Skip to main content

Advertisement

Log in

Late-onset neutropenia associated with rituximab therapy: evidence for a maturation arrest at the (pro)myelocyte stage of granulopoiesis

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Late-onset neutropenia, i.e. an absolute neutrophil count of <1.5 × 109/l, may follow 4 weeks or more after therapy with rituximab for lymphoma. However, incidence, predisposing factors, and pathogenic mechanisms are still poorly defined. In a retrospective study of 113 consecutive lymphoma patients treated with rituximab, with or without chemotherapy, we found eight patients (7%) with late-onset neutropenia (LON). Median time to onset was 88 days (range, 1–9 months) after last rituximab dose. Median duration of LON was 54 days (range, 1–17 weeks). Four of the eight patients underwent stem cell transplantation. Three patients developed febrile neutropenia and two required treatment with granulocyte colony-stimulating factor. In four subsequently identified patients with severe LON, a maturation arrest at the (pro)myelocyte stage was observed in the bone marrow, similar to that found in severe congenital neutropenia or Kostmann disease. However, none carried mutations in HAX1, thus ruling out such mutations in the development of the maturation arrest in these patients. Nevertheless, our data suggest that rituximab-related LON and congenital neutropenia might share similar neutropenia-causing mechanisms resulting in maturation arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Marcus R, Hagenbeek A. The therapeutic use of rituximab in non-Hodgkin’s lymphoma. Eur J Haematol 2007;67:5–14.

    Article  CAS  Google Scholar 

  2. Flinn IW, et al. Immunotherapy with rituximab during peripheral blood stem cell transplantation for non-Hodgkin’s lymphoma. Biol Blood Marrow Transplant 2000;6:628–32.

    Article  PubMed  CAS  Google Scholar 

  3. Dalle S, Dumontet C. Rituximab: mechanism of action and resistance. Bull Cancer 2007;94:198–202.

    PubMed  CAS  Google Scholar 

  4. Thatayatikom A, White AJ. Rituximab: a promising therapy in systemic lupus erythematosus. Autoimmunity Rev 2006;5:18–24.

    Article  CAS  Google Scholar 

  5. Summers KM, Kockler DR. Rituximab treatment of refractory rheumatoid arthritis. The Ann Pharmacother 2005;39:2091–5.

    Article  CAS  Google Scholar 

  6. Kimby E. Tolerability and safety of rituximab (MabThera). Cancer Treat Rev 2005;31:456–73.

    Article  PubMed  CAS  Google Scholar 

  7. Chaiwatanatorn K, Lee N, Grigg A, Filshie R, Firkin F. Delayed-onset neutropenia associated with rituximab therapy. Br J Haematol 2003;121:913–8.

    Article  PubMed  Google Scholar 

  8. Cairoli R, et al. High incidence of neutropenia in patients treated with rituximab after autologous stem cell transplantation. Haematologica 2004;89:361–3.

    PubMed  CAS  Google Scholar 

  9. Lemieux B, et al. Rituximab-related late-onset neutropenia after autologous stem cell transplantation for aggressive non-Hodgkin’s lymphoma. Bone Marrow Transplant 2004;33:921–3.

    Article  PubMed  CAS  Google Scholar 

  10. Dunleavy K, et al. B-cell recovery following rituximab-based therapy is associated with perturbations in stromal derived factor-1 and granulocyte homeostasis. Blood 2005;106:795–802.

    Article  PubMed  CAS  Google Scholar 

  11. Fukuno K, et al. Late-onset neutropenia in patients treated with rituximab for non-Hodgkin’s lymphoma. Int J Hematol 2006;84:242–7.

    Article  PubMed  CAS  Google Scholar 

  12. Cattaneo C, et al. Delayed-onset peripheral blood cytopenia after rituximab: frequency and risk factor assessment in a consecutive series of 77 treatments. Leuk Lymphoma 2006;47:1013–7.

    Article  PubMed  CAS  Google Scholar 

  13. Nitta E, et al. A high incidence of late-onset neutropenia following rituximab-containing chemotherapy as a primary treatment of CD20-positive B-cell lymphoma: a single-institution study. Ann Oncol 2007;18:364–9.

    Article  PubMed  CAS  Google Scholar 

  14. Voog E, Morschhauser F, Solal-Celigny P. Neutropenia in patients treated with rituximab. N Engl J Med 2003;348:2691–4.

    Article  PubMed  Google Scholar 

  15. Welte K, Zeidler C, Dale DC. Severe congenital neutropenia. Semin Hematol 2006;43:189–95.

    Article  PubMed  CAS  Google Scholar 

  16. Carlsson G, et al. Kostmann syndrome: severe congenital neutropenia associated with defective expression of Bcl-2, constitutive mitochondrial release of cytochrome c, and excessive apoptosis of myeloid progenitor cells. Blood 2004;103:3355–61.

    Article  PubMed  CAS  Google Scholar 

  17. Cario G, et al. Heterogeneous expression pattern of pro- and anti-apoptotic factors in myeloid progenitor cells of patients with severe congenital neutropenia treated with granulocyte colony-stimulating factor. Br J Haematol 2005;129:275–8.

    Article  PubMed  Google Scholar 

  18. Palmblad JE, von dem Borne AE. Idiopathic, immune, infectious, and idiosyncratic neutropenias. Semin Hematol 2002;39:113–20.

    Article  PubMed  Google Scholar 

  19. Klein C, et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet 2007;39:86–92.

    Article  PubMed  CAS  Google Scholar 

  20. Benyunes MMP, Saunders A. Neutropenia in patients treated with rituximab (response letter). N Engl J Med 2002;348:2694.

    Google Scholar 

  21. Papadaki T, et al. Evidence for T-large granular lymphocyte-mediated neutropenia in rituximab-treated lymphoma patients: report of two cases. Leuk Res 2002;26:597–600.

    Article  PubMed  CAS  Google Scholar 

  22. Terrier B, et al. Late-onset neutropenia following rituximab results from a hematopoietic lineage competition due to an excessive BAFF-induced B-cell recovery. Haematologica 2007;92:ECR10.

    Article  Google Scholar 

  23. Carlsson G, et al. Kostmann syndrome or infantile genetic agranulocytosis, part one: celebrating 50 years of clinical and basic research on severe congenital neutropenia. Acta Paediatr 2006;95:1526–32.

    Article  PubMed  Google Scholar 

  24. Carlsson G, et al. Kostmann syndrome or infantile genetic agranulocytosis, part two: understanding the underlying genetic defects in severe congenital neutropenia. Acta Paediatr 2007;96:813–19.

    Article  PubMed  Google Scholar 

  25. Spielberg SP. Pharmacogenetics and blood dyscrasias. Eur J Haematol 1996;60:93–7.

    CAS  Google Scholar 

  26. Amacher DE. Reactive intermediates and the pathogenesis of adverse drug reactions: the toxicology perspective. Curr Drug Metab 2006;7:219–29.

    Article  PubMed  CAS  Google Scholar 

  27. Nagasawa T, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996;382:635–8.

    Article  PubMed  CAS  Google Scholar 

  28. Lum JJ, Bren G, McClure R, Badley AD. Elimination of senescent neutrophils by TNF-related apoptosis-inducing ligand. J Immunol 2005;175:1232–8.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by grants from the Swedish Society for Medical Research, the Swedish Cancer Foundation, Roche Pharmaceutical, and the Stockholm County Council (ALF project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Tesfa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tesfa, D., Gelius, T., Sander, B. et al. Late-onset neutropenia associated with rituximab therapy: evidence for a maturation arrest at the (pro)myelocyte stage of granulopoiesis. Med Oncol 25, 374–379 (2008). https://doi.org/10.1007/s12032-008-9049-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-008-9049-z

Keywords

Navigation