Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis

Abstract

The increased burden of chronic kidney and end-stage kidney diseases (ESKD) in populations of African ancestry has been largely unexplained. To identify genetic variants predisposing to idiopathic and HIV-1–associated focal segmental glomerulosclerosis (FSGS), we carried out an admixture-mapping linkage-disequilibrium genome scan on 190 African American individuals with FSGS and 222 controls. We identified a chromosome 22 region with a genome-wide logarithm of the odds (lod) score of 9.2 and a peak lod of 12.4 centered on MYH9, a functional candidate gene expressed in kidney podocytes. Multiple MYH9 SNPs and haplotypes were recessively associated with FSGS, most strongly a haplotype spanning exons 14 through 23 (OR = 5.0, 95% CI = 3.5–7.1; P = 4 × 10−23, n = 852). This association extended to hypertensive ESKD (OR = 2.2, 95% CI = 1.5–3.4; n = 433), but not type 2 diabetic ESKD (n = 476). Genetic variation at the MYH9 locus substantially explains the increased burden of FSGS and hypertensive ESKD among African Americans.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome-wide admixture analysis and chromosome 22 gene localization.
Figure 2: MYH9 linkage disequilibrium and associations.
Figure 3: Frequencies of the three genotypes for the MYH9 SNPs rs4821480, rs2032487, rs4821481 and rs3752462, and haplotype E-1, the most frequent haplotype containing the four SNPs, in African American and European American FSGS cases and controls.

Similar content being viewed by others

References

  1. Coresh, J. et al. Prevalence of chronic kidney disease in the United States. J. Am. Med. Assoc. 298, 2038–2047 (2007).

    Article  CAS  Google Scholar 

  2. Kiberd, B.A. & Clase, C.M. Cumulative risk for developing end-stage renal disease in the US population. J. Am. Soc. Nephrol. 13, 1635–1644 (2002).

    Article  Google Scholar 

  3. Cowie, C.C. et al. Disparities in incidence of diabetic end-stage renal disease according to race and type of diabetes. N. Engl. J. Med. 321, 1074–1079 (1989).

    Article  CAS  Google Scholar 

  4. Toto, R.D. Proteinuria and hypertensive nephrosclerosis in African Americans. Kidney Int. Suppl. 66, S102–S104 (2004).

    Article  Google Scholar 

  5. Fernandez, M. et al. A multiethnic, multicenter cohort of patients with systemic lupus erythematosus (SLE) as a model for the study of ethnic disparities in SLE. Arthritis Rheum. 57, 576–584 (2007).

    Article  Google Scholar 

  6. Kitiyakara, C., Eggers, P. & Kopp, J.B. Twenty-one-year trend in ESRD due to focal segmental glomerulosclerosis in the United States. Am. J. Kidney Dis. 44, 815–825 (2004).

    Article  Google Scholar 

  7. Kopp, J.B. & Winkler, C. HIV-associated nephropathy in African Americans. Kidney Int. Suppl. 63, S43–S49 (2003).

    Article  Google Scholar 

  8. Schwartz, E.J. & Klotman, P.E. Pathogenesis of human immunodeficiency virus (HIV)-associated nephropathy. Semin. Nephrol. 18, 436–445 (1998).

    CAS  PubMed  Google Scholar 

  9. Powe, N.R. To have and have not: health and health care disparities in chronic kidney disease. Kidney Int. 64, 763–772 (2003).

    Article  Google Scholar 

  10. Barisoni, L., Schnaper, H.W. & Kopp, J.B. A proposed taxonomy for the podocytopathies: a reassessment of the primary nephrotic diseases. Clin. J. Am. Soc. Nephrol. 2, 529–542 (2007).

    Article  Google Scholar 

  11. Kitiyakara, C., Kopp, J.B. & Eggers, P. Trends in the epidemiology of focal segmental glomerulosclerosis. Semin. Nephrol. 23, 172–182 (2003).

    Article  Google Scholar 

  12. Eggers, P.W. & Kimmel, P.L. Is there an epidemic of HIV infection in the US ESRD program? J. Am. Soc. Nephrol. 15, 2477–2485 (2004).

    Article  Google Scholar 

  13. Freedman, M.L. et al. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc. Natl. Acad. Sci. USA 103, 14068–14073 (2006).

    Article  CAS  Google Scholar 

  14. Yeager, M. et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet. 39, 645–649 (2007).

    Article  CAS  Google Scholar 

  15. Zhu, X. et al. Admixture mapping for hypertension loci with genome-scan markers. Nat. Genet. 37, 177–181 (2005).

    Article  CAS  Google Scholar 

  16. Reich, D. et al. A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility. Nat. Genet. 37, 1113–1118 (2005).

    Article  CAS  Google Scholar 

  17. Nalls, M.A. et al. Admixture mapping of white cell count: genetic locus responsible for lower white blood cell count in the Health ABC and Jackson Heart studies. Am. J. Hum. Genet. 82, 81–87 (2008).

    Article  CAS  Google Scholar 

  18. Reich, D. et al. Admixture mapping of an allele affecting interleukin 6 soluble receptor and interleukin 6 levels. Am. J. Hum. Genet. 80, 716–726 (2007).

    Article  CAS  Google Scholar 

  19. Smith, M.W. et al. A high density admixture map for disease gene discovery in African Americans. Am. J. Hum. Genet. 74, 1001–1013 (2004).

    Article  CAS  Google Scholar 

  20. Patterson, N. et al. Methods for high-density admixture mapping of disease genes. Am. J. Hum. Genet. 74, 979–1000 (2004).

    Article  CAS  Google Scholar 

  21. Zhu, X., Tang, H. & Risch, N. Admixture mapping and the role of population structure for localizing disease genes. Adv. Genet. 60, 547–569 (2008).

    Article  Google Scholar 

  22. Arrondel, C. et al. Expression of the nonmuscle myosin heavy chain IIA in the human kidney and screening for MYH9 mutations in Epstein and Fechtner syndromes. J. Am. Soc. Nephrol. 13, 65–74 (2002).

    CAS  PubMed  Google Scholar 

  23. The International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  24. Price, A.L. et al. Discerning the ancestry of European Americans in genetic association studies. PLoS Genet. 4, e236 (2008).

    Article  Google Scholar 

  25. Wiggins, R.C. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int. 71, 1205–1214 (2007).

    Article  CAS  Google Scholar 

  26. Winn, M.P. Approach to the evaluation of heritable diseases and update on familial focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 18 (Suppl. 6), vi14–vi20 (2003).

    CAS  PubMed  Google Scholar 

  27. McKenzie, L.M. et al. NPHS2 variation in sporadic focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 18, 2987–2995 (2007).

    Article  CAS  Google Scholar 

  28. Orloff, M.S. et al. Variants in the Wilms' tumor gene are associated with focal segmental glomerulosclerosis in the African American population. Physiol. Genomics 21, 212–221 (2005).

    Article  CAS  Google Scholar 

  29. Kao, W.H.L. et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat. Genet. advance online publication, doi:10.1038/ng.232 (14 September 2008).

  30. Sellers, J.R. Myosins: a diverse superfamily. Biochim. Biophys. Acta 1496, 3–22 (2000).

    Article  CAS  Google Scholar 

  31. Dong, F. et al. Genotype-phenotype correlation in MYH9-related thrombocytopenia. Br. J. Haematol. 130, 620–627 (2005).

    Article  CAS  Google Scholar 

  32. Ghiggeri, G.M. et al. Genetics, clinical and pathological features of glomerulonephritis associated with mutations of nonmuscle myosin IIA (Fechtner syndrome). Am. J. Kidney Dis. 41, 95–104 (2003).

    Article  CAS  Google Scholar 

  33. Matsushita, T. et al. Targeted disruption of mouse ortholog of the human MYH9 responsible for macrothrombocytopenia with different organ involvement: hematological, nephrological, and otological studies of heterozygous KO mice. Biochem. Biophys. Res. Commun. 325, 1163–1171 (2004).

    Article  CAS  Google Scholar 

  34. Kaplan, J.M. et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat. Genet. 24, 251–256 (2000).

    Article  CAS  Google Scholar 

  35. Kim, J.M. et al. CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science 300, 1298–1300 (2003).

    Article  CAS  Google Scholar 

  36. Asanuma, K. et al. Synaptopodin orchestrates actin organization and cell motility via regulation of RhoA signalling. Nat. Cell Biol. 8, 485–491 (2006).

    Article  CAS  Google Scholar 

  37. Freedman, B.I., Iskandar, S.S. & Appel, R.G. The link between hypertension and nephrosclerosis. Am. J. Kidney Dis. 25, 207–221 (1995).

    Article  CAS  Google Scholar 

  38. Zarif, L. et al. Inaccuracy of clinical phenotyping parameters for hypertensive nephrosclerosis. Nephrol. Dial. Transplant. 15, 1801–1807 (2000).

    Article  CAS  Google Scholar 

  39. Fogo, A. et al. Accuracy of the diagnosis of hypertensive nephrosclerosis in African Americans: a report from the African American Study of Kidney Disease (AASK) Trial. AASK Pilot Study Investigators. Kidney Int. 51, 244–252 (1997).

    Article  CAS  Google Scholar 

  40. Marcantoni, C., Ma, L.J., Federspiel, C. & Fogo, A.B. Hypertensive nephrosclerosis in African Americans versus Caucasians. Kidney Int. 62, 172–180 (2002).

    Article  Google Scholar 

  41. O'Brien, S.J. & Nelson, G.W. Human genes that limit AIDS. Nat. Genet. 36, 565–574 (2004).

    Article  CAS  Google Scholar 

  42. Freedman, B.I. et al. A genome scan for ESRD in black families enriched for nondiabetic nephropathy. J. Am. Soc. Nephrol. 15, 2719–2727 (2004).

    Article  CAS  Google Scholar 

  43. Bowden, D.W. et al. A genome scan for diabetic nephropathy in African Americans. Kidney Int. 66, 1517–1526 (2004).

    Article  CAS  Google Scholar 

  44. Thorisson, G.A., Smith, A.V., Krishnan, L. & Stein, L.D. The International HapMap Project web site. Genome Res. 15, 1592–1593 (2005).

    Article  CAS  Google Scholar 

  45. Reich, D. & Patterson, N. Will admixture mapping work to find disease genes? Phil. Trans. R. Soc. Lond. B 360, 1605–1607 (2005).

    Article  CAS  Google Scholar 

  46. Tang, H., Peng, J., Wang, P. & Risch, N.J. Estimation of individual admixture: analytical and study design considerations. Genet. Epidemiol. 28, 289–301 (2005).

    Article  Google Scholar 

  47. Gabriel, S.B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002).

    Article  CAS  Google Scholar 

  48. Frazer, K.A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

    Article  CAS  Google Scholar 

  49. Excoffier, L. & Slatkin, M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol. Biol. Evol. 12, 921–927 (1995).

    CAS  PubMed  Google Scholar 

  50. Stephens, M. & Scheet, P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am. J. Hum. Genet. 76, 449–462 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the subjects and controls who participated in the NIH Genetic Study and the Wake Forest ESRD Study, and the physicians who assisted by identifying cases for these studies. M. Branton, D. Smith, L. Bartlett and L. Howard provided clinical support. E. Binns, Y. Zhou and M. Jamba provided laboratory assistance. The following members of the NIH FSGS Genetics Study Group also contributed samples: F. Hutchinson (University of South Carolina); R. Mannon (Duke University); P. Nachman (University of North Carolina, Chapel Hill); T.K. Rao (State University of New York, Downstate) and M. Smith (Cincinnati Children's Hospital). Research blood donor samples were provided by S. Leitman (NIH). We thank S.J. O'Brien and B. Gold for discussions, N. Patterson for assistance with the ANCESTRYMAP program, and S. Leitman for assistance in identifying healthy volunteers.

The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US government. The publisher or recipient acknowledges right of the US government to retain a nonexclusive, royalty-free license in and to any copyright covering the article.

This research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract N01-CO-12400, the Intramural Research Programs of the National Institute for Diabetes, Digestive, and Kidney Diseases (ZO-1 DK043308), and by a grant from the NIH (RO1 DK 070941 (B.I.F.)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl A Winkler.

Ethics declarations

Competing interests

The following authors have filed a patent application for MYH9 risk variants and haplotypes: Randy Johnson, Cheryl Winkler, Michael Smith, Jeffrey Kopp and George Nelson.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1 and 2, Supplementary Tables 1–5 (PDF 753 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopp, J., Smith, M., Nelson, G. et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet 40, 1175–1184 (2008). https://doi.org/10.1038/ng.226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.226

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing