Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock

Abstract

To identify new components that regulate the inflammatory cascade during sepsis, we characterized the functions of myeloid-related protein-8 (Mrp8, S100A8) and myeloid-related protein-14 (Mrp14, S100A9), two abundant cytoplasmic proteins of phagocytes. We now demonstrate that mice lacking Mrp8-Mrp14 complexes are protected from endotoxin-induced lethal shock and Escherichia coli–induced abdominal sepsis. Both proteins are released during activation of phagocytes, and Mrp8-Mrp14 complexes amplify the endotoxin-triggered inflammatory responses of phagocytes. Mrp8 is the active component that induces intracellular translocation of myeloid differentiation primary response protein 88 and activation of interleukin-1 receptor–associated kinase-1 and nuclear factor-κB, resulting in elevated expression of tumor necrosis factor-α (TNF-α). Using phagocytes expressing a nonfunctional Toll-like receptor 4 (TLR4), HEK293 cells transfected with TLR4, CD14 and MD2, and by surface plasmon resonance studies in vitro, we demonstrate that Mrp8 specifically interacts with the TLR4-MD2 complex, thus representing an endogenous ligand of TLR4. Therefore Mrp8-Mrp14 complexes are new inflammatory components that amplify phagocyte activation during sepsis upstream of TNFα–dependent effects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of LPS on Mrp14−/− mouse bone marrow cells (BMCs).
Figure 2: Extracellular Mrp8-Mrp14 and Mrp8 augment LPS signaling.
Figure 3: Mrp8 and LPS signaling are dependent on MAP kinase p38, ERK and PKC.
Figure 4: Mrp8 induces TLR4–dependent TNF-α expression.
Figure 5: Binding of Mrp8 to the TLR4 signaling complex.
Figure 6: Mrp8-Mrp14 and Mrp8 promote LPS-induced shock.

Similar content being viewed by others

References

  1. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  Google Scholar 

  2. Beutler, B. & Rietschel, E.T. Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol. 3, 169–176 (2003).

    Article  CAS  Google Scholar 

  3. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  Google Scholar 

  4. Ulevitch, R.J. Therapeutics targeting the innate immune system. Nat. Rev. Immunol. 4, 512–520 (2004).

    Article  CAS  Google Scholar 

  5. Lotze, M.T. & Tracey, K.J. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat. Rev. Immunol. 5, 331–342 (2005).

    Article  CAS  Google Scholar 

  6. Srivastava, P. Roles of heat-shock proteins in innate and adaptive immunity. Nat. Rev. Immunol. 2, 185–194 (2002).

    Article  CAS  Google Scholar 

  7. Tsan, M.F. & Gao, B. Endogenous ligands of Toll-like receptors. J. Leukoc. Biol. 76, 514–519 (2004).

    Article  CAS  Google Scholar 

  8. Lolis, E. & Bucala, R. Therapeutic approaches to innate immunity: severe sepsis and septic shock. Nat. Rev. Drug Discov. 2, 635–645 (2003).

    Article  CAS  Google Scholar 

  9. Angus, D.C. et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29, 1303–1310 (2001).

    Article  CAS  Google Scholar 

  10. Foell, D. & Roth, J. Proinflammatory S100 proteins in arthritis and autoimmune disease. Arthritis Rheum. 50, 3762–3771 (2004).

    Article  CAS  Google Scholar 

  11. Roth, J. et al. MRP8 and MRP14, S-100-like proteins associated with myeloid differentiation, are translocated to plasma membrane and intermediate filaments in a calcium-dependent manner. Blood 82, 1875–1883 (1993).

    CAS  PubMed  Google Scholar 

  12. Roth, J., Vogl, T., Sorg, C. & Sunderkotter, C. Phagocyte-specific S100 proteins: a novel group of proinflammatory molecules. Trends Immunol. 24, 155–158 (2003).

    Article  CAS  Google Scholar 

  13. Odink, K. et al. Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature 330, 80–82 (1987).

    Article  CAS  Google Scholar 

  14. Vogl, T., Roth, J., Sorg, C., Hillenkamp, F. & Strupat, K. Calcium-induced noncovalently linked tetramers of MRP8 and MRP14 detected by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 10, 1124–1130 (1999).

    Article  CAS  Google Scholar 

  15. Vogl, T. et al. MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood 104, 4260–4268 (2004).

    Article  CAS  Google Scholar 

  16. Manitz, M.P. et al. Loss of S100A9 (MRP14) results in a reduced IL-8 induced CD11b surface expression, a polarized microfilament system and a diminished responsiveness upon chemoattractants in vitro. Mol. Cell. Biol. 23, 1034–1043 (2003).

    Article  CAS  Google Scholar 

  17. Hobbs, J.A. et al. Myeloid cell function in MRP-14 (S100A9) null mice. Mol. Cell. Biol. 23, 2564–2576 (2003).

    Article  CAS  Google Scholar 

  18. Frosch, M. et al. Myeloid-related proteins 8 and 14 are specifically secreted during interaction of phagocytes and activated endothelium and are useful markers for monitoring disease activity in pauciarticular-onset juvenile rheumatoid arthritis. Arthritis Rheum. 43, 628–637 (2000).

    Article  CAS  Google Scholar 

  19. Rammes, A. et al. Myeloid related protein (MRP) 8 and MRP14, calcium-binding proteins of the S100 family, are secreted by activated monocytes via a novel, tubulin-dependent pathway. J. Biol. Chem. 272, 9496–9502 (1997).

    Article  CAS  Google Scholar 

  20. Viemann, D. et al. Myeloid-related proteins 8 and 14 induce a specific inflammatory response in human microvascular endothelial cells. Blood 105, 2955–2962 (2005).

    Article  CAS  Google Scholar 

  21. Ehrhardt, C. et al. Polyethylenimine, a cost-effective transfection reagent. Signal Transduct. 6, 179–184 (2006).

    Article  CAS  Google Scholar 

  22. Ludwig, S. et al. Influenza virus-induced AP-1–dependent gene expression requires activation of the JNK signaling pathway. J. Biol. Chem. 276, 10990–10998 (2001).

    Article  CAS  Google Scholar 

  23. Galanos, C., Freudenberg, M.A. & Reutter, W. Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc. Natl. Acad. Sci. USA 76, 5939–5943 (1979).

    Article  CAS  Google Scholar 

  24. Sampson, B. et al. Hyperzincaemia and hypercalprotectinaemia: a new disorder of zinc metabolism. Lancet 360, 1742–1745 (2002).

    Article  CAS  Google Scholar 

  25. Haziot, A. et al. Resistance to endotoxin shock and reduced dissemination of Gram-negative bacteria in CD14-deficient mice. Immunity 4, 407–414 (1996).

    Article  CAS  Google Scholar 

  26. Jack, R.S. et al. Lipopolysaccharide-binding protein is required to combat a murine gram-negative bacterial infection. Nature 389, 742–745 (1997).

    Article  CAS  Google Scholar 

  27. Wurfel, M.M. et al. Targeted deletion of the lipopolysaccharide (LPS)-binding protein gene leads to profound suppression of LPS responses ex vivo, whereas in vivo responses remain intact. J. Exp. Med. 186, 2051–2056 (1997).

    Article  CAS  Google Scholar 

  28. Marino, M.W. et al. Characterization of tumor necrosis factor-deficient mice. Proc. Natl. Acad. Sci. USA 94, 8093–8098 (1997).

    Article  CAS  Google Scholar 

  29. Kotlyarov, A. et al. MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis. Nat. Cell Biol. 1, 94–97 (1999).

    Article  CAS  Google Scholar 

  30. Shimazu, R. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777–1782 (1999).

    Article  CAS  Google Scholar 

  31. Passey, R.J. et al. A null mutation in the inflammation-associated S100 protein S100A8 causes early resorption of the mouse embryo. J. Immunol. 163, 2209–2216 (1999).

    CAS  PubMed  Google Scholar 

  32. Corr, M. The tolls of arthritis. Arthritis Rheum. 52, 2233–2236 (2005).

    Article  CAS  Google Scholar 

  33. Hofmann, M.A. et al. RAGE mediates a novel proinflammatory axis: A central cell surface receptor for S100/calgranulin polypeptides. Cell 97, 889–901 (1999).

    Article  CAS  Google Scholar 

  34. Fuellen, G., Foell, D., Nacken, W., Sorg, C. & Kerkhoff, C. Absence of S100A12 in mouse: implications for RAGE-S100A12 interaction. Trends Immunol. 24, 622–624 (2003).

    Article  CAS  Google Scholar 

  35. Clark, M.A. et al. Effect of a chimeric antibody to tumor necrosis factor-alpha on cytokine and physiologic responses in patients with severe sepsis–a randomized, clinical trial. Crit. Care Med. 26, 1650–1659 (1998).

    Article  CAS  Google Scholar 

  36. Fisher, C.J. Jr. et al. Treatment of septic shock with the tumor necrosis factor receptor:Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group. N. Engl. J. Med. 334, 1697–1702 (1996).

    Article  CAS  Google Scholar 

  37. Vandal, K. et al. Blockade of S100A8 and S100A9 suppresses neutrophil migration in response to lipopolysaccharide. J. Immunol. 171, 2602–2609 (2003).

    Article  CAS  Google Scholar 

  38. Brandl, K., Gluck, T., Hartmann, P., Salzberger, B. & Falk, W. A designed TLR4/MD-2 complex to capture LPS. J. Endotoxin Res. 11, 197–206 (2005).

    Article  CAS  Google Scholar 

  39. Qureshi, S.T. et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. 189, 615–625 (1999).

    Article  CAS  Google Scholar 

  40. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  Google Scholar 

  41. Hunter, M.J. & Chazin, W.J. High level expression and dimer characterization of the S100 EF-hand proteins, migration inhibitory factor-related proteins 8 and 14. J. Biol. Chem. 273, 12427–12435 (1998).

    Article  CAS  Google Scholar 

  42. Viemann, D. et al. Transcriptional profiling of IKK2/NF-kappa B- and p38 MAP kinase-dependent gene expression in TNF-alpha–stimulated primary human endothelial cells. Blood 103, 3365–3373 (2004).

    Article  CAS  Google Scholar 

  43. Tenbrock, K., Juang, Y.T., Tolnay, M. & Tsokos, G.C. The cyclic adenosine 5′-monophosphate response element modulator suppresses IL-2 production in stimulated T cells by a chromatin-dependent mechanism. J. Immunol. 170, 2971–2976 (2003).

    Article  CAS  Google Scholar 

  44. Bosisio, D. et al. Stimulation of Toll-like receptor 4 expression in human mononuclear phagocytes by interferon-gamma: a molecular basis for priming and synergism with bacterial lipopolysaccharide. Blood 99, 3427–3431 (2002).

    Article  CAS  Google Scholar 

  45. Ahmad-Nejad, P. et al. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. J. Immunol. 32, 1958–1968 (2002).

    Article  CAS  Google Scholar 

  46. Nacken, W., Sopalla, C., Propper, C., Sorg, C. & Kerkhoff, C. Biochemical characterization of the murine S100A9 (MRP14) protein suggests that it is functionally equivalent to its human counterpart despite its low degree of sequence homology. Eur. J. Biochem. 267, 560–565 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Sachs, H. Berheide, E. Nattkemper, J. Daalhuisen and K. Övermöhle for excellent technical assistance; P. Björk (Active Biotech, Lund) for performing surface plasmon resonance studies and W. Falk (Department of Internal Medicine I, University of Regensburg, Germany) for providing D. melanogaster Schneider 2 (S2) cells expressing mouseTLR4-MD2. This work was supported by the Interdisciplinary Clinical Research Centre of the University of Muenster (grant Ro20/12/06 to J.R.) and the German Research Foundation (grant SFB293 A16 to J.R.).

Author information

Authors and Affiliations

Authors

Contributions

T.V. designed the study and the experiments, performed animal studies and experiments and wrote the manuscript. K.T. performed the ChIP experiments and analyzed data. S.L. and C.E. performed cell-culture experiments and transfection studies. N.L. and D.F. performed the immunohistological analyses and flow cytometry. M.A.D.v.Z. and T.v.d.P. performed and analyzed animal studies. W.N. generated the Mrp14−/− mice and assisted with the animal studies. C.S. assisted with the design of experiments. J.R. designed the study and experiments, analyzed data, supervised the study and wrote the manuscript.

Corresponding author

Correspondence to Johannes Roth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods (PDF 80 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogl, T., Tenbrock, K., Ludwig, S. et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13, 1042–1049 (2007). https://doi.org/10.1038/nm1638

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1638

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing