Skip to main content

Advertisement

Log in

MicroRNAs and Atherosclerosis

  • Genetics (AJ Marian, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small, ~22 nucleotide (nt) sequences of RNA that regulate gene expression at posttranscriptional level. These endogenous gene expression inhibitors were primarily described in cancer but recent exciting findings have also demonstrated a key role in cardiovascular diseases (CVDs), including atherosclerosis. MiRNAs control endothelial cell (EC), vascular smooth muscle cell (VSMC), and macrophage functions, and thereby regulate the progression of atherosclerosis. MiRNA expression is modulated by different stimuli involved in every stage of atherosclerosis, and conversely miRNAs modulates several pathways implicated in plaque development such as cholesterol metabolism. In the present review, we focus on the importance of miRNAs in atherosclerosis, and we further discuss their potential use as biomarkers and therapeutic targets in CVDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

    Article  PubMed  CAS  Google Scholar 

  2. Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet. 2005;37:766–70.

    Article  PubMed  CAS  Google Scholar 

  3. Berezikov E, Guryev V, van de Belt J, et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005;120:21–4.

    Article  PubMed  CAS  Google Scholar 

  4. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.

    Article  PubMed  CAS  Google Scholar 

  5. Cirera-Salinas D, Pauta M, Allen RM, et al. Mir-33 regulates cell proliferation and cell cycle progression. Cell Cycle. 2012;11:922–33.

    Article  PubMed  CAS  Google Scholar 

  6. Wienholds E, Plasterk RH. MicroRNA function in animal development. FEBS Lett. 2005;579:5911–22.

    Article  PubMed  CAS  Google Scholar 

  7. Suarez Y, Fernandez-Hernando C, Yu J, et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci U S A. 2008;105:14082–7.

    Article  PubMed  CAS  Google Scholar 

  8. Chamorro-Jorganes A, Araldi E, Penalva LO, et al. MicroRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1. Arterioscler Thromb Vasc Biol. 2011;31:2595–606.

    Article  PubMed  CAS  Google Scholar 

  9. •• Rayner KJ, Suarez Y, Davalos A, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328:1570–3. This study was among the first to demonstrate the key role of miR-33 in regulating cellular cholesterol efflux and circulating HDL cholesterol.

    Article  PubMed  CAS  Google Scholar 

  10. Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2006;94:776–80.

    Article  PubMed  CAS  Google Scholar 

  11. •• Hergenreider E, Heydt S, Treguer K, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012;14:249–56. This study elegantly uncover a paracellular comunication by exosome-secreted miRNAs between ECs and VSMCs that could be relevant in atherosclerotic vascular disease.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang Y, Liu D, Chen X, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 2010;39:133–44.

    Article  PubMed  CAS  Google Scholar 

  13. Zernecke A, Bidzhekov K, Noels H, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009;2:ra81.

    Article  PubMed  Google Scholar 

  14. •• Vickers KC, Palmisano BT, Shoucri BM, et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13:423–33. This is the first study that demonstrate the presence of miRNAs in lipoproteins and how these miRNAs can be delivered to cells.

    Article  PubMed  CAS  Google Scholar 

  15. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051–60.

    Article  PubMed  CAS  Google Scholar 

  16. Han J, Lee Y, Yeom KH, et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18:3016–27.

    Article  PubMed  CAS  Google Scholar 

  17. Davis N, Mor E, Ashery-Padan R. Roles for Dicer1 in the patterning and differentiation of the optic cup neuroepithelium. Development. 2011;138:127–38.

    Article  PubMed  CAS  Google Scholar 

  18. Rossi JJ. RNAi and the P-body connection. Nat Cell Biol. 2005;7:643–4.

    Article  PubMed  CAS  Google Scholar 

  19. Faehnle CR, Joshua-Tor L. Argonaute MID domain takes centre stage. EMBO Rep. 2010;11:564–5.

    Article  PubMed  CAS  Google Scholar 

  20. Hou J, Lin L, Zhou W, et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell. 2011;19:232–43.

    Article  PubMed  CAS  Google Scholar 

  21. Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol. 2007;17:118–26.

    Article  PubMed  CAS  Google Scholar 

  22. Forman JJ, Coller HA. The code within the code: microRNAs target coding regions. Cell Cycle. 2010;9:1533–41.

    Article  PubMed  CAS  Google Scholar 

  23. Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc Natl Acad Sci U S A. 2007;104:9667–72.

    Article  PubMed  CAS  Google Scholar 

  24. Orom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell. 2008;30:460–71.

    Article  PubMed  Google Scholar 

  25. Rigoutsos I. New tricks for animal microRNAS: targeting of amino acid coding regions at conserved and nonconserved sites. Cancer Res. 2009;69:3245–8.

    Article  PubMed  CAS  Google Scholar 

  26. Goedeke L, Fernandez-Hernando C. Regulation of cholesterol homeostasis. Cell Mol Life Sci. 2012;69:915–30.

    Article  PubMed  CAS  Google Scholar 

  27. Fang Y, Shi C, Manduchi E, et al. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci U S A. 2010;107:13450–5.

    Article  PubMed  CAS  Google Scholar 

  28. Sun X, Icli B, Wara AK, et al. MicroRNA-181b regulates NF-kappaB-mediated vascular inflammation. J Clin Investig. 2012;122:1973–90.

    PubMed  CAS  Google Scholar 

  29. Suarez Y, Wang C, Manes TD, Pober JS. Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. J Immunol. 2010;184:21–5.

    Article  PubMed  CAS  Google Scholar 

  30. Asgeirsdottir SA, van Solingen C, Kurniati NF, et al. MicroRNA-126 contributes to renal microvascular heterogeneity of VCAM-1 protein expression in acute inflammation. Am J Physiol Ren Physiol. 2012;302:F1630–9.

    Article  CAS  Google Scholar 

  31. Wu W, Xiao H, Laguna-Fernandez A, et al. Flow-dependent regulation of Kruppel-like factor 2 is mediated by MicroRNA-92a. Circulation. 2011;124:633–41.

    Article  PubMed  CAS  Google Scholar 

  32. Fang Y, Davies PF. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol. 2012;32:979–87.

    Article  PubMed  CAS  Google Scholar 

  33. Vasa-Nicotera M, Chen H, Tucci P, et al. miR-146a is modulated in human endothelial cell with aging. Atherosclerosis. 2011;217:326–30.

    Article  PubMed  CAS  Google Scholar 

  34. Menghini R, Casagrande V, Cardellini M, et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation. 2009;120:1524–32.

    Article  PubMed  CAS  Google Scholar 

  35. Ito T, Yagi S, Yamakuchi M. MicroRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun. 2010;398:735–40.

    Article  PubMed  CAS  Google Scholar 

  36. Glass CK, Witztum JL. Atherosclerosis. The road ahead. Cell. 2001;104:503–16.

    Article  PubMed  CAS  Google Scholar 

  37. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89:331–40.

    Article  PubMed  CAS  Google Scholar 

  38. Sudhof TC, Russell DW, Brown MS, Goldstein JL. 42 bp element from LDL receptor gene confers end-product repression by sterols when inserted into viral TK promoter. Cell. 1987;48:1061–9.

    Article  PubMed  CAS  Google Scholar 

  39. Tontonoz P, Kim JB, Graves RA, Spiegelman BM. ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol Cell Biol. 1993;13:4753–9.

    PubMed  CAS  Google Scholar 

  40. Kim JB, Spotts GD, Halvorsen YD, et al. Dual DNA binding specificity of ADD1/SREBP1 controlled by a single amino acid in the basic helix-loop-helix domain. Mol Cell Biol. 1995;15:2582–8.

    PubMed  CAS  Google Scholar 

  41. Yang T, Espenshade PJ, Wright ME, et al. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell. 2002;110:489–500.

    Article  PubMed  CAS  Google Scholar 

  42. •• Marquart TJ, Allen RM, Ory DS, Baldan A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A. 2010;107:12228–32. This study was among the first to demonstrate the key role of miR-33 in regulating cellular cholesterol efflux and circulating HDL cholesterol.

    Article  PubMed  CAS  Google Scholar 

  43. •• Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010;328:1566–9. This study was among the first to demonstrate the key role of miR-33 in regulating cellular cholesterol efflux and circulating HDL cholesterol.

    Article  PubMed  CAS  Google Scholar 

  44. Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452:896–9.

    Article  PubMed  CAS  Google Scholar 

  45. Elmen J, Lindow M, Silahtaroglu A, et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 2008;36:1153–62.

    Article  PubMed  CAS  Google Scholar 

  46. Brown MS, Goldstein JL. Familial hypercholesterolemia: a genetic defect in the low-density lipoprotein receptor. N Engl J Med. 1976;294:1386–90.

