Skip to main content

Advertisement

Log in

Unraveling the genetic component of systemic sclerosis

  • Review Paper
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Systemic sclerosis (SSc) is a severe connective tissue disorder characterized by extensive fibrosis, vascular damage, and autoimmune events. During the last years, the number of genetic markers convincingly associated with SSc has exponentially increased. In this report, we aim to offer an updated review of the classical and novel genetic associations with SSc, analyzing the firmest and replicated signals within HLA and non-HLA genes, identified by both candidate gene and genome-wide association (GWA) studies. We will also provide an insight into the future perspectives and approaches that might shed more light into the complex genetic background underlying SSc. In spite of the remarkable advance in the field of SSc genetics during the last decade, the use of the new genetic technologies such as next generation sequencing (NGS), as well as the deep phenotyping of the study cohorts, to fully characterize the genetic component of this disease is imperative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamson P, Paterson HF, Hall A (1992) Intracellular localization of the P21rho proteins. J Cell Biol 119:617–627

    Article  PubMed  CAS  Google Scholar 

  • Anaya JM et al (2011) Evaluation of genetic association between an ITGAM non-synonymous SNP (rs1143679) and multiple autoimmune diseases. Autoimmun Rev

  • Alkan C, Coe BP, Eichler EE (2011) Genome structural variation discovery and genotyping. Nat Rev Genet 12:363–376

    Article  PubMed  CAS  Google Scholar 

  • Allanore Y et al (2011) Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genet 7:e1002091

    Article  PubMed  CAS  Google Scholar 

  • Arnett FC et al (1996) Increased prevalence of systemic sclerosis in a Native American tribe in Oklahoma. Association with an Amerindian HLA haplotype. Arthritis Rheum 39:1362–1370

    Article  PubMed  CAS  Google Scholar 

  • Arnett FC et al (2001) Familial occurrence frequencies and relative risks for systemic sclerosis (scleroderma) in three United States cohorts. Arthritis Rheum 44:1359–1362

    Article  PubMed  CAS  Google Scholar 

  • Arnett FC et al (2010) Major histocompatibility complex (MHC) class II alleles, haplotypes and epitopes which confer susceptibility or protection in systemic sclerosis: analyses in 1300 Caucasian, African-American and Hispanic cases and 1000 controls. Ann Rheum Dis 69:822–827

    Article  PubMed  CAS  Google Scholar 

  • Assassi S et al (2007) Clinical, immunologic, and genetic features of familial systemic sclerosis. Arthritis Rheum 56:2031–2037

    Article  PubMed  CAS  Google Scholar 

  • Assassi S et al (2010) Systemic sclerosis and lupus: points in an interferon-mediated continuum. Arthritis Rheum 62:589–598

    Article  PubMed  CAS  Google Scholar 

  • Avouac J et al (2010) Associated autoimmune diseases in systemic sclerosis define a subset of patients with milder disease: results from 2 large cohorts of European Caucasian patients. J Rheumatol 37:608–614

    Article  PubMed  Google Scholar 

  • Avouac J et al (2011) Inactivation of the transcription factor STAT-4 prevents inflammation-driven fibrosis in animal models of systemic sclerosis. Arthritis Rheum 63:800–809

    Article  PubMed  CAS  Google Scholar 

  • Balada E et al (2006) Lack of association of the PTPN22 gene polymorphism R620 W with systemic sclerosis. Clin Exp Rheumatol 24:321–324

    PubMed  CAS  Google Scholar 

  • Bansal V et al (2010) Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 11:773–785

    Article  PubMed  CAS  Google Scholar 

  • Beretta L et al (2007) Interleukin-1 gene complex polymorphisms in systemic sclerosis patients with severe restrictive lung physiology. Hum Immunol 68:603–609

    Article  PubMed  CAS  Google Scholar 

  • Beretta L, Rueda B, Marchini M, Santaniello A, Simeón CP, Fonollosa V, Caronni M, Rios R, Castellvi I, Rodriguez L, Spanish systemic sclerosis group, Moreno A, López-Nevot MA, Escalera A, González-Escribano MF, Martin J, Scorza R (2011) A large association study confirms the role of the HLA-DRB1*1104-DQA1*0501-DQB1*0301 haplotype in systemic sclerosis genetic predisposition in European populations. Rheumatology (Oxford) (in press)

  • Borowiec M et al (2009) Mutations at the BLK locus linked to maturity onset diabetes of the young and beta-cell dysfunction. Proc Natl Acad Sci USA 106:14460–14465

    Article  PubMed  CAS  Google Scholar 

  • Bossini-Castillo L et al (2011a) Confirmation of association of the macrophage migration inhibitory factor gene with systemic sclerosis in a large European population. Rheumatology (Oxford) 50:1976–1981

    Article  CAS  Google Scholar 

  • Bossini-Castillo L et al (2011b) A replication study confirms the association of TNFSF4 (OX40L) polymorphisms with systemic sclerosis in a large European cohort. Ann Rheum Dis 70:638–641

    Article  PubMed  CAS  Google Scholar 

  • Broen J et al (2011) A rare polymorphism in Toll Like Receptor 2 is associated with systemic sclerosis phenotype and increases production of inflammatory mediators. Arthritis Rheum (in press)

  • Brooks WH et al (2010) Epigenetics and autoimmunity. J Autoimmun 34:J207–J219

    Article  PubMed  CAS  Google Scholar 

  • Calandra T, Roger T (2003) Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 3:791–800

    Article  PubMed  CAS  Google Scholar 

  • Call ME, Wucherpfennig KW (2004) Molecular mechanisms for the assembly of the T cell receptor-CD3 complex. Mol Immunol 40:1295–1305

    Article  PubMed  CAS  Google Scholar 

  • Caramaschi P et al (2007) Coexistence of systemic sclerosis with other autoimmune diseases. Rheumatol Int 27:407–410

    Article  PubMed  Google Scholar 

  • Carmona FD et al (2011) Association of a non-synonymous functional variant of the ITGAM gene with systemic sclerosis. Ann Rheum Dis 70:2050–2052

    Article  PubMed  CAS  Google Scholar 

  • Carmona FD et al (2012) Novel identification of the IRF7 region as an anticentromere autoantibody propensity locus in systemic sclerosis. Ann Rheum Dis 71:114–119

    Article  PubMed  CAS  Google Scholar 

  • Chang YK et al (2009) Association of BANK1 and TNFSF4 with systemic lupus erythematosus in Hong Kong Chinese. Genes Immun 10:414–420

    Article  PubMed  CAS  Google Scholar 

  • Cheung YH, Watkinson J, Anastassiou D (2011) Conditional meta-analysis stratifying on detailed HLA genotypes identifies a novel type 1 diabetes locus around TCF19 in the MHC. Hum Genet 129:161–176

    Article  PubMed  Google Scholar 

  • Cordell HJ (2009) Detecting gene–gene interactions that underlie human diseases. Nat Rev Genet 10:392–404

    Article  PubMed  CAS  Google Scholar 

  • Coustet B et al (2011a) Association study of ITGAM, ITGAX, and CD58 autoimmune risk loci in systemic sclerosis: results from 2 large European Caucasian cohorts. J Rheumatol 38:1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Coustet B et al (2011b) C8orf13-BLK is a genetic risk locus for systemic sclerosis and has additive effects with BANK1: results from a large french cohort and meta-analysis. Arthritis Rheum 63:2091–2096

    Article  PubMed  CAS  Google Scholar 

  • Cunninghame Graham DS et al (2008) Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus. Nat Genet 40:83–89

    Article  PubMed  CAS  Google Scholar 

  • Davey JW et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  PubMed  CAS  Google Scholar 

  • de Bakker PI et al (2006) A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet 38:1166–1172

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Vega A et al (2010) Recent findings on genetics of systemic autoimmune diseases. Curr Opin Immunol 22:698–705

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Gallo LM et al (2011) Analysis of the influence of PTPN22 gene polymorphisms in systemic sclerosis. Ann Rheum Dis 70:454–462

    Article  PubMed  CAS  Google Scholar 

  • Dieude P et al (2008) The PTPN22 620 W allele confers susceptibility to systemic sclerosis: findings of a large case-control study of European Caucasians and a meta-analysis. Arthritis Rheum 58:2183–2188

    Article  PubMed  CAS  Google Scholar 

  • Dieude P et al (2009a) Association between the IRF5 rs2004640 functional polymorphism and systemic sclerosis: a new perspective for pulmonary fibrosis. Arthritis Rheum 60:225–233

    Article  PubMed  CAS  Google Scholar 

  • Dieude P et al (2009b) STAT4 is a genetic risk factor for systemic sclerosis having additive effects with IRF5 on disease susceptibility and related pulmonary fibrosis. Arthritis Rheum 60:2472–2479

    Article  PubMed  CAS  Google Scholar 

  • Dieude P et al (2009c) BANK1 is a genetic risk factor for diffuse cutaneous systemic sclerosis and has additive effects with IRF5 and STAT4. Arthritis Rheum 60:3447–3454

    Article  PubMed  CAS  Google Scholar 

  • Dieude P et al (2010a) Phenotype-haplotype correlation of IRF5 in systemic sclerosis: role of 2 haplotypes in disease severity. J Rheumatol 37:987–992

    Article  PubMed  CAS  Google Scholar 

  • Dieude P et al (2010b) Association of the TNFAIP3 rs5029939 variant with systemic sclerosis in the European Caucasian population. Ann Rheum Dis 69:1958–1964

    Article  PubMed  CAS  Google Scholar 

  • Dieude P et al (2011a) Independent replication establishes the CD247 gene as a genetic systemic sclerosis susceptibility factor. Ann Rheum Dis 70:1695–1696

    Article  PubMed  CAS  Google Scholar 

  • Dieude P et al (2011b) Association of the CD226 Ser(307) variant with systemic sclerosis: evidence of a contribution of costimulation pathways in systemic sclerosis pathogenesis. Arthritis Rheum 63:1097–1105

    Article  PubMed  CAS  Google Scholar 

  • Dieude P et al (2011c) NLRP1 influences the systemic sclerosis phenotype: a new clue for the contribution of innate immunity in systemic sclerosis-related fibrosing alveolitis pathogenesis. Ann Rheum Dis 70:668–674

    Article  PubMed  CAS  Google Scholar 

  • Dymecki SM, Niederhuber JE, Desiderio SV (1990) Specific expression of a tyrosine kinase gene, blk, in B lymphoid cells. Science 247:332–336

    Article  PubMed  CAS  Google Scholar 

  • Fagerholm SC et al (2006) alpha-Chain phosphorylation of the human leukocyte CD11b/CD18 (Mac-1) integrin is pivotal for integrin activation to bind ICAMs and leukocyte extravasation. Blood 108:3379–3386

    Article  PubMed  CAS  Google Scholar 

  • Fanning GC et al (1998) HLA associations in three mutually exclusive autoantibody subgroups in UK systemic sclerosis patients. Br J Rheumatol 37:201–207

    Article  PubMed  CAS  Google Scholar 

  • Feghali-Bostwick C, Medsger TA Jr, Wright TM (2003) Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum 48:1956–1963

    Article  PubMed  Google Scholar 

  • Festen EA et al (2011) A meta-analysis of genome-wide association scans identifies IL18RAP, PTPN2, TAGAP, and PUS10 as shared risk loci for Crohn’s disease and celiac disease. PLoS Genet 7:e1001283

    Article  PubMed  CAS  Google Scholar 

  • Fonseca C et al (2006) Endothelin axis polymorphisms in patients with scleroderma. Arthritis Rheum 54:3034–3042

    Article  PubMed  CAS  Google Scholar 

  • Frazer KA et al (2009) Human genetic variation and its contribution to complex traits. Nat Rev Genet 10:241–251

    Article  PubMed  CAS  Google Scholar 

  • Gabrielli A, Avvedimento EV, Krieg T (2009) Scleroderma. N Engl J Med 360:1989–2003

    Article  PubMed  CAS  Google Scholar 

  • Gateva V et al (2009) A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet 41:1228–1233

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist FC et al (2001) Class II HLA associations with autoantibodies in scleroderma: a highly significant role for HLA-DP. Genes Immun 2:76–81

    Article  PubMed  CAS  Google Scholar 

  • Gorlova O et al (2011) Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy. PLoS Genet 7:e1002178

    Article  PubMed  CAS  Google Scholar 

  • Gough MJ, Weinberg AD (2009) OX40 (CD134) and OX40L. Adv Exp Med Biol 647:94–107

    Article  PubMed  CAS  Google Scholar 

  • Gourh P et al (2006) Association of the PTPN22 R620 W polymorphism with anti-topoisomerase I- and anticentromere antibody-positive systemic sclerosis. Arthritis Rheum 54:3945–3953

    Article  PubMed  CAS  Google Scholar 

  • Gourh P et al (2009) Polymorphisms in TBX21 and STAT4 increase the risk of systemic sclerosis: evidence of possible gene–gene interaction and alterations in Th1/Th2 cytokines. Arthritis Rheum 60:3794–3806

    Article  PubMed  CAS  Google Scholar 

  • Gourh P et al (2010a) Association of the C8orf13-BLK region with systemic sclerosis in North-American and European populations. J Autoimmun 34:155–162

    Article  PubMed  CAS  Google Scholar 

  • Gourh P et al (2010b) Association of TNFSF4 (OX40L) polymorphisms with susceptibility to systemic sclerosis. Ann Rheum Dis 69:550–555

    Article  PubMed  CAS  Google Scholar 

  • Graham RR et al (2006) A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 38:550–555

    Article  PubMed  CAS  Google Scholar 

  • Graham RR et al (2007) Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci USA 104:6758–6763

    Article  PubMed  CAS  Google Scholar 

  • Gregersen PK, Bucala R (2003) Macrophage migration inhibitory factor, MIF alleles, and the genetics of inflammatory disorders: incorporating disease outcome into the definition of phenotype. Arthritis Rheum 48:1171–1176

    Article  PubMed  CAS  Google Scholar 

  • Gregersen PK, Silver J, Winchester RJ (1987) The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 30:1205–1213

    Article  PubMed  CAS  Google Scholar 

  • Guo L et al (2009) Replication of the BANK1 genetic association with systemic lupus erythematosus in a European-derived population. Genes Immun 10:531–538

    Article  PubMed  CAS  Google Scholar 

  • Hall JC, Rosen A (2010) Type I interferons: crucial participants in disease amplification in autoimmunity. Nat Rev Rheumatol 6:40–49

    Article  PubMed  CAS  Google Scholar 

  • Hom G et al (2008) Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 358:900–909

    Article  PubMed  CAS  Google Scholar 

  • Hudson KL (2011) Genomics, health care, and society. N Engl J Med 365:1033–1041

    Article  PubMed  CAS  Google Scholar 

  • Hudson M et al (2008) Polyautoimmunity and familial autoimmunity in systemic sclerosis. J Autoimmun 31:156–159

    Article  PubMed  CAS  Google Scholar 

  • Hummers LK (2010) The current state of biomarkers in systemic sclerosis. Curr Rheumatol Rep 12:34–39

    Article  PubMed  CAS  Google Scholar 

  • Invernizzi P (2009) Future directions in genetic for autoimmune diseases. J Autoimmun 33:1–2

    Article  PubMed  CAS  Google Scholar 

  • Islam KB et al (1995) Molecular cloning, characterization, and chromosomal localization of a human lymphoid tyrosine kinase related to murine Blk. J Immunol 154:1265–1272

    PubMed  CAS  Google Scholar 

  • Ito I et al (2009) Association of a functional polymorphism in the IRF5 region with systemic sclerosis in a Japanese population. Arthritis Rheum 60:1845–1850

    Article  PubMed  CAS  Google Scholar 

  • Ito I et al (2010) Association of the FAM167A-BLK region with systemic sclerosis. Arthritis Rheum 62:890–895

    Article  PubMed  CAS  Google Scholar 

  • Johnson SR et al (2011) Validation of potential classification criteria for systemic sclerosis. Arthritis Care Res (Hoboken) (in press)

  • Kawaguchi Y et al (2006) NOS2 polymorphisms associated with the susceptibility to pulmonary arterial hypertension with systemic sclerosis: contribution to the transcriptional activity. Arthritis Res Ther 8:R104

    Article  PubMed  CAS  Google Scholar 

  • Kozyrev SV et al (2008) Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet 40:211–216

    Article  PubMed  CAS  Google Scholar 

  • Kuwana M et al (1995) HLA class II genes associated with anticentromere antibody in Japanese patients with systemic sclerosis (scleroderma). Ann Rheum Dis 54:983–987

    Article  PubMed  CAS  Google Scholar 

  • Kuwana M et al (1999) Association of human leukocyte antigen class II genes with autoantibody profiles, but not with disease susceptibility in Japanese patients with systemic sclerosis. Intern Med 38:336–344

    Article  PubMed  CAS  Google Scholar 

  • Laird RM, Laky K, Hayes SM (2010) Unexpected role for the B cell-specific Src family kinase B lymphoid kinase in the development of IL-17-producing gammadelta T cells. J Immunol 185:6518–6527

    Article  PubMed  CAS  Google Scholar 

  • Lee YH et al (2011) The association between the PTPN22 C1858T polymorphism and systemic sclerosis: a meta-analysis. Mol Biol Rep (in press)

  • Lei W et al (2009) Abnormal DNA methylation in CD4 + T cells from patients with systemic lupus erythematosus, systemic sclerosis, and dermatomyositis. Scand J Rheumatol 38:369–374

    Article  PubMed  CAS  Google Scholar 

  • LeRoy EC et al (1988) Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 15:202–205

    PubMed  CAS  Google Scholar 

  • Lim CP, Cao X (2006) Structure, function, and regulation of STAT proteins. Mol Biosyst 2:536–550

    Article  PubMed  CAS  Google Scholar 

  • Manetti M et al (2009) Association between a stromal cell-derived factor 1 (SDF-1/CXCL12) gene polymorphism and microvascular disease in systemic sclerosis. Ann Rheum Dis 68:408–411

    Article  PubMed  CAS  Google Scholar 

  • Manetti M et al (2010) Association of a functional polymorphism in the matrix metalloproteinase-12 promoter region with systemic sclerosis in an Italian population. J Rheumatol 37:1852–1857

    Article  PubMed  CAS  Google Scholar 

  • Manetti M et al (2011) A genetic variation located in the promoter region of the UPAR (CD87) gene is associated with the vascular complications of systemic sclerosis. Arthritis Rheum 63:247–256

    Article  PubMed  CAS  Google Scholar 

  • Manolio TA et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753

    Article  PubMed  CAS  Google Scholar 

  • Martin JE, Carmona FD, Broen JC, Simeón CP, Vonk MC, Carreira P, Ríos-Fernández R, Espinosa G, Vicente-Rabaneda E et al (2011) The autoimmune disease-associated IL2RA locus is involved in the clinical manifestations of systemic sclerosis. Genes and Immunity (in press)

  • Martinez A et al (2008) Association of the STAT4 gene with increased susceptibility for some immune-mediated diseases. Arthritis Rheum 58:2598–2602

    Article  PubMed  CAS  Google Scholar 

  • Mattuzzi S et al (2007) Association of polymorphisms in the IL1B and IL2 genes with susceptibility and severity of systemic sclerosis. J Rheumatol 34:997–1004

    PubMed  CAS  Google Scholar 

  • Mayes MD et al (2003) Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum 48:2246–2255

    Article  PubMed  Google Scholar 

  • McHugh NJ et al (1994) Anti-centromere antibodies (ACA) in systemic sclerosis patients and their relatives: a serological and HLA study. Clin Exp Immunol 96:267–274

    Article  PubMed  CAS  Google Scholar 

  • Monsuur AJ et al (2008) Effective detection of human leukocyte antigen risk alleles in celiac disease using tag single nucleotide polymorphisms. PLoS One 3:e2270

    Article  PubMed  CAS  Google Scholar 

  • Mora GF (2009) Systemic sclerosis: environmental factors. J Rheumatol 36:2383–2396

    Article  PubMed  Google Scholar 

  • Mukasa R et al (2010) Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage. Immunity 32:616–627

    Article  PubMed  CAS  Google Scholar 

  • Muller-Hilke B (2009) HLA class II and autoimmunity: epitope selection vs differential expression. Acta Histochem 111:379–381

    Article  PubMed  CAS  Google Scholar 

  • Mustelin T et al (2003) Role of protein tyrosine phosphatases in T cell activation. Immunol Rev 191:139–147

    Article  PubMed  CAS  Google Scholar 

  • Nair RP et al (2000) Localization of psoriasis-susceptibility locus PSORS1 to a 60-kb interval telomeric to HLA-C. Am J Hum Genet 66:1833–1844

    Article  PubMed  CAS  Google Scholar 

  • Nath SK et al (2008) A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat Genet 40:152–154

    Article  PubMed  CAS  Google Scholar 

  • Nordmark G et al (2011) Association of EBF1, FAM167A(C8orf13)-BLK and TNFSF4 gene variants with primary Sjogren’s syndrome. Genes Immun 12:100–109

    Article  PubMed  CAS  Google Scholar 

  • O’Connell RM et al (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10:111–122

    Article  PubMed  CAS  Google Scholar 

  • Orozco G et al (2009) Study of functional variants of the BANK1 gene in rheumatoid arthritis. Arthritis Rheum 60:372–379

    Article  PubMed  CAS  Google Scholar 

  • Orozco G et al (2011) Study of the common genetic background for rheumatoid arthritis and systemic lupus erythematosus. Ann Rheum Dis 70:463–468

    Article  PubMed  Google Scholar 

  • Orru V et al (2009) A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus. Hum Mol Genet 18:569–579

    Article  PubMed  CAS  Google Scholar 

  • O’Shea JJ (1997) Jaks, STATs, cytokine signal transduction, and immunoregulation: are we there yet? Immunity 7:1–11

    Article  PubMed  Google Scholar 

  • Radstake TR et al (2010) Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat Genet 42:426–429

    Article  PubMed  CAS  Google Scholar 

  • Rahman P et al (2005) Association of SEEK1 and psoriatic arthritis in two distinct Canadian populations. Ann Rheum Dis 64:1370–1372

    Article  PubMed  CAS  Google Scholar 

  • Rakyan VK et al (2011) Epigenome-wide association studies for common human diseases. Nat Rev Genet 12:529–541

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Casals M et al (2010) Targeted therapy for systemic sclerosis: how close are we? Nat Rev Rheumatol 6:269–278

    Article  PubMed  CAS  Google Scholar 

  • Rands AL et al (2000) MHC class II associations with autoantibody and T cell immune responses to the scleroderma autoantigen topoisomerase I. J Autoimmun 15:451–458

    Article  PubMed  CAS  Google Scholar 

  • Ranque B, Mouthon L (2010) Geoepidemiology of systemic sclerosis. Autoimmun Rev 9:A311–A318

    Article  PubMed  Google Scholar 

  • Raychaudhuri S et al (2008) Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat Genet 40:1216–1223

    Article  PubMed  CAS  Google Scholar 

  • Reveille JD (2003) Ethnicity and race and systemic sclerosis: how it affects susceptibility, severity, antibody genetics, and clinical manifestations. Curr Rheumatol Rep 5:160–167

    Article  PubMed  Google Scholar 

  • Rubtsov AV et al (2010) Genetic and hormonal factors in female-biased autoimmunity. Autoimmun Rev 9:494–498

    Article  PubMed  CAS  Google Scholar 

  • Rueda B et al (2009) The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype. Hum Mol Genet 18:2071–2077

    Article  PubMed  CAS  Google Scholar 

  • Rueda B et al (2010) BANK1 functional variants are associated with susceptibility to diffuse systemic sclerosis in Caucasians. Ann Rheum Dis 69:700–705

    Article  PubMed  CAS  Google Scholar 

  • Saijo K et al (2003) Essential role of Src-family protein tyrosine kinases in NF-kappaB activation during B cell development. Nat Immunol 4:274–279

    Article  PubMed  CAS  Google Scholar 

  • Sigurdsson S et al (2005) Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 76:528–537

    Article  PubMed  CAS  Google Scholar 

  • Simeon CP et al (2009) Association of HLA class II genes with systemic sclerosis in Spanish patients. J Rheumatol 36:2733–2736

    Article  PubMed  CAS  Google Scholar 

  • Svyryd Y et al (2010) X chromosome monosomy in primary and overlapping autoimmune diseases. Autoimmun Rev (in press)

  • Tavares RM et al (2010) The ubiquitin modifying enzyme A20 restricts B cell survival and prevents autoimmunity. Immunity 33:181–191

    Article  PubMed  CAS  Google Scholar 

  • Thomas D (2010) Gene–environment-wide association studies: emerging approaches. Nat Rev Genet 11:259–272

    Article  PubMed  CAS  Google Scholar 

  • Tretter T et al (2003) Mimicry of pre-B cell receptor signaling by activation of the tyrosine kinase Blk. J Exp Med 198:1863–1873

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya N et al (2009) Association of STAT4 polymorphism with systemic sclerosis in a Japanese population. Ann Rheum Dis 68:1375–1376

    Article  PubMed  CAS  Google Scholar 

  • Uz E et al (2008) Skewed X-chromosome inactivation in scleroderma. Clin Rev Allergy Immunol 34:352–355

    Article  PubMed  Google Scholar 

  • Valdes AM, Thomson G (2009) Several loci in the HLA class III region are associated with T1D risk after adjusting for DRB1-DQB1. Diabetes Obes Metab 11(Suppl 1):46–52

    Article  PubMed  Google Scholar 

  • Vereecke L, Beyaert R, van Loo G (2009) The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol 30:383–391

    Article  PubMed  CAS  Google Scholar 

  • Vettori S et al (2010) The beta-fibrinogen -455 G > A gene polymorphism is associated with peripheral vascular injury in systemic sclerosis patients. Clin Exp Rheumatol 28:923–924

    PubMed  CAS  Google Scholar 

  • Voskuhl R (2011) Sex differences in autoimmune diseases. Biol Sex Differ 2:1

    Article  PubMed  Google Scholar 

  • Wang X et al (2005) Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. Nat Genet 37:365–372

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Fan PS, Kahaleh B (2006) Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum 54:2271–2279

    Article  PubMed  CAS  Google Scholar 

  • Watford WT et al (2004) Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev 202:139–156

    Article  PubMed  CAS  Google Scholar 

  • Wipff J et al (2007) Association between an endoglin gene polymorphism and systemic sclerosis-related pulmonary arterial hypertension. Rheumatology (Oxford) 46:622–625

    Article  CAS  Google Scholar 

  • Wipff J et al (2009) Association of hypoxia-inducible factor 1A (HIF1A) gene polymorphisms with systemic sclerosis in a French European Caucasian population. Scand J Rheumatol 38:291–294

    Article  PubMed  CAS  Google Scholar 

  • Wipff J et al (2010) Association of a KCNA5 gene polymorphism with systemic sclerosis-associated pulmonary arterial hypertension in the European Caucasian population. Arthritis Rheum 62:3093–3100

    Article  PubMed  CAS  Google Scholar 

  • Wu SP et al (2006) Macrophage migration inhibitory factor promoter polymorphisms and the clinical expression of scleroderma. Arthritis Rheum 54:3661–3669

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama K et al (2002) BANK regulates BCR-induced calcium mobilization by promoting tyrosine phosphorylation of IP(3) receptor. EMBO J 21:83–92

    Article  PubMed  CAS  Google Scholar 

  • Zhang F et al (2009) Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet 10:451–481

    Article  PubMed  CAS  Google Scholar 

  • Zhernakova A et al (2011) Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet 7:e1002004

    Article  PubMed  CAS  Google Scholar 

  • Zhou X et al (2009) HLA-DPB1 and DPB2 are genetic loci for systemic sclerosis: a genome-wide association study in Koreans with replication in North Americans. Arthritis Rheum 60:3807–3814

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Martín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín, J.E., Bossini-Castillo, L. & Martín, J. Unraveling the genetic component of systemic sclerosis. Hum Genet 131, 1023–1037 (2012). https://doi.org/10.1007/s00439-011-1137-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-011-1137-z

Keywords

Navigation