993).

    Article  CAS  Google Scholar 

  36. Hellmich, B. et al. Anti-MPO-ANCA-positive microscopic polyangiitis following subacute bacterial endocarditis. Clin. Rheumatol. 20, 441–443 (2001).

    Article  CAS  Google Scholar 

  37. Tropsha, A., Kizer, J.S. & Chaiken, I.M. Making sense from antisense: a review of experimental data and developing ideas on sense—antisense peptide recognition. J. Mol. Recognit. 5, 43–54 (1992).

    Article  CAS  Google Scholar 

  38. Ruiz-Opazo, N., Akimoto, K. & Herrera, V.L. Identification of a novel dual angiotensin II/vasopressin receptor on the basis of molecular recognition theory. Nat. Med. 1, 1074–1081 (1995).

    Article  CAS  Google Scholar 

  39. Ruiz-Opazo, N., Hirayama, K., Akimoto, K. & Herrera, V.L. Molecular characterization of a dual endothelin-1/angiotensin II receptor. Mol. Med. 4, 96–108 (1998).

    Article  CAS  Google Scholar 

  40. Yu, M. & Talbot, P.J. Induction of a protective immune response to murine coronavirus with non-internal image anti-idiotypic antibodies. Adv. Exp. Med. Biol. 380, 165–172 (1995).

    Article  CAS  Google Scholar 

  41. Pascual, D.W. & Bost, K.L. Anti-peptide antibodies recognize anti-substance P antibodies in an idiotypic fashion. Pept. Res. 2, 207–212 (1989).

    CAS  PubMed  Google Scholar 

  42. Routsias, J.G. et al. Idiotype-anti-idiotype circuit in non-autoimmune mice after immunization with the epitope and complementary epitope 289-308aa of La/SSB: implications for the maintenance and perpetuation of the anti-La/SSB response. J. Autoimmun. 21, 17–26 (2003).

    Article  CAS  Google Scholar 

  43. Tzioufas, A.G. & Moutsopoulos, H.M. Epitopes and complementary epitopes of autoantigens: candidate probes to study and modulate the autoimmune response. Clin. Exp. Rheumatol. 20, 289–291 (2002).

    CAS  PubMed  Google Scholar 

  44. Dwyer, D.S., Bradley, R.J., Urquhart, C.K. & Kearney, J.F. Naturally occurring anti-idiotypic antibodies in myasthenia gravis patients. Nature 301, 611–614 (1983).

    Article  CAS  Google Scholar 

  45. Mendlovic, S. et al. Induction of a systemic lupus erythematosus-like disease in mice by a common human anti-DNA idiotype. Proc. Natl. Acad. Sci. USA 85, 2260–2264 (1988).

    Article  CAS  Google Scholar 

  46. Araga, S., LeBoeuf, R.D. & Blalock, J.E. Prevention of experimental autoimmune myasthenia gravis by manipulation of the immune network with a complementary peptide for the acetylcholine receptor. Proc. Natl. Acad. Sci. USA 90, 8747–8751 (1993).

    Article  CAS  Google Scholar 

  47. Weathington, N.M. & Blalock, J.E. Rational design of peptide vaccines for autoimmune disease: harnessing molecular recognition to fix a broken network. Expert Rev. Vaccines 2, 61–73 (2003).

    Article  CAS  Google Scholar 

  48. Araga, S. & Blalock, J.E. Use of complementary peptides and their antibodies in B-cell-mediated autoimmune disease: prevention of experimental autoimmune myasthenia gravis with a peptide vaccine. Immunomethods 5, 130–135 (1994).

    Article  CAS  Google Scholar 

  49. Araga, S., Galin, F.S., Kishimoto, M., Adachi, A. & Blalock, J.B. Prevention of experimental autoimmune myasthenia gravis by a monoclonal antibody to a complementary peptide for the main immunogenic region of the acetylcholine receptors. J. Immunol. 157, 386–392 (1996).

    CAS  PubMed  Google Scholar 

  50. Araga, S., Kishimoto, M., Doi, S. & Nakashima, K. A complementary peptide vaccine that induces T cell anergy and prevents experimental allergic neuritis in Lewis rats. J. Immunol. 163, 476–482 (1999).

    CAS  PubMed  Google Scholar 

  51. Selo, I., Creminon, C., Grassi, J. & Couraud, J.Y. Anti-allergen antibodies can be neutralized by antibodies obtained against a peptide complementary to the allergen: towards a new peptide therapy for allergy. Immunol. Lett. 80, 133–138 (2002).

    Article  CAS  Google Scholar 

  52. Araga, S., Xu, L., Nakashima, K., Villain, M. & Blalock, J.E. A peptide vaccine that prevents experimental autoimmune myasthenia gravis by specifically blocking T cell help. FASEB J. 14, 185–196 (2000).

    Article  CAS  Google Scholar 

  53. Zhou, S.R. & Whitaker, J.N. Specific modulation of T cells and murine experimental allergic encephalomyelitis by monoclonal anti-idiotypic antibodies. J. Immunol. 150, 1629–1642 (1993).

    CAS  PubMed  Google Scholar 

  54. Zhou, S.R. & Whitaker, J.N. Active immunization with complementary peptide PBM 9-1: preliminary evidence that it modulates experimental allergic encephalomyelitis in PL/J mice and Lewis rats. J. Neurosci. Res. 45, 439–446 (1996).

    Article  CAS  Google Scholar 

  55. Yang, J.J. et al. Expression profile of leukocyte genes activated by anti-neutrophil cytoplasmic autoantibodies (ANCA). Kidney Int. 62, 1638–1649 (2002).

    Article  CAS  Google Scholar 

  56. Ohlsson, S., Wieslander, J. & Segelmark, M. Increased circulating levels of proteinase 3 in patients with anti-neutrophilic cytoplasmic autoantibodies-associated systemic vasculitis in remission. Clin. Exp. Immunol. 131, 528–535 (2003).

    Article  CAS  Google Scholar 

  57. Jethwa, H.S. et al. Restriction in Vκ gene use and antigen selection in anti-myeloperoxidase response in mice. J. Immunol. 165, 3890–3897 (2000).

    Article  CAS  Google Scholar 

  58. Smith, T.F. & Waterman, M.S. Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981).

    Article  CAS  Google Scholar 

  59. Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grant NIHDK-58335-01. The authors wish to thank M. Gaido for her contributions to the initial epitope mapping studies that provided clues for future direction; S.L. Hogan for statistical analysis of the data; M. Segelmark, T. Hellmark and J. Wieslander of the Department of Nephrology at the Lund University Hospital for the pcDNA3/his plasmid, purified proteinase-3, rabbit anti-PR-3 serum and guidance with the technical aspects of the PR-3-ANCA affinity purification; R.J. Preston for recommending the antisense transcript studies and for helpful comments on the manuscript; B.M. Pressler for technical assistance, discussions and comments regarding the antisense transcripts; T. Vision for help with searches for complementary proteins in sequence databases; J.J. Yang for technical assistance with antibody purification and animal handling; H. Xiao for assistance with animal immunizations; B. Siaton and E.H. Rudolph for technical assistance; and A.S. Wilkman and B.D. Phillips for assistance with human material acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald J Falk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pendergraft, W., Preston, G., Shah, R. et al. Autoimmunity is triggered by cPR-3(105–201), a protein complementary to human autoantigen proteinase-3. Nat Med 10, 72–79 (2004). https://doi.org/10.1038/nm968

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm968

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing