Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular interpretation of ERK signal duration by immediate early gene products

Abstract

The duration of intracellular signalling is associated with distinct biological responses, but how cells interpret differences in signal duration are unknown. We show that the immediate early gene product c-Fos functions as a sensor for ERK1 (extracellular-signal-regulated kinase 1) and ERK2 signal duration. When ERK activation is transient, its activity declines before the c-Fos protein accumulates, and under these conditions c-Fos is unstable. However, when ERK signalling is sustained, c-Fos is phosphorylated by still-active ERK and RSK (90K-ribosomal S6 kinase). Carboxy-terminal phosphorylation stabilizes c-Fos and primes additional phosphorylation by exposing a docking site for ERK, termed the FXFP (DEF) domain. Mutating the DEF domain disrupts the c-Fos sensor and c-Fos-mediated signalling. Other immediate early gene products that control cell cycle progression, neuronal differentiation and circadium rhythms also contain putative DEF domains, indicating that multiple sensors exist for sustained ERK signalling. Together, our data identify a general mechanism by which cells can interpret differences in ERK activation kinetics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential responsiveness of Swiss 3T3 fibroblasts to growth factors.
Figure 2: ERK and RSK prime c-Fos for additional regulation by mitogens.
Figure 3: An ERK-docking DEF domain mediates phosphorylation of primed c-Fos.
Figure 4: ERK phosphorylates Thr 325 and Thr 331 in primed c-Fos.
Figure 5: Characterization of the phospho-Thr 325-specific antiserum.
Figure 6: c-Fos is a sensor for ERK signal duration in vivo.
Figure 7: ERK-docking to c-Fos is required for Fos-mediated signalling.
Figure 8: Molecular interpretation of ERK signal duration.

Similar content being viewed by others

References

  1. Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Gurdon, J. B., Dyson, S. & St Johnston, D. Cells' perception of position in a concentration gradient. Cell 95, 159–162 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Weiss, A., Shields, R., Newton, M., Manger, B. & Imboden, J. Ligand-receptor interactions required for commitment to the activation of the interleukin 2 gene. J. Immunol. 138, 2169–2176 (1987).

    CAS  PubMed  Google Scholar 

  4. Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Dustin, M. L. & Chan, A. C. Signaling takes shape in the immune system. Cell 103, 283–294 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Viola, A. & Lanzavecchia, A. T cell activation determined by T cell receptor number and tunable thresholds. Science 273, 104–106 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Hunter, T. Signaling — 2000 and beyond. Cell 100, 113–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Vouret-Craviari, V., Van Obberghen-Schilling, E., Scimeca, J. C., Van Obberghen, E. & Pouyssegur, J. Differential activation of p44mapk (ERK1) by α-thrombin and thrombin-receptor peptide agonist. Biochem. J. 289, 209–214 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cook, S. J. & McCormick, F. Kinetic and biochemical correlation between sustained p44ERK1 (44 kDa extracellular signal-regulated kinase 1) activation and lysophosphatidic acid-stimulated DNA synthesis in Rat-1 cells. Biochem. J. 320, 237–245 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weber, J. D., Raben, D. M., Phillips, P. J. & Baldassare, J. J. Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem. J. 326, 61–68 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Balmanno, K. & Cook, S. J. Sustained MAP kinase activation is required for the expression of cyclin D1, p21Cip1 and a subset of AP-1 proteins in CCL39 cells. Oncogene 18, 3085–3097 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Roovers, K., Davey, G., Zhu, X., Bottazzi, M. E. & Assoian, R. K. α5β1 integrin controls cyclin D1 expression by sustaining mitogen-activated protein kinase activity in growth factor-treated cells. Mol. Biol. Cell 10, 3197–3204 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Heasley, L. E. & Johnson, G. L. The β-PDGF receptor induces neuronal differentiation of PC12 cells. Mol. Biol. Cell 3, 545–553 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nguyen, T. T. et al. Co-regulation of the mitogen-activated protein kinase, extracellular signal-regulated kinase 1, and the 90-kDa ribosomal S6 kinase in PC12 cells. Distinct effects of the neurotrophic factor, nerve growth factor, and the mitogenic factor, epidermal growth factor. J. Biol. Chem. 268, 9803–9810 (1993).

    CAS  PubMed  Google Scholar 

  16. Traverse, S. et al. EGF triggers neuronal differentiation of PC12 cells that overexpress the EGF receptor. Curr. Biol. 4, 694–701 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Stein, R., Orit, S. & Anderson, D. J. The induction of a neural-specific gene, SCG10, by nerve growth factor in PC12 cells is transcriptional, protein synthesis dependent, and glucocorticoid inhibitable. Dev. Biol. 127, 316–325 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Kovary, K. & Bravo, R. Expression of different Jun and Fos proteins during the G0-to-G1 transition in mouse fibroblasts: in vitro and in vivo associations. Mol. Cell. Biol. 11, 2451–2459 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kovary, K. & Bravo, R. Existence of different Fos/Jun complexes during the G0-to-G1 transition and during exponential growth in mouse fibroblasts: differential role of Fos proteins. Mol. Cell. Biol. 12, 5015–5023 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Greenberg, M. E., Greene, L. A. & Ziff, E. B. Nerve growth factor and epidermal growth factor induce rapid transient changes in proto-oncogene transcription in PC12 cells. J. Biol. Chem. 260, 14101–14110 (1985).

    CAS  PubMed  Google Scholar 

  21. Milbrandt, J. Nerve growth factor rapidly induces c-fos mRNA in PC12 rat pheochromocytoma cells. Proc. Natl Acad. Sci. USA 83, 4789–4793 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mehmet, H., Morris, C. & Rozengurt, E. Multiple synergistic signal transduction pathways regulate c-fos expression in Swiss 3T3 cells: the role of cyclic AMP. Cell Growth Differ. 1, 293–298 (1990).

    CAS  PubMed  Google Scholar 

  23. Fambrough, D., McClure, K., Kazlauskas, A. & Lander, E. S. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 97, 727–741 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Greenberg, M. E. & Ziff, E. B. Stimulation of 3T3 cells induces transcription of the c-fos proto- oncogene. Nature 311, 433–438 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. Lau, L. F. & Nathans, D. Identification of a set of genes expressed during the G0/G1 transition of cultured mouse cells. EMBO J. 4, 3145–3151 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lallemand, D., Spyrou, G., Yaniv, M. & Pfarr, C. M. Variations in Jun and Fos protein expression and AP-1 activity in cycling, resting and stimulated fibroblasts. Oncogene 14, 819–830 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Okazaki, K. & Sagata, N. The Mos/MAP kinase pathway stabilizes c-Fos by phosphorylation and augments its transforming activity in NIH 3T3 cells. EMBO J. 14, 5048–5059 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, R. H., Juo, P. C., Curran, T. & Blenis, J. Phosphorylation of c-Fos at the C-terminus enhances its transforming activity. Oncogene 12, 1493–1502 (1996).

    CAS  PubMed  Google Scholar 

  29. Chen, R. H., Abate, C. & Blenis, J. Phosphorylation of the c-Fos transrepression domain by mitogen- activated protein kinase and 90-kDa ribosomal S6 kinase. Proc. Natl Acad. Sci. USA 90, 10952–10956 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Favata, M. F. et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273, 18623–18632 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Pritchard, C. A., Samuels, M. L., Bosch, E. & McMahon, M. Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol. Cell. Biol. 15, 6430–6442 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kamakura, S., Moriguchi, T. & Nishida, E. Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. J. Biol. Chem. 274, 26563–26571 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Jacobs, D., Glossip, D., Xing, H., Muslin, A. J. & Kornfeld, K. Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev. 13, 163–175 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fantz, D. A., Jacobs, D., Glossip, D. & Kornfeld, K. Docking sites on substrate proteins direct extracellular signal- regulated kinase to phosphorylate specific residues. J. Biol. Chem. 276, 27256–27265 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Miller, A. D., Curran, T. & Verma, I. M. c-fos protein can induce cellular transformation: a novel mechanism of activation of a cellular oncogene. Cell 36, 51–60 (1984).

    Article  CAS  PubMed  Google Scholar 

  36. Jordan, J. D., Landau, E. M. & Iyengar, R. Signaling networks: the origins of cellular multitasking. Cell 103, 193–200 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Curran, T., Miller, A. D., Zokas, L. & Verma, I. M. Viral and cellular fos proteins: a comparative analysis. Cell 36, 259–268 (1984).

    Article  CAS  PubMed  Google Scholar 

  38. Harada, T., Morooka, T., Ogawa, S. & Nishida, E. ERK induces p35, a neuron-specific activator of Cdk5, through induction of Egr1. Nature Cell Biol. 3, 453–459 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Akashi, M. & Nishida, E. Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock. Genes Dev. 14, 645–649 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Abate, C., Luk, D., Gentz, R., Rauscher, F. J. 3rd & Curran, T. Expression and purification of the leucine zipper and DNA-binding domains of Fos and Jun: both Fos and Jun contact DNA directly. Proc. Natl Acad. Sci. USA 87, 1032–1036 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kato, Y. et al. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J. 16, 7054–7066 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Khokhlatchev, A. et al. Reconstitution of mitogen-activated protein kinase phosphorylation cascades in bacteria. Efficient synthesis of active protein kinases. J. Biol. Chem. 272, 11057–11062 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Richards, S. A., Fu, J., Romanelli, A., Shimamura, A. & Blenis, J. Ribosomal S6 kinase 1 (RSK1) activation requires signals dependent on and independent of the MAP kinase ERK. Curr. Biol. 9, 810–820 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, R. H., Sarnecki, C. & Blenis, J. Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol. Cell. Biol. 12, 915–927 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, R. H. & Blenis, J. Identification of Xenopus S6 protein kinase homologs (pp90rsk) in somatic cells: phosphorylation and activation during initiation of cell proliferation. Mol. Cell. Biol. 10, 3204–3215 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chung, J., Chen, R. H. & Blenis, J. Coordinate regulation of pp90rsk and a distinct protein- serine/threonine kinase activity that phosphorylates recombinant pp90rsk in vitro. Mol. Cell. Biol. 11, 1868–1874 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Curran, J.-D. Lee, M. Cobb and M. McMahon for reagents. We also thank J. Brugge, T. Rapoport and members of the Blenis laboratory for critical reading of this manuscript, and J. Brugge, L. Cantley, B. Neel, and A. Kazlauskas for many helpful discussions. This work was supported by National Institutes of Health grant RO1CA46595 (J.B.), a Special Grant for Research from the American Cancer Society, New England Division (L.O.M.) and NIH grants F32-CA68712 (S.S.) and F32-CA69808 (D.C.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Blenis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figure

Figure S1. Nuclear accumulation of active ERK1/2 and c-Fos in growth factor- treated Swiss 3T3 cells. addition of cycloheximide (+) or vehicle (-). (PDF 1322 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, L., Smith, S., Chen, RH. et al. Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol 4, 556–564 (2002). https://doi.org/10.1038/ncb822

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb822

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing