Skip to main content
Log in

Hologram and 3D-quantitative structure toxicity relationship studies of azo dyes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Amino azobenzenes are important dyes in the food and textile industry but their application is limited due to their mutagenicity. Computational modeling techniques were used to help understand the factors responsible for mutagenicity, and several quantitative structure toxicity relationship (QSTR) models have been derived. HQSTR (hologram QSTR) analyses indicated that different substituents at sites on both rings contribute to mutagenicity. Fragment parameters such as bond (B) and connectivity(C), as well as donor-acceptor (DA)-based model provide significant results (q2 = 0.59, r2 = 0.92, \({\text{r}}_{{\text{predictive}}}^{\text{2}} = 0.63\)) explaining these harmful effect. HQSTR results indicated that a bulky group at ring “Y” and small group at ring “X” might help to decrease mutagenicity. 3D-QSTR based on comparative molecular field analyses (CoMFA) and comparative molecular similarity index analyses (CoMSIA) are also in agreement with HQSTR. The 3D QSTR studies reveal that steric and electrostatic field effects have a strong relationship with mutagenicity (for CoMFA: q2 = 0.51, r= 0.95, \({\text{r}}_{{\text{predictive}}}^{\text{2}} = 0.65\) and for CoMSIA: q2 = 0.51, r2 = 0.93 and \({\text{r}}_{{\text{predictive}}}^{\text{2}} = 0.84\)). In summary, negative groups and steric bulk at ring “Y” and small groups at carbon-3 of ring “X” might be helpful in reducing the mutagenicity of azo dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kimura T, Kodama M, Nagata C (1982) Carcinogenesis 3:1393–1396

    Article  CAS  Google Scholar 

  2. Miller JA, Miller EC (1961) Cancer Res 21:1068–1072

    CAS  Google Scholar 

  3. Mori Y, Niwa T, Toyoshi K, Nagai H, Koda A, Kawada K, Ojima A, Takahashi Y (1980) Carcinogenesis 1:533–535

    Article  CAS  Google Scholar 

  4. Sugiura K, Halter CR, Kensler CJ, Rhoads CP (1945) Cancer Res 5:235–238

    CAS  Google Scholar 

  5. Kojima M, Degawa M, Hashimoto Y, Tada M (1991) Biochem Biophys Res Commun 179:817–823

    Article  CAS  Google Scholar 

  6. Cramer RD, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  7. Ashby J, Lefevre PA, Callander RD (1983) Mutat Res 116:271–279

    Article  CAS  Google Scholar 

  8. Chung KT (1983) Mutat Res 114:269–281

    CAS  Google Scholar 

  9. Hashimoto Y, Degawa M, Watanabe HK, Tada M (1981) Gann 72:937–943

    CAS  Google Scholar 

  10. Lin JK, Miller JA, Miller EC (1975) Cancer Res 35:844–850

    CAS  Google Scholar 

  11. Pinheiro HM, Touraud E, Thomas O (2004) Dyes Pigm 61:121–139

    Article  CAS  Google Scholar 

  12. Brown MA, Devito SC (1993) Crit Rev Environ Sci Technol 23:249–324

    Article  CAS  Google Scholar 

  13. Roy DR, Sarkar U, Chattaraj PK, Mitra A, Padmanabhan J, Parthasarathi R, Subramanian V, Van Damme S, Bultinck P (2006) Mol Divers 10:119–131

    Article  CAS  Google Scholar 

  14. Pasha FA, Srivastava HK, Srivastava A, Singh PP (2007) Qsar & Combinatorial Science 26:69–84

    Article  CAS  Google Scholar 

  15. Pasha FA, Srivastava HK, Singh PP (2005) Bioorganic Med Chem 13:6823–6829

    Article  CAS  Google Scholar 

  16. Klebe G, Abraham U (1999) J Comput-Aided Mol Des 13:1–10

    Article  CAS  Google Scholar 

  17. Garg A, Bhat KL, Bock CW (2002) Dyes Pigm 55:35–52

    Article  CAS  Google Scholar 

  18. Tong W, Lowis DR, Perkins R, Chen Y, Welsh WJ, Goddette DW, Heritage TW, Sheehan DM (1998) J Chem Inf Comput Sci 38:669–77

    Article  CAS  Google Scholar 

  19. Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  20. Viswanadhan VN, Ghose AK, Revankar GR, Robins RK (1989) J Chem Inf Comput Sci 29:163–172

    CAS  Google Scholar 

  21. Klebe G (1994) J Mol Biol 237:212–35

    Article  CAS  Google Scholar 

  22. Geladi P, Xie YL, Polissar A, Hopke P (1998) J Chemom 2:231

    Article  Google Scholar 

  23. Wold S, Ruhe A, Wold H, Dunn WJ (1984) Siam J Sci Statist Comput 5:735–743

    Article  Google Scholar 

  24. Kim KH, Greco G, Novellino E (1998) Perspect Drug Discov Des 12:257–315

    Article  Google Scholar 

  25. Clark M, Cramer RD, Vanopdenbosch N (1989) J Comput Chem 10:982–1012

    Article  CAS  Google Scholar 

  26. Stewart JJP (1989) J Comput Chem 10:221–264

    Article  CAS  Google Scholar 

  27. Stewart JJP (1989) J Comput Chem 10:209–220

    Article  CAS  Google Scholar 

  28. Freeman HS, Esancy MK, Esancy JF, Claxton LD (1991) Chemtech 21:438–445

    CAS  Google Scholar 

  29. Freeman HS, Kim SD, Gilbert RD, Mcgregor R (1991) Dyes Pigm 17:83–100

    Article  CAS  Google Scholar 

  30. Shahin MM (1989) Mutagenesis 4:115–25

    Article  CAS  Google Scholar 

  31. Rosenkranz HS, Klopman G (1989) Mutat Res 221:217–34

    CAS  Google Scholar 

  32. Chung KT, Fulk GE, Andrews AW (1981) Appl Environ Microbiol 42:641–648

    CAS  Google Scholar 

  33. Chung KT, Fulk GE, Egan M (1978) Appl Environ Microbiol 35:558–562

    CAS  Google Scholar 

  34. Enslein K, Borgstedt HH (1989) Toxicol Lett 49:107–21

    Article  CAS  Google Scholar 

  35. Maran U, Sild S (2003) Artif Intell Rev 20:13–38

    Article  Google Scholar 

  36. Pissurlenkar RR, Shaikh MS, Coutinho EC (2007) J Mol Model 13:1047–71

    Article  CAS  Google Scholar 

  37. Chung KT, Cerniglia CE (1992) Mutat Res 277:201–20

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by KIST Linux Supercomputers. We also thank Jung Soo Oh for help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung Joo Cho or Hoon Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasha, F.A., Muddassar, M., Chung, H.W. et al. Hologram and 3D-quantitative structure toxicity relationship studies of azo dyes. J Mol Model 14, 293–302 (2008). https://doi.org/10.1007/s00894-008-0270-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0270-7

Keywords

Navigation