Skip to main content

Advertisement

Log in

Anti-myeloperoxidase antibodies enhance phagocytosis, IL-8 production, and glucose uptake of polymorphonuclear neutrophils rather than anti-proteinase 3 antibodies leading to activation-induced cell death of the neutrophils

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Anti-neutrophil cytoplasmic antibodies (ANCA) not only are triggered by target protein myeloperoxidase (MPO) and proteinase 3 (PR3) of polymorphonuclear neutrophil (PMN) but also react with primed PMN to exert the inflammatory process in vasculitis syndrome. To clarify the crucial role of PMN in ANCA-associated vasculitis and the related mechanism, PMN was cultured with monoclonal antibody MPO–ANCA and PR3–ANCA to determine the function of phagocytosis, Interleukin- 8 (IL-8) production, glucose uptake, and TNF-related apoptosis induced ligand (TRAIL) production. The spontaneous membrane expression of MPO and PR3 on PMN could be significantly increased by lipopolysaccharide (LPS) and TNF-α, but not by IL-8 or GRO-α. The PMN-stimulating activity of ANCA was demonstrated by enhancing phagocytosis, IL-8 production, and glucose uptake that was more prominent by MPO–ANCA. The PMN stimulation by ANCA was not through protein kinase, H2O2, or superoxide anion radicals as their inhibitors exerted no effect on ANCA-mediated activation. On the other hand, ANCA also accelerated PMN apoptosis and increased TRAIL production. These results demonstrate that activation-induced cell death (AICD) mechanism could be initiated in PMN with existence of ANCA. In conclusion, MPO–ANCA is more potent in stimulating PMN than PR3–ANCA. ANCA-activated PMN is not only responsible for the amplified inflammatory process in blood vessel but also initiates immune circuit via triggered macrophage/monocyte by apoptotic PMN through the mechanism of AICD elicited by ANCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ANCA:

Anti-neutrophil cytoplasmic autoantibody

PMN:

Human peripheral polymorphonuclear neutrophils

MPO:

Myeloperoxidase

PR3:

Proteinase-3

AICD:

Activation-induced cell death

TRAIL:

TNF-related apoptosis-induced ligand

References

  1. Kallenberg CG, Brouwer E, Weening JJ, Tervaert JW (1994) Anti-neutrophil cytoplasmic antibodies: current diagnostic and pathophysiological potential. Kidney Int 46:1–15

    PubMed  CAS  Google Scholar 

  2. Muller Kobold AC, van der Geld YM, Limburg PC, Tervaert JW, Kallenberg CG (1999) Pathophysiology of ANCA-associated glomerulonephritis. Nephrol Dial Transplant 14:1366–7135

    Article  PubMed  CAS  Google Scholar 

  3. Harper L, Savage COS (2000) Pathogenesis of ANCA-associated systemic vasculitis. J Pathol 190:349–359

    Article  PubMed  CAS  Google Scholar 

  4. Kallenberg CG, Rarok A, Stegeman CA, Limburg PC (2002) New insights into the pathogenesis of antineutrophil cytoplasmic autoantibody-associated vasculitis. Autoimmun Rev 1:61–66

    Article  PubMed  CAS  Google Scholar 

  5. Savage CO, Harper L, Holland M (2002) New findings in pathogenesis of antineutrophil cytoplasm antibody-associated vasculitis. Curr Opin Rheumatol 14:15–22

    Article  PubMed  CAS  Google Scholar 

  6. Parok AA, Limburg PC, Kallenberg CG (2003) Neutrophil-activating potential of antineutrophil cytoplasm autoantibodies. J Leukoc Biol 74:3–15

    Article  PubMed  CAS  Google Scholar 

  7. Tervaert JW, van der Woude FJ, Fauci AS, Ambrus JL, Velosa J et al (1989) Association between active Wegener’s granulomatosis and anticytoplasmic antibodies. Arch Intern Med 149:2461–2465

    Article  PubMed  CAS  Google Scholar 

  8. Egner W, Chapel HM (1990) Titration of antibodies against neutrophil cytoplasmic antigens is useful in monitoring disease activity in systemic vasculitides. Clin Exp Immunol 82:244–249

    Article  PubMed  CAS  Google Scholar 

  9. Jayne DR, Gaskin G, Pusey CD, Lockwood CM (1995) ANCA and predicting relapse in systemic vasculitis. Q J Med 88:127–133

    CAS  Google Scholar 

  10. Boomsma MM, Stegeman CA, van der Leij MJ, Oost W, Hermans J, Kallenberg CG, Limburg PC, Tervaert JW (2000) Prediction of relapses in Wegener’s granulomatosis by measurement of antineutrophil cytoplasmic antibody levels: a prospective study. Arthritis Rheum 43:2025–2033

    Article  PubMed  CAS  Google Scholar 

  11. Heeringa P, Brouwer E, Klok PA, Huitema MG, van den Born J, Weening JJ, Kallenberg CG (1996) Autoantibodies to myeloperoxidase aggravate mild anti-glomerular-basement-membrane-mediated glomerular injury in the rat. Am J Pathol 149:1695–1706

    PubMed  CAS  Google Scholar 

  12. Heeringa P, Brouwer E, Tervaert JW, Weening JJ, Kallenberg CG (1998) Animal models of anti-neutrophil cytoplasmic antibody associated vasculitis. Kidney Int 53:253–263

    Article  PubMed  CAS  Google Scholar 

  13. Xiao H, Heeringa P, Hu P, Liu Z, Zhao M, Aratani Y, Maeda N, Falk RJ, Jennette JC (2002) Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J Clin Invest 110:955–963

    Article  PubMed  CAS  Google Scholar 

  14. Stegeman CA, Tervaert JW, Sluiter WJ, Manson WL, de Jong PE, Kallenberg CG (1994) Association of chronic nasal carriage of Staphylococcus aureus and higher relapse rates in Wegener’s granulomatosis. Ann Intern Med 120:12–17

    PubMed  CAS  Google Scholar 

  15. Brons RH, Bakker HI, Van Wijk RT, Van Dijk NW, Muller Kobold AC, Limburg PC, Manson WL, Kallenberg CG, Tervaert JW (2000) Staphylococcal acid phosphatase binds to endothelial cells via charge interaction: a pathogenic role in Wegener’s granulomatosis? Clin Exp Immunol 119:566–573

    Article  PubMed  CAS  Google Scholar 

  16. Hogan SL, Satterly KK, Dooley MA, Nachman PH, Jennette JC, Falk RJ (2001) Silica exposure in anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis and lupus nephritis. J Am Soc Nephrol 12:134–142

    PubMed  CAS  Google Scholar 

  17. Ewert BH, Jennette JC, Falk RJ (1992) Anti-myeloperoxidase antibodies stimulate neutrophils to damage human endothelial cells. Kidney Int 41:375–383

    PubMed  CAS  Google Scholar 

  18. Falk RJ, Terrell RS, Charles LA, Jennette JC (1990) Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci U S A 87:4115–4119

    Article  PubMed  CAS  Google Scholar 

  19. Charles LA, Caldas ML, Falk RJ, Terrell RS, Jennette JC (1991) Antibodies against granule proteins activate neutrophils in vitro. J Leukoc Biol 50:539–546

    PubMed  CAS  Google Scholar 

  20. Brooks CJ, King WJ, Radford DJ, Adu D, McGrath M, Savage CO (1996) IL-1 beta production by human polymorphonuclear leucocytes stimulated by anti-neutrophil cytoplasmic autoantibodies: relevance to systemic vasculitis. Clin Exp Immunol 106:273–279

    Article  PubMed  CAS  Google Scholar 

  21. Falk RJ, Jennette JC (1988) Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N Engl J Med 318:1651–1657

    Article  PubMed  CAS  Google Scholar 

  22. Niles JL, McCluskey RT, Ahmad MF, Arnaout MA (1989) Wegener’s granulomatosis autoantigen is a novel neutrophil serine proteinase. Blood 74:1888–1893

    PubMed  CAS  Google Scholar 

  23. Ludemann J, Utecht B, Gross WL (1990) Anti-neutrophil cytoplasm antibodies in Wegener’s granulomatosis recognize an elastinolytic enzyme. J Exp Med 171:357–362

    Article  PubMed  CAS  Google Scholar 

  24. Muller Kobold AC, Kallenberg CG, Tervaert JW (1998) Leucocyte membrane expression of proteinase 3 correlates with disease activity in patients with Wegener’s granulomatosis. Br J Rheumatol 37:901–907

    Article  PubMed  CAS  Google Scholar 

  25. Csernok E, Ernst M, Schmitt W, Bainton DF, Gross WL (1994) Activated neutrophils express proteinase 3 on their plasma membrane in vitro and in vivo. Clin Exp Immunol 95:244–250

    Article  PubMed  CAS  Google Scholar 

  26. Porges AJ, Redecha PB, Kimberly WT, Csernok E, Gross WL, Kimberly RP (1994) Anti-neutrophil cytoplasmic antibodies engage and activate human neutrophils via Fc gamma RIIa. J Immunol 153:1271–1280

    PubMed  CAS  Google Scholar 

  27. Shalaby MR, Aggarwal BB, Rinderknecht E, Svedersky LP, Finkle BS, Palladino MA Jr (1985) Activation of human polymorphonuclear neutrophil functions by interferon-gamma and tumor necrosis factors. J Immunol 135:2069–2073

    PubMed  CAS  Google Scholar 

  28. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279

    Article  PubMed  CAS  Google Scholar 

  29. Martinez-Lorenzo MJ, Alava MA, Gamen S, Kim KJ, Chuntharapai A, Pineiro A, Naval J, Anel A (1998) Involvement of APO2 ligand/TRAIL in activation-induced death of Jurkat and human peripheral blood T cells. Eur J Immunol 28:2714–2725

    Article  PubMed  CAS  Google Scholar 

  30. Monleon I, Martinez-Lorenzo MJ, Monteagudo L, Lasierra P, Taules M, Iturralde M, Pineiro A, Larrad L, Alava MA, Naval J, Anel A (2001) Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. J Immunol 167:6736–6744

    PubMed  CAS  Google Scholar 

  31. Hellmich B, Csernok E, Gross WL (2003) 20 years with ANCA (antineutrophil cytoplasmic autoantibodies): from seromarker to a major pathogenic player in vasculitis. J Leukoc Biol 74:1–2

    Article  PubMed  CAS  Google Scholar 

  32. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017

    PubMed  CAS  Google Scholar 

  33. Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320:365–376

    Article  PubMed  CAS  Google Scholar 

  34. Zhou Z, Richard C, Menard HA (2000) De novo synthesis of proteinase 3 by cytokine primed circulating human polymorphonuclear neutrophils and mononuclear cells. J Rheumatol 27:2406–2411

    PubMed  CAS  Google Scholar 

  35. Burchert A, Wolfl S, Schmidt M, Brendel C, Denecke B, Cai D, Odyvanova L, Lahaye T, Muller MC, Berg T, Gschaidmeier H, Wittig B, Hehlmann R, Hochhaus A, Neubauer A (2003) Interferon-alpha, but not the ABL-kinase inhibitor imatinib (STI571), induces expression of myeloblastin and a specific T-cell response in chronic myeloid leukemia. Blood 101:259–264

    Article  PubMed  CAS  Google Scholar 

  36. Reumaux D, Vossebeld PJ, Roos D, Verhoeven AJ (1995) Effect of tumor necrosis factor-induced integrin activation on Fc gamma receptor II-mediated signal transduction: relevance for activation of neutrophils by anti-proteinase 3 or anti-myeloperoxidase antibodies. Blood 86:3189–3195

    PubMed  CAS  Google Scholar 

  37. Csernok E (2003) Anti-neutrophil cytoplasmic antibodies and pathogenesis of small vessel vasculitides. Autoimmun Rev 2:158–164

    Article  PubMed  CAS  Google Scholar 

  38. Harper L, Cockwell P, Adu D, Savage COS (2001) Neutrophil priming and apoptosis in anti-neutrophil cytoplasmic autoantibody-associated vasculitis. Kidney Int 59:1729–1738

    Article  PubMed  CAS  Google Scholar 

  39. Luedke ES, Humes JL (1989) Effect of tumor necrosis factor on granule release and LTB4 production in adherent human polymorphonuclear leukocytes. Agents Actions 27:451–454

    Article  PubMed  CAS  Google Scholar 

  40. Hanlon WA, Stolk J, Davies P, Humes JL, Mumford R, Bonney RJ (1991) rTNF alpha facilitates human polymorphonuclear leukocyte adherence to fibrinogen matrices with mobilization of specific and tertiary but not azurophilic granule markers. J Leukoc Biol 50:43–48

    PubMed  CAS  Google Scholar 

  41. Lloyd AR, Oppenheim JJ (1992) Poly’s lament: the neglected role of the polymorphonuclear neutrophils in the afferent limb of the immune response. Immunol Today 13:169–172

    Article  PubMed  CAS  Google Scholar 

  42. Cassatella MA (1999) Production of cytokines by polymorphonuclear neutrophils. In: Gabrilovich DI (ed) The neutrophils: new outlook for old cells. Imperial College Press, London, pp 151–229

    Google Scholar 

  43. Baggiolini M, Walz A, Kunkel SL (1989) Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J Clin Invest 84:1045–1049

    Article  PubMed  CAS  Google Scholar 

  44. Willems J, Joniau M, Cinque S, Van Damme J (1989) Human granulocyte chemotactic peptide (IL-8) as a specific neutrophil degranulator: comparison with other monokines. Immunology 67:540–542

    PubMed  CAS  Google Scholar 

  45. Lee A, Whyte MK, Haslett C (1993) Inhibition of apoptosis and prolongation of neutrophil functional longevity by inflammatory mediators. J Leukoc Biol 54:283–288

    PubMed  CAS  Google Scholar 

  46. Ben-Smith A, Dove SK, Martin A, Wakelam MJ, Savage CO (2001) Antineutrophil cytoplasm autoantibodies from patients with systemic vasculitis activate neutrophils through distinct signaling cascades: comparison with conventional Fc gamma receptor ligation. Blood 98:1448–1455

    Article  PubMed  CAS  Google Scholar 

  47. Kettritz R, Choi M, Butt W, Rane M, Rolle S, Luft FC, Klein JB (2002) Phosphatidylinositol 3-kinase controls antineutrophil cytoplasmic antibodies-induced respiratory burst in human neutrophils. J Am Soc Nephrol 13:1740–1749

    Article  PubMed  CAS  Google Scholar 

  48. Kettritz R, Schreiber A, Luft FC, Haller H (2001) Role of mitogen-activated protein kinases in activation of human neutrophils by antineutrophil cytoplasmic antibodies. J Am Soc Nephrol 12:37–46

    PubMed  CAS  Google Scholar 

  49. Moosig F, Csernok E, Kumanovics G, Gross WL (2000) Opsonization of apoptotic neutrophils by anti-neutrophil cytoplasmic antibodies (ANCA) leads to enhanced uptake by macrophages and increased release of tumour necrosis factor-alpha (TNF-alpha). Clin Exp Immunol 122:499–503

    Article  PubMed  CAS  Google Scholar 

  50. Harper L, Ren Y, Savill J, Adu D, Savage CO (2000) Antineutrophil cytoplasmic antibodies induce reactive oxygen-dependent dysregulation of primed neutrophil apoptosis and clearance by macrophages. Am J Pathol 157:211–220

    PubMed  CAS  Google Scholar 

  51. Patry YC, Trewick DC, Gregoire M, Audrain MA, Moreau AM, Muller JY, Meflah K, Esnault VL (2001) Rats injected with syngenic rat apoptotic neutrophils develop antineutrophil cytoplasmic antibodies. J Am Soc Nephrol 12:1764–1768

    PubMed  CAS  Google Scholar 

  52. Rauova L, Gilburd B, Zurgil N, Blank M, Guegas LL, Brickman CM, Cebecauer L, Deutsch M, Wiik A, Shoenfeld Y (2002) Induction of biologically active antineutrophil cytoplasmic antibodies by immunization with human apoptotic polymorphonuclear leukocytes. Clin Immunol 103:69–78

    Article  PubMed  CAS  Google Scholar 

  53. Deutsch M, Guejes L, Zurgil N, Shovman O, Gilburd B, Afrimzon E, Shoenfeld Y (2004) Antineutrophil cytoplasmic autoantibodies penetrate into human polymorphonuclear leukocytes and modify their apoptosis. Clin Exp Rheumatol 22(6 Suppl 36):S35–S40

    PubMed  CAS  Google Scholar 

  54. Hattar K, van Burck S, Bickenbach A, Grandel U, Maus U, Lohmeyer J, Csernok E, Hartung T, Seeger W, Grimminger F, Sibelius U (2005) Anti-proteinase 3 antibodies (c-ANCA) prime CD14-dependent leukocyte activation. J Leukoc Biol 78:992–1000

    Article  PubMed  CAS  Google Scholar 

  55. Huugen D, Xiao H, van Esch A, Falk RJ, Peutz-Kootstra CJ, Buurman WA, Tervaert JW, Jennette JC, Heeringa P (2005) Aggravation of anti-myeloperoxidase antibody-induced glomerulonephritis by bacterial lipopolysaccharide: role of tumor necrosis factor-alpha. Am J Pathol 167:47–58

    PubMed  CAS  Google Scholar 

  56. Miller SI, Ernst RK, Bader MW (2005) LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 3:36–46

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from National Taiwan University Hospital (92-S030), National Science Council, ROC (NSC 92-2314-B-002-115, 93-2314-B-002-088), and Yen Tjing Ling Medical Foundation (CI-92-4-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, S.C., Yu, H.S., Cheng, S.H. et al. Anti-myeloperoxidase antibodies enhance phagocytosis, IL-8 production, and glucose uptake of polymorphonuclear neutrophils rather than anti-proteinase 3 antibodies leading to activation-induced cell death of the neutrophils. Clin Rheumatol 26, 216–224 (2007). https://doi.org/10.1007/s10067-006-0285-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-006-0285-3

Keywords

Navigation