Skip to main content
Log in

Osteoarthritis and cartilage: The role of cytokines

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

The pathogenesis of osteoarthritis involves multiple etiologies, including mechanical, biochemical, and genetic factors that contribute to the imbalance in the synthesis and destruction of articular cartilage. It is now well documented that interleukin-1 and tumor necrosis factor-α are the predominant proinflammatory and catabolic cytokines involved in disease initiation and progression. Other proinflammatory cytokines may amplify or modulate this process, whereas anti-inflammatory cytokines, which are often detected, paradoxically, in osteoarthritis tissues, may counteract the tissue destruction and inflammation. This review focuses on the role of cytokines in the pathogenesis of osteoarthritis with special emphasis on how findings in culture and animal models may be reflected in the human disease process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Goldring MB: The role of cytokines as inflammatory mediators in osteoarthritis: lessons from animal models. Connect Tissue Res 1999, 40:1–11.

    PubMed  CAS  Google Scholar 

  2. Goldring MB: The role of the chondrocyte in osteoarthritis. Arthritis Rheum 2000, In press.

  3. Poole AR: Cartilage in health and disease. In Arthritis and Allied Conditions: A Textbook of Rheumatology. Edited by Koopman WJ. Baltimore: Williams & Wilkins; 1997:255–308.

    Google Scholar 

  4. Aigner T, Dudhia J: Phenotypic modulation of chondrocytes as a potential therapeutic target in osteoarthritis: a hypothesis. Ann Rheum Dis 1997, 56:287–291.

    PubMed  CAS  Google Scholar 

  5. Aigner T, Zhu Y, Chansky HH, et al.: Reexpression of type IIA procollagen by adult articular chondrocytes in osteoarthritic cartilage. Arthritis Rheum 1999, 42:1443–1450.

    Article  PubMed  CAS  Google Scholar 

  6. Garnero P, Rousseau J-C, Delmas PD: Molecular basis and clinical use of biochemical markers of bone, cartilage and synovium in joint diseases. Arthritis Rheum 2000, 43:953–968.

    Article  PubMed  CAS  Google Scholar 

  7. Ishiguro N, Ito T, Ito H, et al.: Relationship of matrix metalloproteinases and their inhibitors to cartilage proteoglycan and collagen turnover: analyses of synovial fluid from patients with osteoarthritis. Arthritis Rheum 1999, 42:129–136.

    Article  PubMed  CAS  Google Scholar 

  8. Yoshihara Y, Nakamura H, Obata K, et al.: Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann Rheum Dis 2000, 59:455–461. Matrix metalloproteinases and TIMPs were detected at lower levels in OA patients and in less than 20% of OA compared with 45% of RA synovial fluids.

    Article  PubMed  CAS  Google Scholar 

  9. Poole AR: An Introduction to the pathophysiology of osteoarthritis. Frontiers Biosci 1999, 4:D662–670. This recent review and other papers in this volume provide an excellent overview of the field and may be read online at http://www.bioscience.org/1999/v4/d.

    Article  CAS  Google Scholar 

  10. Dahlberg L, Billinghurst RC, Manner P, et al.: Selective enhancement of collagenase-mediated cleavage of resident of type II collagen in cultured osteoarthritic cartilage and arrest with a synthetic inhibitor that spares collagenase 1 (matrix metalloproteinase 1). Arthritis Rheum 2000, 43:673–682. This and the companion paper by Billinghurst et al. (Arthritis Rheum 2000, 43:664-672) show that digestion of type II collagen is selectively increased in OA cartilage and demonstrate the use of selective MMP inhibitors and epitope-specific antibodies for analyzing mechanisms of OA cartilage degradation.

    Article  PubMed  CAS  Google Scholar 

  11. Little CB, Flannery CR, Hughes CE, et al.: Aggrecanase versus matrix metalloproteinases in the catabolism of the interglobular domain of aggrecan in vitro. Biochem J 1999, 344:61–68.

    Article  PubMed  CAS  Google Scholar 

  12. Tortorella MD, Burn TC, Pratta MA, et al.: Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science 1999, 284:1664–1666.

    Article  PubMed  CAS  Google Scholar 

  13. Abbaszade I, Liu RQ, Yang F, et al.: Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J Biol Chem 1999, 274:23443–23450.

    Article  PubMed  CAS  Google Scholar 

  14. Smith RL: Degradative enzymes in osteoarthritis. Frontiers Biosci 1999, 4:D704–712.

    CAS  Google Scholar 

  15. Baici A: Inhibition of extracellular matrix-degrading endopeptidases: problems, comments, and hypotheses. Biol Chem 1998, 379:1007–1018.

    PubMed  CAS  Google Scholar 

  16. Homandberg GA: Potential regulation of cartilage metabolism in osteoarthritis by fibronectin fragments. Frontiers Biosci 1999, 4:D713–730.

    Article  CAS  Google Scholar 

  17. Goldring MB: Degradation of articular cartilage in culture: regulatory factors. In Joint Cartilage Degradation: Basic and Clinical Aspects. Edited by Woessner JFJr, Howell DS. New York: Marcel Dekker, Inc.; 1993:281–345.

    Google Scholar 

  18. Westacott CI, Sharif M: Cytokines in osteoarthritis: mediators or markers of joint destruction? Sem in Arthritis Rheum 1996, 25:254–272.

    Article  CAS  Google Scholar 

  19. van den BergWB, Joosten LA, Kollias G, van De LooFA: Role of tumour necrosis factor ? in experimental arthritis: separate activity of interleukin 1? in chronicity and cartilage destruction. Ann Rheum Dis 1999, 58:I40-I48. This and other articles in this supplement summarize the current consensus on the use of TNF-a blocking agents for arthritis therapy.

    PubMed  Google Scholar 

  20. Auron PE: The interleukin 1 receptor: Ligand interactions and signal transduction. Cytokine Growth Factor Rev 1998, 9:221–237. Excellent review of structure-function relationships of IL-1 ligands and receptors.

    Article  PubMed  CAS  Google Scholar 

  21. Schlaak JF, Pfers I, Meyer Zum Buschenfelde KH, Marker- Hermann E: Different cytokine profiles in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and seronegative spondylarthropathies. Clin Exp Rheumatol 1996, 14:155–162.

    PubMed  CAS  Google Scholar 

  22. Moos V, Fickert S, Muller B, et al.: Immunohistological analysis of cytokine expression in human osteoarthritic and healthy cartilage. J Rheumatol 1999, 26:870–879.

    PubMed  CAS  Google Scholar 

  23. Martel-Pelletier J, Alaaeddine N, Pelletier J-P: Cytokines and their role in the pathophysiology of osteoarthritis. Frontiers Biosci 1999, 4:D694-D703.

    Article  CAS  Google Scholar 

  24. Arend WP, Malyak M, Guthridge CJ, Gabay C: Interleukin-1 receptor antagonist: role in biology. Ann Rev Immunol 1998, 16:27–55.

    Article  CAS  Google Scholar 

  25. Hay CW, Chu Q, Budsberg SC, et al.: Synovial fluid interleukin 6, tumor necrosis factor, and nitric oxide values in dogs with osteoarthritis secondary to cranial cruciate ligament rupture. Am J Vet Res 1997, 58:1027–1032.

    PubMed  CAS  Google Scholar 

  26. Patel IR, Attur MG, Patel RN, et al.: TNF-a convertase enzyme from human arthritis-affected cartilage: isolation of cDNA by differential display, expression of the active enzyme, and regulation of TNF-a. J Immunol 1998, 160:4570–4579.

    PubMed  CAS  Google Scholar 

  27. Feldman M, Bondeson J, Brennan FM, et al.: The rationale for the current boom in anti-TNF-a treatment. Is there an effective means to define therapeutic targets for drugs that provide all the benefits of anti-TNF-a and minimize hazards? Ann Rheum Dis 1999, 58(suppl I):I27-I31.

    Article  Google Scholar 

  28. Pelletier J-P, Caron JP, Evans C, et al.: In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy. Arthritis Rheum 1997, 40:1012–1019.

    Article  PubMed  CAS  Google Scholar 

  29. Evans CH, Robbins PD, Ghivizzani SC, et al.: Clinical trial to assess the safety, feasibility, and efficacy of transferring a potentially anti-arthritic cytokine gene to human joints with rheumatoid arthritis. Hum Gene Ther 1996, 7:1261–1280.

    PubMed  CAS  Google Scholar 

  30. Evans CH, Ghivizzani SC, Kang R, et al.: Gene therapy for rheumatic diseases. Arthritis Rheum 1999, 42:1–16.

    Article  PubMed  CAS  Google Scholar 

  31. van den BergWB: Lessons for joint destruction from animal models. Curr Opin Rheumatol 1997, 9:221–228.

    Article  PubMed  Google Scholar 

  32. Okamoto H, Yamamura M, Morita Y, et al.: The synovial expression and serum levels of interleukin-6, interleukin-11, leukemia inhibitory factor, and oncostatin M in rheumatoid arthritis. Arthritis Rheum 1997, 40:1096–1105.

    Article  PubMed  CAS  Google Scholar 

  33. Alaaeddine N, Di Battista JA, Pelletier JP, et al.: Differential effects of IL-8, LIF (pro-inflammatory) and IL-11 (anti-inflammatory) on TNF-a-induced PGE2 release and on signalling pathways in human OA synovial fibroblasts. Cytokine 1999, 11:1020–1030.

    Article  PubMed  CAS  Google Scholar 

  34. Cawston TE, Billington C, Cleaver C, et al.: The regulation of MMPs and TIMPs in cartilage turnover. N Y Acad Sci 1999, 878:120–129.

    Article  CAS  Google Scholar 

  35. van de LooFA, Kuiper S, van EnckevortFH, et al.: Interleukin-6 reduces cartilage destruction during experimental arthritis. A study in interleukin-6-deficient mice. Am J Pathol 1997, 151:177–191.

    PubMed  Google Scholar 

  36. Guerne PA, Desgeorges A, Jaspar J-M, et al.: Effects of IL-6 and its soluble receptor on proteoglycan synthesis and NO release by human articular chondrocytes: comparison with IL-1. Modulation by dexamethasone. Matrix Biol 1999, 18:253–260.

    Article  PubMed  CAS  Google Scholar 

  37. Saha N, Moldovan F, Tardif G, et al.: Interleukin-1a-converting enzyme/caspase-1 in human osteoarthritic tissues: localization and role in the maturation of interleukin-1a and interleukin-18. Arthritis Rheum 1999, 42:1577–1587.

    Article  PubMed  CAS  Google Scholar 

  38. Shalom-Barak T, Quach J, Lotz M: Interleukin-17-induced gene expression in articular chondrocytes is associated with activation of mitogen-activated protein kinases and NF-kB. J Biol Chem 1998, 273:27467–27473.

    Article  PubMed  CAS  Google Scholar 

  39. Olee T, Hashimoto S, Quach J, Lotz M: IL-18 is produced by articular chondrocytes and induces proinflammatory and catabolic responses. J Immunol 1999, 162:1096–1100.

    PubMed  CAS  Google Scholar 

  40. Woods JM, Haines GK, Shah MR, et al.: Low-level production of interleukin-13 in synovial fluid and tissue from patients with arthritis. Clin Immunol Immunopathol 1997, 85:210–220.

    Article  PubMed  CAS  Google Scholar 

  41. Alaaeddine N, Di Battista JA, Pelletier JP, et al.: Inhibition of tumor necrosis factor a-induced prostaglandin E2 production by the antiinflammatory cytokines interleukin-4, interleukin-10, and interleukin-13 in osteoarthritic synovial fibroblasts: distinct targeting in the signaling pathways. Arthritis Rheum 1999, 42:710–718.

    Article  PubMed  CAS  Google Scholar 

  42. Lubberts E, Joosten LA, Helsen MM, van den BergWB: Regulatory role of interleukin 10 in joint inflammation and cartilage destruction in murine streptococcal cell wall (SCW) arthritis. More therapeutic benefit with IL-4/IL-10 combination therapy than with IL-10 treatment alone. Cytokine 1998, 10:361–369.

    Article  PubMed  CAS  Google Scholar 

  43. Lubberts E, Joosten LA, van den BersselaarL, et al.: Adenoviral vector-mediated overexpression of IL-4 in the knee joint of mice with collagen-induced arthritis prevents cartilage destruction. J Immunol 1999, 163:4546–4556.

    PubMed  CAS  Google Scholar 

  44. Muller-Ladner U, Evans CH, Franklin BN, et al.: Gene transfer of cytokine inhibitors into human synovial fibroblasts in the SCID mouse model. Arthritis Rheum 1999, 42:490–497.

    Article  PubMed  CAS  Google Scholar 

  45. Trontzas P, Kamper EF, Potamianou A, et al.: Comparative study of serum and synovial fluid interleukin-11 levels in patients with various arthritides. Clin Biochem 1998, 31:673–679.

    Article  PubMed  CAS  Google Scholar 

  46. Lewis AJ, Manning AM: New targets for anti-inflammatory drugs. Curr Opin Chem Biol 1999, 3:489–494.

    Article  PubMed  CAS  Google Scholar 

  47. Badger AM, Griswold DE, Kapadia R, et al.: Disease-modifying activity of SB 242235, a selective inhibitor of p38 mitogen-activated protein kinase, in rat adjuvant-induced arthritis. Arthritis Rheum 2000, 43:175–183.

    Article  PubMed  CAS  Google Scholar 

  48. Buckwalter JA, Mankin HJ: Articular cartilage repair and transplantation. Arthritis Rheum 1998, 42:1331–1342.

    Article  Google Scholar 

  49. Martel-Pelletier J, Di Battista JA, Lajeunesse D, Pelletier J-P: IGF/IGFBP axis in cartilage and bone in osteoarthritis pathogenesis. Inflamm Res 1998, 47:90–100.

    Article  PubMed  CAS  Google Scholar 

  50. Reddi AH: Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nature Biotech 1998, 16:247–252.

    Article  CAS  Google Scholar 

  51. Yoo JU, Barthel TS, Nishimura K, et al.: The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am 1998, 80:1745–1757.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldring, M.B. Osteoarthritis and cartilage: The role of cytokines. Curr Rheumatol Rep 2, 459–465 (2000). https://doi.org/10.1007/s11926-000-0021-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-000-0021-y

Keywords

Navigation