Skip to main content

Advertisement

Log in

Renal Expression of Adhesion Molecules in Anca-Associated Disease

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Introduction

Anti-neutrophil cytoplasmic autoantibodies (ANCA)-associated disease among other manifestations can underlie rapidly progressive glomerulonephritis (RPGN), with crescentic and necrotizing GN. Differences in pathogenic immune mechanisms in RPGN may provide differences in the renal expression of adhesion molecules mediating these lesions.

Methods

Renal intercellular adhesion molecule 1 (ICAM-1; CD54) and vascular cell adhesion molecule 1 (VCAM-1; CD106) were assessed in 40 patients with type I RPGN (anti-glomerular basement membrane antibodies, n = 4), type II (immune complexes, n = 17), and type III (ANCA, n = 19). Enzyme-linked immunosorbent assay (ELISA) for detection of immunoglobulin G antibodies against the Goodpasture’s antigen and indirect immunofluorescence and ELISA for myeloperoxidase (MPO) and proteinase 3 (PR3) were performed for ANCA testing. Ten normal renal tissues were used as controls. Relationships between ICAM-1 and VCAM-1, histopathologic features, and CD18, CD14, and CD3 cells were analyzed.

Results

Abnormal ICAM-1 and VCAM-1 in tubule was seen in >80% of biopsies with RPGN. Abnormal VCAM-1 in glomerular tuft was seen in >60% of biopsies with RPGN. Glomerular ICAM-1 was associated with less glomerulosclerosis (χ 2 = 6.719, p = 0.01), less interstitial fibrosis (χ 2 = 4.322, p < 0.05), and less tubular atrophy (χ 2 = 8.547, p < 0.005). Glomerular VCAM-1 was associated with glomerular leukocyte infiltration (χ 2 = 4.698, p < 0.05). Glomerular tuft stains of ++/+++ for VCAM-1 was observed in 10% from MPO-ANCA-GN patients but in 60% from PR3-ANCA-GN (Fi = 8.538, p = 0.03).

Conclusions

The following conclusions can be made from this study. (1) The renal expression of ICAM-1 and VCAM-1 is upregulated in RPGN, and this is associated with the histological activity. (2) De novo expression of VCAM-1 on glomerular tuft suggests that endothelial cells play a role in RPGN. (3) De novo tubular expression of ICAM-1 and VCAM-1 suggests that epithelial cells may participate in adhesive interactions in RPGN. (4) De novo expression of VCAM-1 at the glomerular tuft in PR3-ANCA positive patients seems greater than in MPO-ANCA positive patients, which suggests that testing specific immune activation mechanisms may play a role in ANCA-associated GN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang N, Isbel NM, Nikolic-Paterson DJ, Li Y, Ye R, Atkins RC, et al. Local macrophage proliferation in human glomerulonephritis. Kidney Int. 1998;54:143–51.

    Article  PubMed  CAS  Google Scholar 

  2. Erwig LP, Rees AJ. Rapidly progressive glomerulonephritis. J Nephrol. 1999;12(suppl 2):111–9.

    Google Scholar 

  3. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994;76:301–14.

    Article  PubMed  CAS  Google Scholar 

  4. Cibulsky AV. Adhesion molecules in renal diseases. In: Paul LC, Issekutz TB, editors. Adhesion molecules in health and disease. New York: Marcel Decker; 1997. p. 619–25.

    Google Scholar 

  5. Adler S, Brady HR. Cell adhesion molecules and the glomerulopathies. Am J Med. 1999;107:371–86.

    Article  PubMed  CAS  Google Scholar 

  6. Arrizabalaga P, Mampaso F. Integrins and glomerulonephritis. In: Esbrit P, Alvarez-Arroyo MV, editors. Inflammation and chronic disease. Kerala: Transworld Research Network; 2006. p. 67–87.

    Google Scholar 

  7. Bacon A, Moots RJ, Exley A, Luqmani R, Rasmussen N. Vital assessment of vasculitis. Clin Exp Rheumatol. 1995;13:275–8.

    PubMed  CAS  Google Scholar 

  8. Wiik A, Rasmussen N, Weislander J. Methods to detect autoantibodies to neutrophilic granulocytes. In: Van Venrooig WJ, editor. Manual of biological markers of disease. Dordrecht: Kluwe; 1993. p. 1–14.

    Google Scholar 

  9. Arrizabalaga P, Solé M, Ascaso C, Quintó Ll. Intercellular adhesion molecule-1 mediated interactions and leucocyte infiltration in IgA nephropathy. Nephrol Dial Transplant. 1997;12:2258–62.

    Article  PubMed  CAS  Google Scholar 

  10. Engel P, Serra C, Acevedo G, Vilella R, Gallart T. Involvement of CD18 and CD54 in the mixed lymphocyte reaction to leukemic CD5+ B lymphocytes. Immunology 1992;11:21–31.

    CAS  Google Scholar 

  11. Spertini O, Luscinskas FW, Kansas GS, Munro JM, Griffin JD, Gimbrone MA, et al. Leukocyte adhesion molecule-1 interacts with an inducible endothelial cell ligand to support leukocyte adhesion. J Immunol. 1991;147:2565–73.

    PubMed  CAS  Google Scholar 

  12. Cobbold S, Hale G, Waldmann H. Non-lineaje, LFA-1 family, and leucocyte common antigens: new and previously defined clusters. In: McMichael AJ, editor. Leucocyte typing III. Oxford: Butler and Tanner; 1987. p. 788–803.

    Google Scholar 

  13. Bernstein ID, Self S. Joint report of the myeloid section of the Second International Workshop on human leucocyte differentiation antigens. In: Reinherz EL, Haynes BF, Nadler LM, Bernstein ID, editors. Leucocyte typing II. New York: Springer; 1986. p. 1–25.

    Google Scholar 

  14. Hir ML, Besse-Eschmann V. A novel mechanism of nephron loss in a murine model of crescentic glomerulonephritis. Kidney Int. 2003;63:591–9.

    Article  PubMed  Google Scholar 

  15. Khan SB, Allen AR, Bhangal G, Smith J, Lobb RR, Cook HT, et al. Blocking VLA-4 prevents progression of experimental crescentic glomerulonephritis. Nephron Exp Nephrol. 2003;95:100–10.

    Article  CAS  Google Scholar 

  16. Arrizabalaga P, Solé M, Abellana R, de las Cuevas X, Soler J, Pascual J, et al. Tubular and interstitial expression of ICAM-1 as a marker of renal injury in IgA nephropathy. Am J Nephrol. 2003;23:121–8.

    Article  PubMed  CAS  Google Scholar 

  17. Roy-Chaudhury P, Wu B, King G, Campbell M, MacLeod AM, Haites EN, et al. Adhesion molecule interactions in human glomerulonephritis: importance of the tubulointerstitium. Kidney Int. 1996;49:127–34.

    Article  PubMed  CAS  Google Scholar 

  18. Odobasic D, Kitching AR, Semple TJ, Timoshanko JR, Tipping PG, Holdsworth SR. Glomerular expression of CD80 and CD86 is required for leukocyte accumulation and injury in crescentic glomerulonephritis. J Am Soc Nephrol. 2005;16:2012–22.

    Article  PubMed  CAS  Google Scholar 

  19. Schulz H, Karau A, Filsinger S, Schoels M, Kabelitz D, Richter R, et al. Tubular epithelial cells as accessory cells for superantigen-induced T cell activation. Exp Nephrol. 1998;6:67–73.

    Article  PubMed  CAS  Google Scholar 

  20. Wu Q, Jinde K, Endoh M, Sakai H. Costimulatory molecules CD80 and CD86 in human crescentic glomerulonephritis. Am J Kidney Dis. 2003;41:950–61.

    Article  PubMed  CAS  Google Scholar 

  21. Arrizabalaga P, Sans A, Torras A, Darnell A, Revert L. Monoclonal antibody analysis of crescentic membranous glomerulonephropathy. Am J Nephrol. 1998;18:77–82.

    Article  PubMed  CAS  Google Scholar 

  22. Ferrario F, Rastaldi MP. Histopathological atlas of renal diseases: ANCA-associated vasculitis (second part). J Nephrol. 2005;18:217–20.

    PubMed  Google Scholar 

  23. Moon KC, Park SY, Kim HW, Hong HK, Lee HS. Expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in human crescentic glomerulonephritis. Histopathology 2002;41:158–65.

    Article  PubMed  CAS  Google Scholar 

  24. Patey N, Lesavre P, Halbwachs-Mecarelli L, Noël LH. Adhesion molecules in human crescentic glomerulonephritis. J Pathol. 1996;179:414–20.

    Article  PubMed  CAS  Google Scholar 

  25. Pall AA, Howie AJ, Adu D, Richards GM, Inward CD, Milford DV, et al. Glomerular vascular cell adhesion molecule-1 expression in renal vasculitis. J Clin Pathol. 1996;49:238–42.

    Article  PubMed  CAS  Google Scholar 

  26. Rastaldi MP, Ferrario F, Crippa A, Dell’Antonio G, Casartelli D, Grillo C, et al. Glomerular monocyte-macrophage features in ANCA-positive renal vasculitis and cryoglobulinemic nephritis. J Am Soc Nephrol. 2000;11:2036–43.

    PubMed  CAS  Google Scholar 

  27. Ferrario F, Rastaldi MP. Histopathological atlas of renal diseases: ANCA-associated vasculitis (first part). J Nephrol. 2005;18:113–6.

    PubMed  Google Scholar 

  28. Hauer HA, Bajema IM, Van Houwelingen HC, Ferrario F, Noël LH, Waldherr R, et al. Renal histology in ANCA-associated vasculitis: differences between diagnostic and serologic subgroups. Kidney Int. 2002;61:80–9.

    Article  PubMed  Google Scholar 

  29. Hsieh SC, Yu HS, Cheng SH, Li KJ, Lu MC, Wu CH, et al. Anti-myeloperoxidase antibodies enhance phagocytosis, IL-8 production, and glucose uptake of polymorphonuclear neutrophils rather than anti-proteinase 3 antibodies leading to activation-induced cell death of the neutrophils. Clin Rheumatol. 2007;26:216–24.

    Article  PubMed  CAS  Google Scholar 

  30. Preston GA, Yang JJ, Xiao H, Falk RJ. Understanding the pathogenesis of ANCA: where are we today. Cleve Clin J Med. 2002;69:SII51–4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. R. Vilella and P. Engel for generous gifts of CD54, CD106, and CD14 monoclonal antibodies and N. Babot for excellent immunohistochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Arrizabalaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arrizabalaga, P., Solé, M., Abellana, R. et al. Renal Expression of Adhesion Molecules in Anca-Associated Disease. J Clin Immunol 28, 411–419 (2008). https://doi.org/10.1007/s10875-008-9215-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-008-9215-2

Keywords

Navigation