Skip to main content

Advertisement

Log in

Synovium and the Innate Inflammatory Network in Osteoarthritis Progression

  • OSTEOARTHRITIS (MB GOLDRING, SECTION EDITOR)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

This review focuses on the recent advancements in the understanding of innate immunity in the pathogenesis of osteoarthritis, particularly with attention to the roles of damage-associated molecular patterns (DAMPs), pattern recognition receptors (PPRs), and complement in synovitis development and cartilage degradation. Endogenous molecular products derived from cellular stress and extracellular matrix disruption can function as DAMPs to induce inflammatory responses and pro-catabolic events in vitro and promote synovitis and cartilage degradation in vivo via PRRs. Some of the DAMPs and PRRs display various capacities in driving synovitis and/or cartilage degradation in different models of animal studies. New findings reveal that the inflammatory complement cascade plays a key in the pathogenesis of OA. Crosstalk between joint tissues such as synovium and cartilage communicated at the cellular level within the innate immune inflammatory network is implicated to play an important role in OA progression. Further studies on how the innate immune inflammatory network impacts the OA disease process at different stages of progression will lead to the development of new therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64:1697–707. This excellent review summarizes the key features of OA in various tissues affected, and provides an overview of the currently known mechanisms that contribute to the pathological changes in these tissues.

    Article  PubMed  Google Scholar 

  2. Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6:625–35.

    Article  PubMed  CAS  Google Scholar 

  3. Goldring MB, Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol. 2011;23:471–8.

    Article  PubMed  CAS  Google Scholar 

  4. Piccinini AM, Midwood KS. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010; 2010. pii: 672395.

  5. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84.

    Article  PubMed  CAS  Google Scholar 

  6. •• Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone. 2012;51:249–57. This review provides insights into the pathogenic mechanisms underlying the development synovitis in OA.

    Article  PubMed  CAS  Google Scholar 

  7. Bobacz K, Sunk IG, Hofstaetter JG, Amoyo L, Toma CD, Akira S, et al. Toll-like receptors and chondrocytes: the lipopolysaccharide-induced decrease in cartilage matrix synthesis is dependent on the presence of toll-like receptor 4 and antagonized by bone morphogenetic protein 7. Arthritis Rheum. 2007;56:1880–93.

    Article  PubMed  CAS  Google Scholar 

  8. Kim HA, Cho ML, Choi HY, Yoon CS, Jhun JY, Oh HJ, et al. The catabolic pathway mediated by Toll-like receptors in human osteoarthritic chondrocytes. Arthritis Rheum. 2006;54:2152–63.

    Article  PubMed  CAS  Google Scholar 

  9. Alexiou P, Chatzopoulou M, Pegklidou K, Demopoulos VJ. RAGE: a multi-ligand receptor unveiling novel insights in health and disease. Curr Med Chem. 2010;17:2232–52.

    Article  PubMed  CAS  Google Scholar 

  10. Loeser RF, Yammani RR, Carlson CS, Chen H, Cole A, Im HJ, et al. Articular chondrocytes express the receptor for advanced glycation end products: Potential role in osteoarthritis. Arthritis Rheum. 2005;52:2376–85.

    Article  PubMed  CAS  Google Scholar 

  11. Foell D, Wittkowski H, Roth J. Mechanisms of disease: a 'DAMP' view of inflammatory arthritis. Nat Clin Pract Rheumatol. 2007;3:382–90.

    Article  PubMed  CAS  Google Scholar 

  12. Sofat N. Analysing the role of endogenous matrix molecules in the development of osteoarthritis. Int J Exp Pathol. 2009;90:463–79.

    Article  PubMed  CAS  Google Scholar 

  13. Liu-Bryan R, Terkeltaub R. The growing array of innate inflammatory ignition switches in osteoarthritis. Arthritis Rheum. 2012;64:2055–8.

    Article  PubMed  Google Scholar 

  14. Andersson U, Harris HE. The role of HMGB1 in the pathogenesis of rheumatic disease. Biochim Biophys Acta. 2010;1799:141–8.

    Article  PubMed  CAS  Google Scholar 

  15. Yammani RR. S100 proteins in cartilage: role in arthritis. Biochim Biophys Acta. 1822;2012:600–6.

    Google Scholar 

  16. Nakashima M, Sakai T, Hiraiwa H, Hamada T, Omachi T, Ono Y, et al. Role of S100A12 in the pathogenesis of osteoarthritis. Biochem Biophys Res Commun. 2012;422:508–14.

    Article  PubMed  CAS  Google Scholar 

  17. • Chockalingam PS, Glasson SS, Lohmander LS. Tenascin-C levels in synovial fluid are elevated after injury to the human and canine joint and correlate with markers of inflammation and matrix degradation. Osteoarthritis Cartilage. 2012 pii: S1063-4584(12)01011-4. This study reported that levels of TN-C are highly elevated in human knee joints after injury or OA that correlated with markers of cartilage degradation and inflammation.

  18. Sofat N, Robertson SD, Hermansson M, Jones J, Mitchell P, Wait R. Tenascin-C fragments are endogenous inducers of cartilage matrix degradation. Rheumatol Int. 2012;32:2809–17.

    Article  PubMed  CAS  Google Scholar 

  19. Patel L, Sun W, Glasson SS, Morris EA, Flannery CR, Chockalingam PS. Tenascin-C induces inflammatory mediators and matrix degradation in osteoarthritic cartilage. BMC Musculoskelet Disord. 2011;12:164.

    Article  PubMed  CAS  Google Scholar 

  20. Liu-Bryan R, Terkeltaub R. Chondrocyte innate immune myeloid differentiation factor 88-dependent signaling drives procatabolic effects of the endogenous Toll-like receptor 2/Toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice. Arthritis Rheum. 2010;62:2004–12.

    PubMed  Google Scholar 

  21. DeGroot J, Verzijl N, Wenting-van Wijk MJ, Jacobs KM, Van El B, Van Roermund PM, et al. Accumulation of advanced glycation end products as a molecular mechanism for aging as a risk factor in osteoarthritis. Arthritis Rheum. 2004;50:1207–15.

    Article  PubMed  CAS  Google Scholar 

  22. Sohn DH, Sokolove J, Sharpe O, Erhart JC, Chandra PE, Lahey LJ, et al. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4. Arthritis Res Ther. 2012;14:R7.

    Article  PubMed  CAS  Google Scholar 

  23. Schelbergen RF, Blom AB, van den Bosch MH, Sloetjes A, Abdollahi-Roodsaz S, Schreurs BW, et al. Alarmin S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. Arthritis Rheum. 2012;64:1477–87.

    Article  PubMed  CAS  Google Scholar 

  24. Zreiqat H, Belluoccio D, Smith MM, Wilson R, Rowley LA, Jones K, et al. S100A8 and S100A9 in experimental osteoarthritis. Arthritis Res Ther. 2010;12(1):R16.

    Article  PubMed  Google Scholar 

  25. Midwood K, Sacre S, Piccinini AM, Inglis J, Trebaul A, Chan E, et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med. 2009;15:774–80.

    Article  PubMed  CAS  Google Scholar 

  26. van Beijnum JR, Buurman WA, Griffioen AW. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis. 2008;11:91–9.

    Article  PubMed  CAS  Google Scholar 

  27. Rojas A, Delgado-Lopez F, Gonzalez I, Perez-Castro R, Romero J, Rojas I. The receptor for advanced glycation end-products: A complex signaling scenario for a promiscuous receptor. Cell Signal. 2012;25:609–14.

    Article  PubMed  Google Scholar 

  28. • Okamura N, Hasegawa M, Nakoshi Y, Iino T, Sudo A, Imanaka-Yoshida K, et al. Deficiency of tenascin-C delays articular cartilage repair in mice. Osteoarthritis Cartilage. 2010;18:839–48. This paper reports worsened cartilage degeneration and delayed cartilage repair in tenascin-C knockout mice in the aging-related spontaneous OA and mechanical injury-induced OA mouse models.

    Article  PubMed  CAS  Google Scholar 

  29. •• Blom AB, van Lent PL, Abdollahi-Roodsaz S, van der Kraan P, van den Berg W. Elusive role for toll like receptor 2 in joint pathology during experimental osteoarthritis. Osteoarthritis and Cartilage. 2011;19 Suppl 1:25. This study shows that TLR2 deficiency increased the extent of OA in the collagenase-induced model of mouse knee OA (which is associated with significant synovitis), but did not decrease experimental OA in the DMM model.

    Google Scholar 

  30. •• van Lent PL, Blom AB, Schelbergen RF, Sloetjes A, Lafeber FP, Lems WF, et al. Active involvement of alarmins S100A8 and S100A9 in the regulation of synovial activation and joint destruction during mouse and human osteoarthritis. Arthritis Rheum. 2012;64(5):1466–76. This study reports that S100A8 and S100A9 play a significant role in synovial activation and joint destruction in the collagenase-induced OA model.

    Article  PubMed  Google Scholar 

  31. Cecil DL, Appleton CT, Polewski MD, Mort JS, Schmidt AM, Bendele A, et al. The pattern recognition receptor CD36 is a chondrocyte hypertrophy marker associated with suppression of catabolic responses and promotion of repair responses to inflammatory stimuli. J Immunol. 2009;182:5024–31.

    Article  PubMed  CAS  Google Scholar 

  32. Ruiz-Romero C, Calamia V, Mateos J, Carreira V, Martinez-Gomariz M, Fernandez M, et al. Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance. Mol Cell Proteomics. 2009;8(1):172–89.

    Article  PubMed  CAS  Google Scholar 

  33. Scott JL, Gabrielides C, Davidson RK, Swingler TE, Clark IM, Wallis GA, et al. Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann Rheum Dis. 2010;69:1502–10.

    Article  PubMed  CAS  Google Scholar 

  34. Gavriilidis C, Miwa S, von Zglinicki T, Taylor RW, Young DA. Mitochondrial dysfunction in osteoarthritis is associated with a down-regulation of superoxide dismutase 2. Arthritis Rheum. 2012 Nov 8. doi: 10.1002/art.37782.

  35. Finberg RW, Kurt-Jones EA. CD14: chaperone or matchmaker? Immunity. 2006;24:127–9.

    Article  PubMed  CAS  Google Scholar 

  36. • Nair A, Kanda V, Bush-Joseph C, Verma N, Chubinskaya S, Mikezcz K, et al. Synovial fluid from patients with early osteoarthritis modulates fibroblast-like synoviocyte responses to TLR4 and TLR2 ligands via soluble CD14. Arthritis Rheum. 2012;64:2268–77. This study reports that soluble CD14 is increased in synovial fluid in both early and advanced stages of human knee OA, and that the synovial fluid of early OA patients can modulate cultured synovial lining cell inflammatory responses to exogenous microbial TLR2 and TLR4 ligands.

    Article  PubMed  CAS  Google Scholar 

  37. Carroll MV, Sim RB. Complement in health and disease. Adv Drug Deliv Rev. 2011;63:965–75.

    Article  PubMed  CAS  Google Scholar 

  38. Ballanti E, Perricone C, di Muzio G, Kroegler B, Chimenti MS, Graceffa D, et al. Role of the complement system in rheumatoid arthritis and psoriatic arthritis: relationship with anti-TNF inhibitors. Autoimmun Rev. 2011;10:617–23.

    Article  PubMed  CAS  Google Scholar 

  39. Konttinen YT, Ceponis A, Meri S, Vuorikoski A, Kortekangas P, Sorsa T, et al. Complement in acute and chronic arthritides: assessment of C3c, C9, and protectin (CD59) in synovial membrane. Ann Rheum Dis. 1996;55:888–94.

    Article  PubMed  CAS  Google Scholar 

  40. Gobezie R, Kho A, Krastins B, Sarracino DA, Thornhill TS, Chase M, et al. High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis. Arthritis Res Ther. 2007;9:R36.

    Article  PubMed  Google Scholar 

  41. •• Wang Q, Rozelle AL, Lepus CM, Scanzello CR, Song JJ, Larsen DM, et al. Identification of a central role for complement in osteoarthritis. Nat Med. 2011;17:1674–9. This study highlights a key role of activation of complement cascade, particularly membrane attack complex assembly, in the pathogenesis of OA.

    Article  PubMed  CAS  Google Scholar 

  42. Happonen KE, Saxne T, Aspberg A, Morgelin M, Heinegard D, Blom AM. Regulation of complement by cartilage oligomeric matrix protein allows for a novel molecular diagnostic principle in rheumatoid arthritis. Arthritis Rheum. 2010;62:3574–83.

    Article  PubMed  CAS  Google Scholar 

  43. Sjoberg A, Onnerfjord P, Morgelin M, Heinegard D, Blom AM. The extracellular matrix and inflammation: fibromodulin activates the classical pathway of complement by directly binding C1q. J Biol Chem. 2005;280:32301–8.

    Article  PubMed  Google Scholar 

  44. Song WC. Crosstalk between complement and toll-like receptors. Toxicol Pathol. 2012;40:174–82.

    Article  PubMed  CAS  Google Scholar 

  45. Hajishengallis G, Lambris JD. Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol. 2010;31:154–63.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang X, Kimura Y, Fang C, Zhou L, Sfyroera G, Lambris JD, et al. Regulation of Toll-like receptor-mediated inflammatory response by complement in vivo. Blood. 2007;110:228–36.

    Article  PubMed  CAS  Google Scholar 

  47. Lappegard KT, Christiansen D, Pharo A, Thorgersen EB, Hellerud BC, Lindstad J, et al. Human genetic deficiencies reveal the roles of complement in the inflammatory network: lessons from nature. Proc Natl Acad Sci USA. 2009;106:15861–6.

    Article  PubMed  Google Scholar 

  48. Stevens MG, Van Poucke M, Peelman LJ, Rainard P, De Spiegeleer B, Rogiers C, et al. Anaphylatoxin C5a-induced toll-like receptor 4 signaling in bovine neutrophils. J Dairy Sci. 2011;94:152–64.

    Article  PubMed  CAS  Google Scholar 

  49. Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008;8:776–87.

    Article  PubMed  CAS  Google Scholar 

  50. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7:33–42.

    Article  PubMed  CAS  Google Scholar 

  51. Su SL, Tsai CD, Lee CH, Salter DM, Lee HS. Expression and regulation of Toll-like receptor 2 by IL-1beta and fibronectin fragments in human articular chondrocytes. Osteoarthritis Cartilage. 2005;13:879–86.

    Article  PubMed  Google Scholar 

  52. Bradley K, North J, Saunders D, Schwaeble W, Jeziorska M, Woolley DE, et al. Synthesis of classical pathway complement components by chondrocytes. Immunology. 1996;88:648–56.

    PubMed  CAS  Google Scholar 

  53. Menu P, Vince JE. The NLRP3 inflammasome in health and disease: the good, the bad and the ugly. Clin Exp Immunol. 2011;166:1–15.

    Article  PubMed  CAS  Google Scholar 

  54. • Jin C, Frayssinet P, Pelker R, Cwirka D, Hu B, Vignery A, et al. NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc Natl Acad Sci USA. 2011;108:14867–72. This study shows that the NLRP3 inflammasome mediates synovitis and joint destruction in the pathogenesis of OA associated with deposition of hydroxyapatite.

    Article  PubMed  CAS  Google Scholar 

  55. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237–41.

    Article  PubMed  CAS  Google Scholar 

  56. Ishii H, Tanaka H, Katoh K, Nakamura H, Nagashima M, Yoshino S. Characterization of infiltrating T cells and Th1/Th2-type cytokines in the synovium of patients with osteoarthritis. Osteoarthritis Cartilage. 2002A;10:277–81.

    Article  CAS  Google Scholar 

  57. Abdollahi-Roodsaz S, van de Loo FA, Koenders MI, Helsen MM, Walgreen B, van den Bersselaar LA, et al. Destructive role of myeloid differentiation factor 88 and protective role of TIR-containing adaptor inducing interferon β in IL-17-dependent arthritis. Arthritis Rheum. 2012;64:1838–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Ru Liu-Bryan’s research is supported by National Institutes of Health grant no. AR1067966.

Conflict of Interest

Ru Liu-Bryan declares that she has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru Liu-Bryan.

Additional information

This article is part of the Topical Collection on Osteoarthritis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu-Bryan, R. Synovium and the Innate Inflammatory Network in Osteoarthritis Progression. Curr Rheumatol Rep 15, 323 (2013). https://doi.org/10.1007/s11926-013-0323-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-013-0323-5

Keywords

Navigation