    Article  PubMed  CAS  Google Scholar 

  47. Goldstein JL, Anderson RG, Brown MS. Receptor-mediated endocytosis and the cellular uptake of low density lipoprotein. CIBA Found Symp. 1982:77–95.

  48. Fruchart JC, De Geteire C, Delfly B, Castro GR. Apolipoprotein A-I-containing particles and reverse cholesterol transport: evidence for connection between cholesterol efflux and atherosclerosis risk. Atherosclerosis. 1994;110(Suppl):S35–9.

    Article  PubMed  CAS  Google Scholar 

  49. Brooks-Wilson A, Marcil M, Clee SM, et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet. 1999;22:336–45.

    Article  PubMed  CAS  Google Scholar 

  50. Bodzioch M, Orso E, Klucken J, et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet. 1999;22:347–51.

    Article  PubMed  CAS  Google Scholar 

  51. Rust S, Rosier M, Funke H, et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet. 1999;22:352–5.

    Article  PubMed  CAS  Google Scholar 

  52. • Rayner KJ, Sheedy FJ, Esau CC, et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Investig. 2011;121:2921–31. This study demonstrates the efficacy of anti-miR-33 therapy in promoting the regression of atherosclerosis.

    Article  PubMed  CAS  Google Scholar 

  53. • Rayner KJ, Esau CC, Hussain FN, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478:404–7. This study demonstrates the efficacy of anti-miR-33 therapy in raising circulating HDL cholesterol and lowering VLDL triglycerides in non-human primates.

    Article  PubMed  CAS  Google Scholar 

  54. Horie T, Baba O, Kuwabara Y, et al. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE −/− Mice. J Am Heart Assoc. 2012;1.

  55. Ramirez CM, Davalos A, Goedeke L, et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol. 2011;31:2707–14.

    Article  PubMed  CAS  Google Scholar 

  56. Sun D, Zhang J, Xie J, et al. MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett. 2012;586:1472–9.

    Article  PubMed  CAS  Google Scholar 

  57. Kim J, Yoon H, Ramirez CM, et al. MiR-106b impairs cholesterol efflux and increases Abeta levels by repressing ABCA1 expression. Exp Neurol. 2012;235:476–83.

    Article  PubMed  CAS  Google Scholar 

  58. Wang D, Xia M, Yan X, et al. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ Res. 2012. doi:10.1161/CIRCRESAHA.112.266502.

  59. Huang RS, Hu GQ, Lin B, et al. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages. J Investig Med. 2010;58:961–7.

    PubMed  CAS  Google Scholar 

  60. Chen T, Huang Z, Wang L, et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res. 2009;83:131–9.

    Article  PubMed  CAS  Google Scholar 

  61. Nazari-Jahantigh M, Wei Y, Noels H, et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Investig. 2012;122:4190–202.

    Article  PubMed  CAS  Google Scholar 

  62. Leeper NJ, Raiesdana A, Kojima Y, et al. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol. 2011;226:1035–43.

    Article  PubMed  CAS  Google Scholar 

  63. Chen KC, Wang YS, Hu CY, et al. OxLDL up-regulates microRNA-29b, leading to epigenetic modifications of MMP-2/MMP-9 genes: a novel mechanism for cardiovascular diseases. FASEB J. 2011;25:1718–28.

    Article  PubMed  CAS  Google Scholar 

  64. Lovren F, Pan Y, Quan A, et al. MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation. 2012;126:S81–90.

    Article  PubMed  CAS  Google Scholar 

  65. Goettsch C, Rauner M, Pacyna N, et al. miR-125b regulates calcification of vascular smooth muscle cells. Am J Pathol. 2011;179:1594–600.

    Article  PubMed  CAS  Google Scholar 

  66. Suarez Y. Microregulation of plaque neovascularization. Arterioscler Thromb Vasc Biol. 2010;30:1500–1.

    Article  PubMed  CAS  Google Scholar 

  67. Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007;100:1164–73.

    Article  PubMed  CAS  Google Scholar 

  68. Sun HX, Zeng DY, Li RT, et al. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension. 2012;60:1407–14.

    Article  PubMed  CAS  Google Scholar 

  69. Dentelli P, Rosso A, Orso F, et al. microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arterioscler Thromb Vasc Biol. 2010;30:1562–8.

    Article  PubMed  CAS  Google Scholar 

  70. Kuehbacher A, Urbich C, Dimmeler S. Targeting microRNA expression to regulate angiogenesis. Trends Pharmacol Sci. 2008;29:12–5.

    Article  PubMed  CAS  Google Scholar 

  71. Urbich C, Kaluza D, Fromel T, et al. MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood. 2012;119:1607–16.

    Article  PubMed  CAS  Google Scholar 

  72. Guo M, Mao X, Ji Q, et al. miR-146a in PBMCs modulates Th1 function in patients with acute coronary syndrome. Immunol Cell Biol. 2010;88:555–64.

    Article  PubMed  CAS  Google Scholar 

  73. van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105:13027–32.

    Article  PubMed  Google Scholar 

  74. Li Z, Hassan MQ, Jafferji M, et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem. 2009;284:15676–84.

    Article  PubMed  CAS  Google Scholar 

  75. Qin B, Xiao B, Liang D, et al. MicroRNAs expression in ox-LDL treated HUVECs: MiR-365 modulates apoptosis and Bcl-2 expression. Biochem Biophys Res Commun. 2011;410:127–33.

    Article  PubMed  CAS  Google Scholar 

  76. Lin Y, Liu X, Cheng Y, et al. Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. J Biol Chem. 2009;284:7903–13.

    Article  PubMed  CAS  Google Scholar 

  77. Liu X, Cheng Y, Yang J, et al. Cell-specific effects of miR-221/222 in vessels: molecular mechanism and therapeutic application. J Mol Cell Cardiol. 2012;52:245–55.

    Article  PubMed  CAS  Google Scholar 

  78. Madrigal-Matute J, Martin-Ventura JL, Blanco-Colio LM, et al. Heat-shock proteins in cardiovascular disease. Adv Clin Chem. 2011;54:1–43.

    Article  PubMed  CAS  Google Scholar 

  79. Cheung O, Sanyal AJ. Role of microRNAs in non-alcoholic steatohepatitis. Curr Pharm Des. 2010;16:1952–7.

    Article  PubMed  CAS  Google Scholar 

  80. Fichtlscherer S, Zeiher AM, Dimmeler S. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol. 2011;31:2383–90.

    Article  PubMed  CAS  Google Scholar 

  81. McManus DD, Ambros V. Circulating MicroRNAs in cardiovascular disease. Circulation. 2011;124:1908–10.

    Article  PubMed  Google Scholar 

  82. Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010;101:2087–92.

    Article  PubMed  CAS  Google Scholar 

  83. Chen X, Liang H, Zhang J, et al. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 2012;22:125–32.

    Article  PubMed  CAS  Google Scholar 

  84. Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 2012;110:483–95.

    Article  PubMed  CAS  Google Scholar 

  85. Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108:5003–8.

    Article  PubMed  CAS  Google Scholar 

  86. Kosaka N, Iguchi H, Yoshioka Y, et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285:17442–52.

    Article  PubMed  CAS  Google Scholar 

  87. Davis S, Propp S, Freier SM, et al. Potent inhibition of microRNA in vivo without degradation. Nucleic Acids Res. 2009;37:70–7.

    Article  PubMed  CAS  Google Scholar 

  88. Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature. 2005;438:685–9.

    Article  PubMed  Google Scholar 

  89. Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3:87–98.

    Article  PubMed  CAS  Google Scholar 

  90. Marquart TJ, Wu J, Lusis AJ, Baldan A. AntimiR-33 therapy does not alter the progression of atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol. 2013. doi:10.1161/ATVBAHA.112.300639.

  91. Coulouarn C, Factor VM, Andersen JB, et al. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene. 2009;28:3526–36.

    Article  PubMed  CAS  Google Scholar 

  92. Bai S, Nasser MW, Wang B, et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem. 2009;284:32015–27.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Institutes of Health R01HL107953 and R01HL106063 (to C. Fernández-Hernando) and Ministerio de Educación [Programa Nacional de Movilidad de Recursos Humanos del Plan Nacional de I-D+i 2008–2011] (to N. R.). Figures were produced using Servier Medical Art (www.servier.com). We apologize to those whose work could not be cited owing to space limitations.

Conflicts of Interest

Julio Madrigal-Matute declares no conflicts of interest.

Noemi Rotllan declares no conflicts of interest.

Juan F. Aranda declares no conflicts of interest.

Carlos Fernández-Hernando has patents on the use of miRNA-33 inhibitors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Fernández-Hernando.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madrigal-Matute, J., Rotllan, N., Aranda, J.F. et al. MicroRNAs and Atherosclerosis. Curr Atheroscler Rep 15, 322 (2013). https://doi.org/10.1007/s11883-013-0322-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-013-0322-z

Keywords

Navigation