Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The gene for triphalangeal thumb maps to the subtelomeric region of chromosome 7q

Abstract

Triphalangeal thumb is a developmental anomaly, sometimes dominantly transmitted, characterized by a long, finger–like thumb with three phalanges instead of two. The underlying genetic defect is unknown, but presumably involves genes that regulate the differentiation of the developing forelimb. In two large kindreds with triphalangeal thumb, evidence for linkage to the long arm of chromosome 7 was obtained with a maximum lod score of 12.61. Multipoint linkage and haplotype analysis placed the gene close to the telomere of the long arm. To our knowledge this is the first time that a human gene involved solely in the pathologic morphogenesis of the hand and feet has been localized.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Qazi, Q. & Kassner, E.G. Triphalangeal thumb. J. med. Genet. 25, 505–520 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tentamy, S. & McKusick, V. The genetics of hand malformations. Birth Defects 14, 3–128 (1978).

    Google Scholar 

  3. Winter, R.M. & Tickle, C. Syndactylies and Polydactylies: Embryological Overview and Suggested Classification. Eur. J. hum. Genet. 1, 96–104 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Lapidus, P.W., Guidotti, F.P. & Coletti, C.J., Report of six cases. Surg. Gynecol. Obste. 77, 178–186 (1943).

    Google Scholar 

  5. Dolle, P., Izpisua-Belmonte, J.C., Falkenstein, H., Renucci, A. & Duboule, D. Coordinate expression of the murine Hox-5 complex genes during limb pattern formation. Nature 342, 767–772 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Dolle, P., Izpisua-Belmonte, J.C., Boncinelli, E. & Duboule, D. The Hox-4.8 gene is localized at the 5' extremity of the Hox-4 complex and is expressed in the most posterior parts of the body during development. Mech. Dev. 36, 3–13 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Yokouchi, Y., Sasaki, H. & Kuroiwa, A. Homeobox gene expression correlated with the buriflcation process of limb cartilage development. Nature 353, 443–445 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Morgan, B.A., Izpisua-Belmonte, J.C., Duboule, D. & Tabin, C.J. Targeted mlsexpression of Hox-4.6 in the avian limb bud causes apparent homeotic transformation. Nature 358, 236–239 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Tabin, C.J. Why we have (only) five fingers per hand: Hox genes and the evolution of paired limbs. Development 116, 289–296 (1992).

    CAS  PubMed  Google Scholar 

  10. Tabin, C.J., Retinoids, homeoboxes, and growth factors: Toward molecular models for limb development. Cell 66, 199–217 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Rosen, D.R. & Brown, R.H., Jr.Dinucleotide repeat polymorphism in the HOX4E locus. Hum. molec. Genet. 2, 617 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Weissenbach, J. et al. A second generation linkage map of the human genome. Nature 359, 794–801 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Hing, A.V., Helms, C. & Donis-Keller, H. VNTR and microsatellite polymorphisms within the subtelomeric region of 7q. Am. J. hum. Genet. 53, 509–517 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nicolai, J-P.A. & Hamel, B.J.C. A family with complex bilateral polydactyly. J. hand Surg. 13A, 417–419 (1988).

    Google Scholar 

  15. Radnakrisnna, U., Multani, A.S., Solanki, J.V., Shah, V.C. & Niloufer, J.C. Polydactyly: a study of five generation Indian family. J. med. Genet. 30, 296–299 (1993).

    Article  Google Scholar 

  16. Warm, A., Di Pietro, C., D'Agrosa, F., Gamblé, M. & Gaboardi, F. Non-opposable triphalangeal thumb in an Italian family. J. med. Genet. 25, 337–339 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vortkamp, A., Gessler, M. & Grzeschik, K-H. GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature 352, 539–540 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Mann, W.R. et al. Fanconi anemia: evidence for linkage heterogeneity on chromosome 20q. Genomics 9, 329–337 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Turleau, C. et al. Two patients with interstitial del (14q), one with features of Holt-Oram syndrome: exclusion mapping of Pl (alpha-1-antitrypsin). Ann. Genet. 27, 237–240 (1984).

    CAS  PubMed  Google Scholar 

  20. Brook, J.D. et al. Holt-Oram syndrome gene is a genetically heterogenerous disease with one locus mapping to human chromosome 12q. Nature Genet. (in the press).

  21. Logan, C., Willard, H.F., Rommens, J.M. & Joyner, A.L. Localization of the Human Homeobox-Containing Genes, En-1 and En-2. Genomics 4, 206–209 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Poole, S.J., Law, M.L., Kao, F-T. & Lau, Y-F. Isolation and Chromosomal Localization of the Human En-2 Gene. Genomics 4, 225–231 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Davis, C.A., Holmyard, D.P., Millen, K.J. & Joyner, A.L. Examining pattern formation in mouse, chicken and frog embryos with an En-specific antiserum. Development 111, 287–298 (1991).

    CAS  PubMed  Google Scholar 

  24. Han, K. & Manley, J.L. Functional domains of the Drosophila Engrailed protein. EMBO J. 12, 2723–2733 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Joyner, A.L. & Martin, G.R. En-1 and En-2, two mouse genes with sequence homology to the Drosophila engrailed gene: Expression during development. Genes Dev. 1, 29–38 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Martin, G.R., Richman, M., Reinsch, S., Nadeau, J.H. & Joyner, A. Mapping of the two mouse engrailed-like genes: close linkage of En-1 to dominant hemimelia (Dh) on chromosome 1 and of En-2 to hemimelic extra-toes (Hx) on chromosome 5. Genomics 6, 302–308 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Knudsen, T.B. & Kochhar, D.M. The role of morphogenetic cell death during abnormal limb-bud outgrowth in mice heterozygous for the dominant mutation hemimelia-extra toe (Hmx). J. Embryol. exp. Morphol. 65, 289–307 (1981).

    PubMed  Google Scholar 

  28. Green, M.C. Mouse News Lett. 31, 27 (1964).

    Google Scholar 

  29. Sweet, H.O. Mouse News Lett. 66, 66 (1982).

    Google Scholar 

  30. Miller, S.A., Dykes, D.D. & Polesky, H.F. A simple salting out procedure for for extracting DNA from human nucleated cells. Nucl. Acids Res. 16, 1215 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weeks, D.E. & Ott, J. SLINK: a general simulation program for linkage analysis. Am. J. hum. Genet. 47, A204 (1990).

    Google Scholar 

  32. Lathrop, G.M., Lalouel, J.M., Julier, C. & Ott, J. Strategies for multilocus linkage analysis in humans. Proc. natn. Acad. Sci. U.S.A. 81, 3443–3446 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heutink, P., Zguricas, J., Oosterhout, L. et al. The gene for triphalangeal thumb maps to the subtelomeric region of chromosome 7q. Nat Genet 6, 287–292 (1994). https://doi.org/10.1038/ng0394-287

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0394-287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing