Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ubiquitin and proteasomes

Antigen processing by the proteasome

Key Points

  • Cells display intracellular antigens ? from both intracellular pathogens and self ? at the cell surface to distinguish between infected and unifected cells.

  • Each antigenic peptide is bound by an MHC class I molecule. MHC genes are highly polymorphic, with several hundred alleles. Each allele binds a unique set of peptides with an average length of 8?10 amino acids. The specificity of this interaction is mediated by anchor residues.

  • The proteasome is responsible for generating antigenic peptides, although in specific cases, other proteases might also contribute to the MHC class I peptide pool.

  • How does the proteasome gain access to cellular proteins? One prevalent view is that cellular proteins targeted for degradation are the main source of peptides. The defective ribosomal products model proposes that non-functional proteins are rapidly ubiquitylated and degraded by the proteasome as they are translated.

  • To process antigens more efficiently, the proteasome replaces some of its subunits to form an immunoproteasome. The cytokine interferon-γ induces these immunosubunits, which are cooperatively incorporated into the proteasome.

  • Formation of the immunoproteasome might result in subtle changes in the structure of the substrate?proteasome complex, which might in turn alter the peptide processing properties of the immunoproteasome.

  • Interferon-γ also induces the proteasome activator PA28, which leads to enhanced peptide presentation. PA28 is thought to facilitate peptide release from the proteasome by 'opening the gate' of the proteasome structure.

  • Some viral proteins interfere with the activity of the proteasome and reduce antigen presentation.

Abstract

The proteasome is an essential part of our immune surveillance mechanisms: by generating peptides from intracellular antigens it provides peptides that are then 'presented' to T cells. But proteasomes ? the waste-disposal units of the cell ? typically do not generate peptides for antigen presentation with high efficiency. How, then, does the proteasome adapt to serve the immune system well?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proteasome composition.
Figure 2: Antigen processing and presentation.
Figure 3: The DRiP model.
Figure 4: Formation of the immunoproteasome.
Figure 5: How immunoproteasomes affect peptide quality.
Figure 6: The proteasome gating mechanism.
Figure 7: How antigenic peptides achieve optimal binding to MHC class I proteins.

Similar content being viewed by others

References

  1. Coux, O., Tanaka, K. & Goldberg, A. L. Structure and functions of the 20S and 26S proteasomes . Annu. Rev. Biochem. 65, 801? 847 (1996).This review gives a good basic introduction to the proteasome system, its components and its different functions.

    Article  CAS  PubMed  Google Scholar 

  2. Rock, K. L. et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules . Cell 27, 761?771(1994). PubmedWith the aid of a proteasome-specific inhibitor, this paper describes the first experiments demonstrating that inhibition of proteasome activity impairs antigen presentation.

    Article  Google Scholar 

  3. Glickman, M H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615?623 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Deveraux, Q., Ustrell, V., Pickart, C. & Rechsteiner, M. A 26S subunit that binds ubiquitin conjugates. J. Biol. Chem. 267 , 22369?22377 (1994). Pubmed

    Google Scholar 

  5. Braun, B. C. et al. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nature Cell Biol. 1, 221? 226 (1999). PubmedThe first demonstration that the base has a chaperone-like function. A model is discussed in which the 19S regulatory particle is responsible for the binding, unfolding and channelling of substrates.

    Article  CAS  PubMed  Google Scholar 

  6. Strickland, E., Hakala, K., Thomas, P. J. & DeMartino, G. N. Recognition of misfolded proteins by PA 700, the regulatory subcomplex of the 26S proteasome. J. Biol. Chem. 275, 5565?5572 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Glickman, M. H. et al. Functional analysis of the proteasome regulatory particle . Mol. Biol. Reprod. 26, 21? 28 (1999). Pubmed

    Article  CAS  Google Scholar 

  8. Groll, M. et al. Structure of the 20S proteasome from yeast at 2.4 Å resolution . Nature 386, 463?471(1997).The first X-ray structure analysis of a eukaryotic 20S proteasome presents structural evidence that the central gate of the 20S proteasome is closed. The six active sites in the catalytic cavity are defined by co-crystallization with proteasome inhibitors.

    Article  CAS  PubMed  Google Scholar 

  9. Löwe, J. et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268, 533?539 (1995).

    Article  PubMed  Google Scholar 

  10. Fenteany, G. et al. Inhibition of proteasome activity and subunit specific amino terminal modification of lactacystin. Science 268, 726?731(1995).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, P. & Hochstrasser, M. Autocatalytic subunit processing couples active sites formation in the 20S proteasome to completion of assembly . Cell 86, 961?972 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Schmidtke, G. et al. Analysis of proteasome biogenesis: The maturation of β-subunits is an ordered two step mechanism involving autocatalysis. EMBO J. 15, 6887?6898 ( 1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kisselev, A. F., Akopian, T. N., Woo, K. M. & Goldberg, A. L. The sizes of peptides generated from protein by mammalian 26 and 20S proteasomes. Implications for understanding the degradative mechanism and antigen presentation . J. Biol. Chem. 274, 3363? 3371 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Schmidtke, G. et al. Inactivation of a defined active site in the mouse 20S proteasome complex enhances inactivation MHC class I antigen presentation of a murine cytomegalovirus protein. J. Exp. Med. 10, 1641?1664 (1998).

    Article  Google Scholar 

  15. Rammensee, H. G., Friede, T. & Stevanovic, S. MHC ligands and peptide motifs: first listing. Immunogenetics 41, 178?228 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Madden, D. R. The three dimensional structure of peptide MHC complexes. Annu. Rev. Immunol. 13, 587?622 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Falk, K. et al. Identification of naturally processed viral nonapeptides allows their quantification in infected cells and suggests an allele-specific T cell epitope forecast. J. Exp. Med. 174, 425? 434 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Schwarz, K. et al. The selective proteasome inhibitors lactacystin and expoxmycin can be used to either up-or down-regulate antigen presentation at non-toxic doses. J. Immunol. 164, 6147? 6157 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Wheatley, D. N., Grisola, S. & Hernandez-Yago, J. Significance of rapid degradation of newly synthesised proteins in mammalian cells: A working hypothesis. J. Theor. Biol. 98, 283?300 ( 1982).

    Article  CAS  PubMed  Google Scholar 

  20. Schubert, U. et al. Rapid degradation of a large fraction of newly synthesised proteins by proteasomes. Nature 404, 770 ?774 (2000).Schubert et al . present the first experimental evidence for the DriP (defective ribosomal products) model, which proposes that defective translation products are the main source of MHC class I antigens.

    Article  CAS  PubMed  Google Scholar 

  21. Turner, C. C. & Varshavsky, A. Detecting and measuring cotranslational protein degradation. Science 289, 2117? 2120 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Reits, E. A. J., Vos, J. C., Grommé, M. & Neffjes, J. The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 404, 744? 748 (2000). PubmedIn support of the DRiP model, the authors present evidence that TAP peptide transport activity relies on de novo protein synthesis.

    Article  Google Scholar 

  23. Kloetzel, P. M., Falkenburg, P. E., Hössl, P. & Glätzer, K. H. The 19S ring-type particles of Drosophila: Cytological and biochemical analysis of their intracellular association and distribution. Exp. Cell Res. 170, 204?213 (1987).

    Article  CAS  PubMed  Google Scholar 

  24. Rock, K. & Goldberg, A. L. Degradation of cell proteins and the generation of MHC class I presented peptides. Annu. Rev. Immunol. 17, 737?779 ( 1999).

    Article  Google Scholar 

  25. Nandi, D., Woodwards, E., Ginsburg, D. B. & Monaco, J. J. Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor β-subunits EMBO J. 17 , 5363?5375 (1997).

    Article  Google Scholar 

  26. Frentzel, S., Pesold-Hurt, B., Seelig, A. & Kloetzel, P. M. 20S proteasomes are assembled via distinct precursor complexes: Processing of LMP2 and LMP7 proproteins takes place in 13?16S preproteasome complexes . J. Mol. Biol. 236, 975? 981 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Schmidt, M. et al. Sequence information within the proteasomal prosequence mediates efficient integration of β-subunits into the 20S proteasome complex. J. Mol. Biol. 288, 99?110 (1999).

    Article  Google Scholar 

  28. Schmidtke, G. et al. Analysis of mammalian 20S proteasome biogenesis: the maturation of β-subunits is an ordered two step mechanism involving autocatalysis . EMBO J. 15, 6887?6898 . (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Witt, E. et al. Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7 (β5i) incorporation into 20S proteasomes. J. Mol. Biol. 30, 1?9 ( 2000).

    Article  CAS  Google Scholar 

  30. Groettrup, M., Standera, S., Stohwasser, R. & Kloetzel, P. M. The subunits MECL-1 and LMP2 are mutually required for incorporation into the 20S proteasome. Proc. Natl Acad. Sci. USA 94, 8970?8975 (1996).

    Article  Google Scholar 

  31. Griffin, T. A. et al. Immunoproteasome assembly: cooperative incorporation of inferon-γ (IFN-γ) inducible subunits. J. Exp. Med. 187, 97?104 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmidt, M. & Kloetzel, P. M. Biogenesis of eukaryotic proteasomes: the complex maturation pathway of a complex enzyme. FASEB J. 11, 1235?1243 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Sijts, A. et al. Structural features of immunoproteasomes determine the efficient generation of a viral CTL epitope. J. Exp. Med. 191 , 503?513 (2000). Experimental evidence is presented that the β5i (LMP7) subunit influences the structure of the immunoproteasomes and affects the activity of the two other immunosubunits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schmidtke, G. et al. Inactivation of a defined active site in the mouse 20S proteasome complexes enhances MHC class I presentation of a murine cytomegalovirus protein . J. Exp. Med. 187, 1641? 1646 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dahlmann, B. et al. Different proteasomes subtypes in a single tissue exhibit different enzymatic properties. J. Mol. Biol. 303, 643?653 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Sijts, A. et al. MHC class I antigen processing of an Adenovirus CTL epitope is linked to the levels of immunoproteasomes in infected cells. J. Immunol. 164, 450?456 ( 2000). PubmedThis paper describes the establishment of tetracycline-regulated immunosubunit expression and presents evidence that only minor amounts of immunoproteasomes are required for efficient antigen presentation.

    Article  Google Scholar 

  37. van Hall, T. et al. Differential influence on CTL epitope presentation by controlled expression of either proteasome immuno-subunits or PA28. J. Exp. Med. 192, 483?492 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schwarz, K. et al. Overexpression of the proteasome subunits LMP2, LMP7 and MECL-1 but not PA28α/β enhances the presentation of an immunodominant lymphocyte choriomeningitis virus T cell epitope. J. Immunol. 165, 768?778 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Dubiel, W., Pratt, G., Ferrell, K. & Rechsteiner, M. Purification of a 11S regulator of the multicatalytic proteinase. J. Biol. Chem. 267, 22369?22377 ( 1992).

    CAS  PubMed  Google Scholar 

  40. Ma, C. P., Slaugther, C. A. & DeMartino, G. N. Identification, purification and characterisation of a protein activator (PA28) of the 20S proteasome (macropain). J. Biol. Chem. 267, 10515?10523 (1992).

    CAS  PubMed  Google Scholar 

  41. Knowlton, J. R. et al. Structure of the proteasome activator REGα (PA28α) . Nature 390, 639?643 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Realini, C. et al. Molecular cloning and expression of a γ-interferon inducible activator of the multicatalytic proteinase. J. Biol. Chem. 269, 20727?20732 (1994).

    CAS  PubMed  Google Scholar 

  43. Groettrup, M. et al. A role for the proteasome regulator PA28α in antigen presentation. Nature 381, 166? 168 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Schwarz, K. et al. The proteasome regulator PA28α/β can enhance antigen presentation without affecting 20S proteasome subunit composition. Eur. J. Immunol. (in the press).

  45. Preckel, T. et al. Impaired immunoproteasome assembly and immune response in PA28−/− mice. Science 286 , 2162?2165 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Dick, T. P. et al. Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell 86, 253?256 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Shimbara, N. et al. Double cleavage production of the CTL epitope by proteasomes and PA28: role of the flanking region. Genes Cells 2, 785?800 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Stohwasser, R. et al. Kinetic evidences for facilitation of peptide channelling by the proteasome activator PA28. Eur. J. Biochem. 276, 6221?6239 (2000).

    Article  Google Scholar 

  49. Tanahashi, N. et al. Hybrid proteasomes: Induction by interferon-γ and contribution to ATP-dependent proteolysis. J. Biol. Chem. 275, 14336?14345 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Groll, M. et al. A gated channel into the proteasome core particle. Nature Struct. Biol. 7, 1062?1067 (2000). PubmedX-ray structure analysis shows that gating is most likely a regulated mechanism and that a single residue within the amino terminus of the α3 subunit is responsible for opening and closing the gate.

    Article  CAS  PubMed  Google Scholar 

  51. McGuire, M. J., Mc Cullough, M. L., Croall, D. E. & DeMartino, G. N. The high molecular weight multicatalytic proteinase, macropain, exists in a latent form in human erythrocytes. Biochim. Biophys. Acta 995, 181?186 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Dahlmann, B., Rutschmann, M., Kuehn, L. & Reinauer, H. Activation of the multicatalytic proteinase from skeletal muscle by fatty acid and sodium dodecyl sulphate. Biochem. J. 228, 171?177 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kuckelkorn, U. et al. The effect of heat shock on 20S/26S proteasomes. Biol. Chem. 381, 1017?1024 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Whitby, F. G. et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408, 115? 120 (2000).Presents the first co-crystallization of the proteasome activator PA28 with the 20S proteasome and explains how PA28 facilitates the opening of the gate.

    Article  CAS  PubMed  Google Scholar 

  55. Thrower, J. S., Hofmann, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94?102 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nussbaum, A. K. et al. Cleavage motifs of the yeast proteasome β-subunits deduced from digests of enolase 1. Proc. Natl Acad. Sci. USA 95, 12504?12509 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wenzel, T., Eckerskorn, C., Lottspeich, F. & Baumeister, W. Existence of a molecular ruler in proteasomes suggestes by analysis of degradation products. FEBS Lett. 349, 205? 209 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Lauvau, G. et al. Human transporters associated with antigen processing (TAPs) select epitope precursor peptides for processing in the endoplasmic reticulum and presentation to T cells. J. Exp. Med. 190, 1227?1240 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Neisig, A. et al. Major differences in transporter associated with antigen presentation (TAP)-dependent translocation of MHC class I presentable peptides and the effect of flanking sequences. J. Immunol. 154, 1273?1279 (1995).

    CAS  PubMed  Google Scholar 

  60. Mo, X. Y. et al. Distinct proteolytic processes generate the C and N-termini of the MHC class I-binding peptides. J. Immunol. 163, 5851?5859 (1999).

    CAS  PubMed  Google Scholar 

  61. Niedermann, G. et al. Contribution of proteasome mediated proteolysis to the hierarchy of epitopes presented by major histocompatibiliy complex class I molecules . Immunity 2, 289?299 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Del Val, M. et al. Efficient processing of an antigenic sequence for presentation by MHC class I molecules depends on its neighbouring residues in proteins . Cell 66, 1145?1153 (1991).This paper presents, for the first time, experiments showing that the efficiency of antigen processing depends on the sequence environment of the epitope.

    Article  CAS  PubMed  Google Scholar 

  63. Theobald, M. et al. A mutational hotspot in p53 protects cells from lysis by CTL specific for a flanking epitope. J. Exp. Med. 11, 1017?1020 (1998).

    Article  Google Scholar 

  64. Beekman, N. J. et al. Abrogation of CTL epitope processing by single amino acid substitution flanking the C-terminal proteasome cleavage site. J. Immunol. 164, 1898?1905 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Ossendorp, F. et al. A single residue exchange within a viral CTL epitope alters proteasome-mediated degradation resulting in lack of antigen presentation . Immunity 5, 115?124 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Holzhütter, H. G., Frömmel, C. & Kloetzel, P. M. A theoretical approach towards the identification of cleavage determining amino acid motifs of the 20S proteasome. J. Mol. Biol. 286, 1251?1265 (1999).The first mathematical model that permits the identification of proteasomal cleavage sites in a substrate protein.

    Article  PubMed  Google Scholar 

  67. Shimbara, N. et al. Contribution of proline residue for efficient production of MHC class I ligands by proteasomes. J. Biol. Chem. 273, 23062?23071 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Kraft, R. et al. Influence of single amino acid exchanges in epitope generation by 20S proteasomes. J. Protein Chem. 17, 547?548 (1998).

    CAS  PubMed  Google Scholar 

  69. Beninga, J., Rock, K. L. & Goldberg, A. L. Interferon-γ can stimulate post-proteasomal trimming of the N-terminus of an antigenic peptide by inducing leucine aminopeptidase . J. Biol. Chem. 273, 18734? 18742 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Kuttler, C. et al. An algorithm for the prediction of proteasome cleavage. J. Mol. Biol. 5, 298, 417? 429 (2000).

    Article  CAS  Google Scholar 

  71. Holzhütter, H.-G. & Kloetzel, P.-M. A kinetic model of vertebrate 20S proteasome accounting for the generation of major proteolytic fragments from oligomeric peptide substrates. Biophys. J. 79, 1196?1205 ( 2000).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rammensee, H. G. et al. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 313?316 (1999).

    Article  Google Scholar 

  73. Yewdell, J. W. & Bennik, J. R. Mechanisms of viral interference with MHC class I antigen processing and presentation. Annu. Rev. Cell Dev. Biol. 15, 579? 606 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rousset, R., Desbois, C., Bantignies, F. & Jalinot, P. Effects of the NF-kB1/105 processing of the interaction between HTLV-1 transactivator Tax and the proteasome. Nature 381, 328? 331 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Fischer, M., Runkel, L. & Schaller, H. HBx protein of hepatitis B virus interacts with the C-terminal portion of a novel human proteasome α-subunit. Virus Genes 10, 99?102 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  76. Huang, J., Kwong, J., Sun, E. C. & Liasng, T. J. Proteasome complex as a potential cellular target for hepatitis B virus X protein. J. Virol. 70, 5582?5591 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rossi, F. et al. HsN3 proteasomal subunits as a target for human immunodeficiency virus type 1 Nef protein. Virology 237, 33?45 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Turnell, A. S. et al. Regulation of 26S proteasome by adenovirus. EMBO J. 19, 4759?4773 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Seeger, M., Ferrell, K., Frank, R. & Dubiel, W. HIV-tat inhibits the 20S proteasome and its 11S regulator-mediated activation. J. Biol. Chem. 272, 8145?8148 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Young, P. et al. Characterisation of two polyubiquitin binding sites in the 26S protease subunit 5a. J. Biol. Chem. 273, 5461?5467 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Elliot, T. Transporter associated with antigen processing. Adv. Immunol. 65, 47?109 (1997).

    Article  Google Scholar 

  82. Momburg, F. & Hämmerling, G. J. Generation of TAP mediated trasnport of peptides for major histocampatibility complex class I molecules . Adv. Immunol. 68, 191? 256 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Pamer, E. & Cresswell, P. Mechanism of MHC class I restricted antigen processing. Annu. Rev. Immunol. 16, 323?358 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Hughes, E. A. & Cresswell, P. The thiooxidoreductase ERp57 is a component of the MHC class I peptide loading complex. Curr. Biol. 8, 709?712 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  85. Morrice, N. A. & Powis, S. J. A role for the thiol-dependent reductase ERp57 in the assembly of MHC class I molecules. Curr. Biol. 8, 713?716 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  86. Van Kaer, L. et al. Altered peptidase and viral-specific T cell response in LMP2 mutant mice. Immunity 1, 533? 541 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Fehling, H. J. et al. MHC class I expression in mice lacking the proteasome subunit LMP-7. Science 265, 1234? 1237 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Morel, S. et al. Processing of some antigens by standard proteasome but not by the immunoproteasome result in poor presentation by dendritic cells. Immunity 12, 101?117 ( 2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASE LINKS

IFNγ

TAP

PA28

β1i

β5i

β2i

β1

β2

β5

hsc70

Ump1

PA28α

PA28β

crystal structure of the Saccharomyces cerevisiae 20S proteasome

X-ray structure analysis of mutant proteasomes

X-ray structure of PA28 bound to the 20S proteasome

FURTHER INFORMATION

IMGT/HLA sequence database

ENCYCLOPEDIA OF LIFE SCIENCES

Antigen processing

Histocompatibility antigens

Protease complexes

Ubiquitin pathway

Glossary

SELF

Endogenous peptides derived from the organism's own protein pool.

CYTOTOXIC T CELLS

T cells that can kill other cells. They are important in host defence against most viral pathogens.

MULTI-UBIQUITIN TAG

Ubiquitin is a small protein that can form multimeric chains. Multi-ubiquitin chains, which are covalently bound to a substrate, target this substrate to the 26S proteasome for degradation.

TRIPLE-A FAMILY

ATPases associated with a variety of cellular activities. They contain an ATP-binding site with two conserved motifs known as Walker A and Walker B.

CHAPERONE

Proteins that support the folding of other proteins.

AMINO-TERMINAL NUCLEOPHILE (NTN)-HYDROLASE

Enzyme family that shares an amino-terminal nucleophile as a single active-site residue, which can be threonine, serine or cysteine.

ANCHOR RESIDUE

Residues within an epitope that bind, via their side chains, into the pockets of the MHC molecule lining the peptide-binding groove of the MHC class I molecule.

HAPLOTYPE

A linked set of genes associated with the haploid genome. Mostly used in connection with genes of the MHC complex.

TRANSPORTER ASSOCIATED WITH ANTIGEN PROCESSING

(TAP). ATP-binding cassette protein involved in the transport of peptides from the cytosol to the endoplasmic reticulum.

CYTOKINES

Originally used to describe a group of immunomodulatory growth factors, the term cytokine is now used to describe a diverse group of soluble proteins that modulate the activities of cells and tissues.

COOPERATIVE

The incorporation of immunosubunits into the 20S proteasome is cooperative because the efficiency of their incorporation is strongly dependent on each other.

EPITOPE

A short peptide derived from a protein antigen. It binds to an MHC molecule (or an antibody) and is recognized by a specific T-cell clone (or B-cell clone).

CHLAMYDIA TRACHOMATIS

A Gram-negative bacterial pathogen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kloetzel, PM. Antigen processing by the proteasome . Nat Rev Mol Cell Biol 2, 179–188 (2001). https://doi.org/10.1038/35056572

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35056572

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing