Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The lupus phenotype in B6.NZBc1 congenic mice reflects interactions between multiple susceptibility loci and a suppressor locus

Abstract

Lupus susceptibility loci on chromosome 1 have an important role in the development of autoimmunity in the New Zealand Black (NZB) mouse. We have previously shown that C57BL/6 congenic mice with an introgressed homozygous NZB chromosome 1 interval extending from 35 to 106 cM develop anti-nuclear antibodies and mild glomerulonephritis. In this study, we produced subcongenic mouse strains to localize the susceptibility loci in this interval and investigate how they promote autoimmunity. Our results indicate at least four susceptibility alleles and a suppressor allele. One allele is located in the 96–100 cM region and is sufficient to breach tolerance to chromatin. Addition of a second locus in the 88–96 cM interval enhances anti-dsDNA antibody production and promotes renal disease, which together with a third susceptibility allele in the 70–88 interval results in significant mortality. We further demonstrate the presence of a suppressor locus in the 35–70 or 100–102 cM interval that abrogates these phenotypes and an additional susceptibility allele in the 102–106 cM interval that restores a milder autoimmune phenotype. Several of these loci alter T-cell function. Thus, there is substantial genetic complexity in the NZB 35–106 cM interval, with disease reflecting a balance between susceptibility and suppressor loci.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Sherer Y, Gorstein A, Fritzler MJ, Shoenfeld Y . Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Semin Arthritis Rheum 2004; 34: 501–537.

    Article  CAS  Google Scholar 

  2. Sawalha AH, Harley JB . Antinuclear autoantibodies in systemic lupus erythematosus. Curr Opin Rheumatol 2004; 16: 534–540.

    Article  Google Scholar 

  3. Burlingame RW, Boey ML, Starkebaum G, Rubin RL . The central role of chromatin in autoimmune responses to histones and DNA in systemic lupus erythematosus. J Clin Invest 1994; 94: 184–192.

    Article  CAS  Google Scholar 

  4. Theofilopoulos AN, Dixon FJ . Murine models of systemic lupus erythematosus. Adv Immunol 1985; 37: 269–390.

    Article  CAS  Google Scholar 

  5. Chiang BL, Bearer E, Ansari A, Dorshkind K, Gershwin ME . The BM12 mutation and autoantibodies to dsDNA in NZB.H-2bm12 mice. J Immunol 1990; 145: 94–101.

    CAS  PubMed  Google Scholar 

  6. Wither JE, Lajoie G, Heinrichs S, Cai YC, Chang N, Ciofani A et al. Functional dissection of lupus susceptibility loci on the New Zealand black mouse chromosome 1: evidence for independent genetic loci affecting T and B cell activation. J Immunol 2003; 171: 1697–1706.

    Article  CAS  Google Scholar 

  7. Cheung YH, Chang NH, Cai YC, Bonventi G, MacLeod R, Wither JE . Functional interplay between intrinsic B and T cell defects leads to amplification of autoimmune disease in New Zealand black chromosome 1 congenic mice. J Immunol 2005; 175: 8154–8164.

    Article  CAS  Google Scholar 

  8. Xiu Y, Nakamura K, Abe M, Li N, Wen XS, Jiang Y et al. Transcriptional regulation of Fcgr2b gene by polymorphic promoter region and its contribution to humoral immune responses. J Immunol 2002; 169: 4340–4346.

    Article  CAS  Google Scholar 

  9. Wandstrat AE, Nguyen C, Limaye N, Chan AY, Subramanian S, Tian XH et al. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity 2004; 21: 769–780.

    Article  CAS  Google Scholar 

  10. Rozzo SJ, Allard JD, Choubey D, Vyse TJ, Izui S, Peltz G et al. Evidence for an interferon-inducible gene, Ifi202, in the susceptibility to systemic lupus. Immunity 2001; 15: 435–443.

    Article  CAS  Google Scholar 

  11. Jiang Y, Hirose S, Sanokawa-Akakura R, Abe M, Mi X, Li N et al. Genetically determined aberrant down-regulation of FcgammaRIIB1 in germinal center B cells associated with hyper-IgG and IgG autoantibodies in murine systemic lupus erythematosus. Int Immunol 1999; 11: 1685–1691.

    Article  CAS  Google Scholar 

  12. Wither JE, Paterson AD, Vukusic B . Genetic dissection of B cell traits in New Zealand black mice. The expanded population of B cells expressing up-regulated costimulatory molecules shows linkage to Nba2. Eur J Immunol 2000; 30: 356–365.

    Article  CAS  Google Scholar 

  13. Szanya V, Ermann J, Taylor C, Holness C, Fathman CG . The subpopulation of CD4+CD25+ splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high levels of CCR7. J Immunol 2002; 169: 2461–2465.

    Article  CAS  Google Scholar 

  14. Hori S, Nomura T, Sakaguchi S . Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057–1061.

    Article  CAS  Google Scholar 

  15. Cuda CM, Zeumer L, Sobel ES, Croker BP, Morel L . Murine lupus susceptibility locus Sle1a requires the expression of two sub-loci to induce inflammatory T cells. Genes Immun 2010; 11: 542–553.

    Article  CAS  Google Scholar 

  16. Liu K, Li QZ, Yu Y, Liang C, Subramanian S, Zeng Z et al. Sle3 and Sle5 can independently couple with Sle1 to mediate severe lupus nephritis. Genes Immun 2007; 8: 634–645.

    Article  CAS  Google Scholar 

  17. Morel L, Blenman KR, Croker BP, Wakeland EK . The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes. Proc Natl Acad Sci USA 2001; 98: 1787–1792.

    Article  CAS  Google Scholar 

  18. Vyse TJ, Rozzo SJ, Drake CG, Izui S, Kotzin BL . Control of multiple autoantibodies linked with a lupus nephritis susceptibility locus in New Zealand black mice. J Immunol 1997; 158: 5566–5574.

    CAS  Google Scholar 

  19. Howie D, Laroux FS, Morra M, Satoskar AR, Rosas LE, Faubion WA et al. Cutting edge: the SLAM family receptor Ly108 controls T cell and neutrophil functions. J Immunol 2005; 174: 5931–5935.

    Article  CAS  Google Scholar 

  20. Wang N, Satoskar A, Faubion W, Howie D, Okamoto S, Feske S et al. The cell surface receptor SLAM controls T cell and macrophage functions. J Exp Med 2004; 199: 1255–1264.

    Article  CAS  Google Scholar 

  21. Howie D, Simarro M, Sayos J, Guirado M, Sancho J, Terhorst C . Molecular dissection of the signaling and costimulatory functions of CD150 (SLAM): CD150/SAP binding and CD150-mediated costimulation. Blood 2002; 99: 957–965.

    Article  CAS  Google Scholar 

  22. Ma CS, Nichols KE, Tangye SG . Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu Rev Immunol 2007; 25: 337–379.

    Article  CAS  Google Scholar 

  23. Kumar KR, Li L, Yan M, Bhaskarabhatla M, Mobley AB, Nguyen C et al. Regulation of B cell tolerance by the lupus susceptibility gene Ly108. Science 2006; 312: 1665–1669.

    Article  CAS  Google Scholar 

  24. Zhong MC, Veillette A . Control of T lymphocyte signaling by Ly108, a signaling lymphocytic activation molecule family receptor implicated in autoimmunity. J Biol Chem 2008; 283: 19255–19264.

    Article  CAS  Google Scholar 

  25. Valdez PA, Wang H, Seshasayee D, van Lookeren CM, Gurney A, Lee WP et al. NTB-A, a new activating receptor in T cells that regulates autoimmune disease. J Biol Chem 2004; 279: 18662–18669.

    Article  CAS  Google Scholar 

  26. Jorgensen TN, Alfaro J, Enriquez HL, Jiang C, Loo WM, Atencio S et al. Development of murine lupus involves the combined genetic contribution of the SLAM and FcgammaR intervals within the Nba2 autoimmune susceptibility locus. J Immunol 2010; 184: 775–786.

    Article  CAS  Google Scholar 

  27. Chen Y, Cuda C, Morel L . Genetic determination of T cell help in loss of tolerance to nuclear antigens. J Immunol 2005; 174: 7692–7702.

    Article  CAS  Google Scholar 

  28. Wang J, Ioan-Facsinay A, van d V, Huizinga TW, Toes RE . Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 2007; 37: 129–138.

    Article  CAS  Google Scholar 

  29. Nishioka T, Shimizu J, Iida R, Yamazaki S, Sakaguchi S . CD4+CD25+Foxp3+ T cells and CD4+CD25Foxp3+ T cells in aged mice. J Immunol 2006; 176: 6586–6593.

    Article  CAS  Google Scholar 

  30. Calpe S, Erdos E, Liao G, Wang N, Rietdijk S, Simarro M et al. Identification and characterization of two related murine genes, Eat2a and Eat2b, encoding single SH2-domain adapters. Immunogenetics 2006; 58: 15–25.

    Article  CAS  Google Scholar 

  31. Morra M, Lu J, Poy F, Martin M, Sayos J, Calpe S et al. Structural basis for the interaction of the free SH2 domain EAT-2 with SLAM receptors in hematopoietic cells. EMBO J 2001; 20: 5840–5852.

    Article  CAS  Google Scholar 

  32. Roncagalli R, Taylor JE, Zhang S, Shi X, Chen R, Cruz-Munoz ME et al. Negative regulation of natural killer cell function by EAT-2, a SAP-related adaptor. Nat Immunol 2005; 6: 1002–1010.

    Article  CAS  Google Scholar 

  33. Kono DH, Burlingame RW, Owens DG, Kuramochi A, Balderas RS, Balomenos D et al. Lupus susceptibility loci in New Zealand mice. Proc Natl Acad Sci USA 1994; 91: 10168–10172.

    Article  CAS  Google Scholar 

  34. Vinuesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L, Hill KM et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 2005; 435: 452–458.

    Article  CAS  Google Scholar 

  35. Yager TD, McMurray CT, van Holde KE . Salt-induced release of DNA from nucleosome core particles. Biochemistry 1989; 28: 2271–2281.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from the Canadian Institutes of Health Research awarded to JW. YC is the recipient of a studentship from The Arthritis Centre of Excellence. JW also receives salary support from The Arthritis Centre of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J E Wither.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, YH., Landolt-Marticorena, C., Lajoie, G. et al. The lupus phenotype in B6.NZBc1 congenic mice reflects interactions between multiple susceptibility loci and a suppressor locus. Genes Immun 12, 251–262 (2011). https://doi.org/10.1038/gene.2010.71

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2010.71

Keywords

Search

Quick links