Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antimicrobial activity of mucosal-associated invariant T cells

A Corrigendum to this article was published on 01 October 2010

This article has been updated

Abstract

Mucosal-associated invariant T lymphocytes (MAIT lymphocytes) are characterized by two evolutionarily conserved features: an invariant T cell antigen receptor (TCR) α-chain and restriction by the major histocompatibility complex (MHC)-related protein MR1. Here we show that MAIT cells were activated by cells infected with various strains of bacteria and yeast, but not cells infected with virus, in both humans and mice. This activation required cognate interaction between the invariant TCR and MR1, which can present a bacteria-derived ligand. In humans, we observed considerably fewer MAIT cells in blood from patients with bacterial infections such as tuberculosis. In the mouse, MAIT cells protected against infection by Mycobacterium abscessus or Escherichia coli. Thus, MAIT cells are evolutionarily conserved innate-like lymphocytes that sense and help fight off microbial infection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human MAIT cells respond to bacteria-infected monocytes in an MR1-dependent manner.
Figure 2: Human MAIT cells are less abundant in the blood of bacteria-infected patients.
Figure 3: T cells from mice transgenic for the specific MAIT TCR Vα and/or Vβ chains respond to E. coli–infected APCs through MR1.
Figure 4: MAIT cell activation requires a highly conserved cognate interaction between MR1 and the TCR, as well as internalization of exogenous compounds, but is independent of the classical MHC class I and class II presentation pathways.
Figure 5: MAIT cells respond to phylogenetically diverse microbes.
Figure 6: Fibroblastic cells can induce MAIT cell activation through MR1, which can present an exogenous bacteria–derived ligand.
Figure 7: Bacteria-dependent population expansion of MAIT cells, activation at the site of infection and antibacterial function.
Figure 8: Antimycobacterial activity of MAIT cells.

Similar content being viewed by others

Change history

  • 13 August 2010

    In the version of this article initially published, the author Shouxiong Huang (Department of Pathology and Immunology, Washington University, St. Louis, Missouri, USA) was not included. This author should be listed as author 15 (and affiliation 8). The error has been corrected in the HTML and PDF versions of the article.

References

  1. Kearney, J.F. Innate-like B cells. Springer Semin. Immunopathol. 26, 377–383 (2005).

    Article  PubMed  Google Scholar 

  2. Montecino-Rodriguez, E. & Dorshkind, K. New perspectives in B-1 B cell development and function. Trends Immunol. 27, 428–433 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Hayday, A. & Tigelaar, R. Immunoregulation in the tissues by γδ T cells. Nat. Rev. Immunol. 3, 233–242 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Bendelac, A., Savage, P.B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Bendelac, A., Bonneville, M. & Kearney, J.F. Autoreactivity by design: innate B and T lymphocytes. Nat. Rev. Immunol. 1, 177–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Riegert, P., Wanner, V. & Bahram, S. Genomics, isoforms, expression, and phylogeny of the MHC class I-related MR1 gene. J. Immunol. 161, 4066–4077 (1998).

    CAS  PubMed  Google Scholar 

  7. Treiner, E. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Martin, E. et al. Stepwise development of MAIT cells in mouse and human. PLoS Biol. 7, e54 (2009).

    Article  PubMed  Google Scholar 

  9. Tilloy, F. et al. An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted α/β T cell subpopulation in mammals. J. Exp. Med. 189, 1907–1921 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kawachi, I., Maldonado, J., Strader, C. & Gilfillan, S. MR1-restricted V alpha 19i mucosal-associated invariant T cells are innate T cells in the gut lamina propria that provide a rapid and diverse cytokine response. J. Immunol. 176, 1618–1627 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Croxford, J.L., Miyake, S., Huang, Y.Y., Shimamura, M. & Yamamura, T. Invariant V(alpha)19i T cells regulate autoimmune inflammation. Nat. Immunol. 7, 987–994 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Santos-Sierra, S., Golenbock, D.T. & Henneke, P. Toll-like receptor-dependent discrimination of streptococci. J. Endotoxin Res. 12, 307–312 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Texereau, J. et al. The importance of Toll-like receptor 2 polymorphisms in severe infections. Clin. Infect. Dis. 41 Suppl 7, S408–S415 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Kawai, T. & Akira, S. TLR signaling. Semin. Immunol. 19, 24–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, F.X. et al. Bacterial lipopolysaccharide activates nuclear factor-κB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J. Biol. Chem. 274, 7611–7614 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Hoebe, K. et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Girardin, S.E. et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Girardin, S.E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Petrilli, V. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14, 1583–1589 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Eisenbarth, S.C., Colegio, O.R., O'Connor, W., Sutterwala, F.S. & Flavell, R.A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meylan, E. et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167–1172 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Seth, R.B., Sun, L., Ea, C.K. & Chen, Z.J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3. Cell 122, 669–682 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Xu, L.G. et al. VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell 19, 727–740 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Huang, S. et al. MR1 antigen presentation to mucosal-associated invariant T cells was highly conserved in evolution. Proc. Natl. Acad. Sci. USA 106, 8290–8295 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang, S. et al. MR1 uses an endocytic pathway to activate mucosal-associated invariant T cells. J. Exp. Med. 205, 1201–1211 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rottman, M. et al. Importance of T cells, gamma interferon, and tumor necrosis factor in immune control of the rapid grower Mycobacterium abscessus in C57BL/6 mice. Infect. Immun. 75, 5898–5907 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mazmanian, S.K., Liu, C.H., Tzianabos, A.O. & Kasper, D.L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Ivanov, I.I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Shimamura, M. et al. Modulation of Vα19 NKT cell immune responses by α-mannosyl ceramide derivatives consisting of a series of modified sphingosines. Eur. J. Immunol. 37, 1836–1844 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Schumann, J. et al. Differential alteration of lipid antigen presentation to NKT cells due to imbalances in lipid metabolism. Eur. J. Immunol. 37, 1431–1441 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Fritz, J.H., Ferrero, R.L., Philpott, D.J. & Girardin, S.E. Nod-like proteins in immunity, inflammation and disease. Nat. Immunol. 7, 1250–1257 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Kawai, T. & Akira, S. TLR signaling. Cell Death Differ. 13, 816–825 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Mattner, J. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Paget, C. et al. Activation of invariant NKT cells by Toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity 27, 597–609 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Chen, L. & Jondal, M. TLR9 activation increases TAP-independent vesicular MHC class I processing in vivo. Scand. J. Immunol. 70, 431–438 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Stober, D., Trobonjaca, Z., Reimann, J. & Schirmbeck, R. Dendritic cells pulsed with exogenous hepatitis B surface antigen particles efficiently present epitopes to MHC class I-restricted cytotoxic T cells. Eur. J. Immunol. 32, 1099–1108 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Gulden, P.H. et al. A Listeria monocytogenes pentapeptide is presented to cytolytic T lymphocytes by the H2–M3 MHC class Ib molecule. Immunity 5, 73–79 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Lenz, L.L., Dere, B. & Bevan, M.J. Identification of an H2–M3-restricted Listeria epitope: implications for antigen presentation by M3. Immunity 5, 63–72 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jouanguy, E. et al. IL-12 and IFN-γ in host defense against mycobacteria and salmonella in mice and men. Curr. Opin. Immunol. 11, 346–351 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Fritz, J.H. et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26, 445–459 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Kanneganti, T.D. et al. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J. Biol. Chem. 281, 36560–36568 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Paz, S. et al. Induction of IRF-3 and IRF-7 phosphorylation following activation of the RIG-I pathway. Cell. Mol. Biol. 52, 17–28 (2006).

    CAS  PubMed  Google Scholar 

  46. Yao, Y., Li, W., Kaplan, M.H. & Chang, C.H. Interleukin (IL)-4 inhibits IL-10 to promote IL-12 production by dendritic cells. J. Exp. Med. 201, 1899–1903 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Hansen (Washington University in St. Louis) for anti-MR1 and cell lines overexpressing MR1; J. Cadranel (Tenon Hospital) for lung biopsies; M. Chignard (Institut Pasteur) for MyD88-deficient bone marrow; L. Alexopoulou (Centre d'Immunologie de Marseille-Luminy) for TRIF-deficient bone marrow; D. Philpott (University of Toronto) for Nod1-Nod2–deficient bone marrow; J. Tschopp (University of Lausanne) for NLRP3-ASC–deficient bone marrow; M. Albert (Institut Pasteur) for IPS-1-deficient bone marrow; the microbiology department of the Curie Institute for bacterial strains; V. Sancho-Shimizu (Faculté Necker–Institut National de la Santé et de la Recherche Médicale U550) for viruses; M. Garcia, C. Billerit, S. Boissel and I. Grandjean for managing the mouse colonies; Z. Maciorowski and A. Viguier for cell sorting; and L. Guerri, V. Soumelis and S. Amigorena for critical reading of the manuscript. Supported by Institut National de la Santé et de la Recherche Médicale, Centre d′Investigation Clinique en Biothérapie 507 Institut National de la Santé et de la Recherche Médicale and Agence National de Recherches.

Author information

Authors and Affiliations

Authors

Contributions

L.L.B., E.M., M.C., M.D., E.L. and C.S. did most experiments; M.R. provided M. abscessus and did M. abscessus experiments with C.S.; A.G., V.M. and C.N. provided patient samples; I.P., D.R. and V.P. analyzed patient samples; N.F. managed germ-free mice and did the reconstitution experiments with L.D. and E.M.; B.R. did in vivo influenza experiments; L.L.B., E.M., C.S. and O.L. designed experiments; and L.L.B., C.S. and O.L. wrote the manuscript.

Corresponding author

Correspondence to Olivier Lantz.

Ethics declarations

Competing interests

O.L. is inventor of a patent describing uses for manipulating the interactions between MAIT cell TCRs and MR1. For this reason, the O.L. laboratory has received some subsidies from Innate Pharma.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 750 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Bourhis, L., Martin, E., Péguillet, I. et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol 11, 701–708 (2010). https://doi.org/10.1038/ni.1890

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1890

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing