Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Macro and microvasculature in hypertension: therapeutic aspects

Abstract

Macrovasculature, microvasculature and the heart determine the structure and function of the circulatory system. Due to the viscoelastic properties of large arteries, the pulsatile pressure and flow that result from intermittent ventricular ejection is smoothed out, so that microvasculature mediates the delivery of nutrients and oxygen to tissues steadily. The disruption of this function, which occurs when microvascular structure develops in response to hypertension, leads to end-organ damage. Microvascular structure is not only the site of vascular resistance, but also the origin of most of the wave reflections generating increased central systolic blood pressure (SBP) in the elderly. Nowadays many data of the literature suggest that hypertension-related damage to the micro and macrovascular system may be manageable through pharmacological agents. Among them, β-blocking agents and diuretics poorly modify microvascular structure, whereas angiotensin and calcium entry blockade has an opposite effect, thereby reducing central wave reflections and, finally, causing a selective SBP reduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Safar ME, Levy BI, Struijker-Boudier H . Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation 2003; 107: 2864–2869.

    Article  Google Scholar 

  2. Arterial stiffness in hypertension. In: Safar ME, O'Rourke HF (eds). Handbook of Hypertension, ol. 23 Elsevier Publishing: Edinburgh, 2006. pp 3–62, 75–136, 459–501.

  3. Black HR . The paradigm has shifted to systolic blood pressure. Hypertension 1999; 34: 386–387.

    Article  CAS  Google Scholar 

  4. Mulvany MJ, Aalkjaer C . Structure and function of small arteries. Physiol Rev 1990; 70: 921–971.

    Article  CAS  Google Scholar 

  5. Lever AF . Slow pressor mechanisms in hypertension: a role for hypertrophy of resistance vessels? J Hypertens 1986; 4: 515–524.

    Article  CAS  Google Scholar 

  6. Izzard AS, Heagerty AM, Leenen FH . The amplifier hypothesis: persisting dissent. J Hypertens 2002; 20: 375–377.

    Article  CAS  Google Scholar 

  7. Mulvany MJ . Small artery remodeling and significance in the development of hypertension. News Physiol Sci 2002; 17: 105–109.

    PubMed  Google Scholar 

  8. Schiffrin EL, Deng LY . Relationship between small-artery structure and systolic, diastolic and pulse pressure in essential hypertension. J Hypertens 1999; 17: 381–387.

    Article  CAS  Google Scholar 

  9. Rizzoni D, Muiesan ML, Porteri E, Castellano M, Zulli R, Bettoni G et al. Effects of long-term antihypertensive treatment with lisinopril on resistance arteries in hypertensive patients with left ventricular hypertrophy. J Hypertens 1997; 15: 197–204.

    Article  CAS  Google Scholar 

  10. Rizzoni D, Palombo C, Porteri E, Muiesan ML, Kozàkovà M, La Canna G et al. Relationships between coronary vasodilator capacity and small artery remodeling in hypertensive patients. J Hypertens 2003; 21: 625–632.

    Article  CAS  Google Scholar 

  11. Rizzoni D, Porteri E, Boari GEM, De Ciuceis C, Sleiman I, Muiesan ML et al. Prognostic significance of small artery structure in hypertension. Circulation 2003; 108: 2230–2235.

    Article  Google Scholar 

  12. De Ciuceis C, Porteri E, Rizzoni D, Rizzardi N, Paiardi S, Boari GEM et al. Structural alterations of subcutaneous small arteries may predict major cardiovascular events in hypertensive patients. Am J Hypertens 2007; 20: 846–852.

    Article  Google Scholar 

  13. Mathiassen ON, Buus NH, Sihm I, Thybo NK, Morn B, Schroeder AP et al. Small artery structure is an independent predictor of cardiovascular events in essential hypertension. J Hypertens 2007; 25: 1021–1026.

    Article  CAS  Google Scholar 

  14. Izzard AS, Rizzoni D, Agabiti-Rosei E, Heagerty AM . Small artery structure and hypertension: adaptive changes and target organ damage. J Hypertens 2005; 23: 247–250.

    Article  CAS  Google Scholar 

  15. Rizzoni D, Porteri E, Platto C, Rizzardi N, De Ciuceis C, Boari GE et al. Morning rise of blood pressure and subcutaneous small resistance artery structure. J Hypertens 2007; 25: 1698–1703.

    Article  CAS  Google Scholar 

  16. Agabiti Rosei E, Rizzoni D . The effects of hypertension on the structure of human resistance arteries. In: Lip GYH, Hall JE (eds). Comprehensive Hypertension. Elsevier: Mosby, 2007, Chapter 47, pp 579–590.

    Chapter  Google Scholar 

  17. Schiffrin EL . Remodeling of resistance arteries in essential hypertension and effects of antihypertensive treatment. Am J Hypertens 2004; 17 (12 Pt. 1): 1192–1200.

    Article  CAS  Google Scholar 

  18. Savoia C, Touyz RM, Endemann DH, Pu Q, Ko EA, De Ciuceis C et al. Angiotensin receptor blocker added to previous antihypertensive agents on arteries of diabetic hypertensive patients. Hypertension 2006; 48: 271–277.

    Article  CAS  Google Scholar 

  19. Mathiassen ON, Buus NH, Larsen ML, Mulvany MJ, Christensen KL . Small artery structure adapts to vasodilatation rather than to blood pressure during antihypertensive treatment. J Hypertens 2007; 25: 1027–1034.

    Article  CAS  Google Scholar 

  20. Savoia C, Touyz RM, Amiri F, Schiffrin EL . Selective mineralocorticoid receptor blocker eplerenone reduces resistance artery stiffness in hypertensive patients. Hypertension 2008; 51: 432–439.

    Article  CAS  Google Scholar 

  21. Ting CT, Yang TM, Chen JW, Chang MS, Yin FC . Arterial hemodynamics in human hypertension. Effects of angiotensin converting enzyme inhibition. Hypertension 1993; 22: 839–846.

    Article  CAS  Google Scholar 

  22. Chen CH, Ting CT, Lin SJ, Hsu FCP, Siu CO, Chou P et al. Different effects of fosinopril and atenolol on wave reflections in hypertension. Hypertension 1995; 25: 1034–1041.

    Article  CAS  Google Scholar 

  23. Ting CT, Chen C-H, Chang M-S, Yin FCP . Short- and long-term effects of antihypertensive drugs on arterial reflections compliance and impedance. Hypertension 1995; 26: 524–530.

    Article  CAS  Google Scholar 

  24. Mitchell GF, Vita JA, Larson MG, Parise H, Keyes MJ, Warner E et al. Cross-sectional relations of peripheral microvascular function, cardiovascular disease risk factors, and aortic stiffness: the Framingham Heart Study. Circulation 2005; 112: 3722–3728.

    Article  Google Scholar 

  25. London GM, Asmar RG, O'Rourke MF, Safar ME, Reason Project Investigators. Mechanism(s) of selective systolic blood pressure reduction after a low-dose combination of perindopril/indapamide in hypertensive subjects: comparison with atenolol. J Am Coll Cardiol 2004; 43: 92–99.

    Article  CAS  Google Scholar 

  26. Hirata K, Vlachopoulos C, Adji A, O'Rourke MF . Benefits from angiotensin-converting enzyme inhibitor ‘beyond blood pressure lowering’: beyond blood pressure or beyond the brachial artery? J Hypertens 2005; 23: 551–556.

    Article  CAS  Google Scholar 

  27. Williams B, Lacy PS, Thorm SM, Cruickshank K, Stanton A, Collier D et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFÉ) study. Circulation 2006; 113: 1213–1225.

    Article  CAS  Google Scholar 

  28. De Luca N, Asmar R, London GM, O'Rourke MF, Safar ME, TEASON Project Investigators. Selective reduction of cardiac mass and central blood pressure on low- dose combination perindopril/indapamide in hypertensive subjects. J Hypertens 2004; 22: 1623–1630.

    Article  CAS  Google Scholar 

  29. Dhakam Z, Yasmin, MacEniery CM, Burton T, Brown MJ, Wilkinson IB . A comparison of atenolol and nebivolol in isolated systolic hypertension. J Hypertens 2008; 26: 351–356.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This review was prepared with the help of INSERM (Institut de la Santé et de la Recherche Médicale) and GPH-CV (Groupe de Pharmacologie et d'Hémodynamique Cardiovasculaire), Paris. We thank Dr Anne Safar for helpful and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M E Safar.

Additional information

Disclosures

None.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safar, M., Rizzoni, D., Blacher, J. et al. Macro and microvasculature in hypertension: therapeutic aspects. J Hum Hypertens 22, 590–595 (2008). https://doi.org/10.1038/jhh.2008.43

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2008.43

Keywords

This article is cited by

Search

Quick links