Skip to main content

Advertisement

Log in

Variation in genes involved in the RANKL/RANK/OPG bone remodeling pathway are associated with bone mineral density at different skeletal sites in men

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

In order to assess the contribution of polymorphisms in the RANKL (TNFSF11), RANK (TNFRSF11A) and OPG (TNFRSF11B) genes to variations in bone mineral density (BMD), a population-based cohort with 1,120 extreme low hip BMD cases or extreme high hip BMD controls was genotyped on five SNPs. We further explored the associations between these genetic variations and forearm BMDs by genotyping 266 offspring and 309 available parents from 160 nuclear families. A family-based association test was used. Significantly positive associations were found for A163G polymorphisms in the promoter regions of the OPG gene, a missense substitution in exon 7 (Ala192Val) of the RANK gene and rs9594782 SNP in the 5′ UTR of the RANKL gene with BMD in men only. Men with TC/CC genotypes of the rs9594782 SNP had a 2.1 times higher risk of extremely low hip BMD (P=0.004), and lower whole body BMD (P<0.001). Subjects with the TC genotype of the Ala192Val polymorphism had a 40% reduced risk of having extremely low hip BMD (P<0.01), and higher whole body BMD (P<0.01). Subjects with the GG genotype of the A163G polymorphism had a 70% reduced risk of having extremely low hip BMD (P<0.05), and higher whole body BMD (P<0.01). Significant gene–gene interactions were also observed among the OPG, RANK and RANKL genes. Our findings suggest that genetic variation in genes involved in the RANKL/RANK/OPG bone remodeling pathway are strongly associated with BMD at different skeletal sites in adult men, but not in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Albagha OM, Pettersson U, Stewart A, McGuigan FE, MacDonald HM, Reid DM, Ralston SH (2005) Association of oestrogen receptor alpha gene polymorphisms with postmenopausal bone loss, bone mass, and quantitative ultrasound properties of bone. J Med Genet 42(3):240–246

    Article  PubMed  CAS  Google Scholar 

  • Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390(6656):175–179

    Article  PubMed  CAS  Google Scholar 

  • Arko B, Prezelj J, Komel R, Kocijancic A, Hudler P, Marc J (2002) Sequence variations in the osteoprotegerin gene promoter in patients with postmenopausal osteoporosis. J Clin Endocrinol Metab 87(9):4080–4084

    Article  PubMed  CAS  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265

    Article  PubMed  CAS  Google Scholar 

  • Bekker PJ, Holloway D, Nakanishi A, Arrighi M, Leese PT, Dunstan CR (2001) The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res 16(2):348–360

    Article  PubMed  CAS  Google Scholar 

  • Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12(9):1260–1268

    PubMed  CAS  Google Scholar 

  • Crisafulli A, Altavilla D, Squadrito G, Romeo A, Adamo EB, Marini R, Inferrera MA, Marini H, Bitto A, D’Anna R, Corrado F, Bartolone S, Frisina N, Squadrito F (2004) Effects of the phytoestrogen genistein on the circulating soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin system in early postmenopausal women. J Clin Endocrinol Metab 89(1):188–192

    Article  PubMed  CAS  Google Scholar 

  • Cummings SR, Black D (1995) Bone mass measurements and risk of fracture in Caucasian women: a review of findings from prospective studies. Am J Med 98(2A):24S–28S

    Article  PubMed  CAS  Google Scholar 

  • Daroszewska A, Hocking LJ, McGuigan FE, Langdahl B, Stone MD, Cundy T, Nicholson GC, Fraser WD, Ralston SH (2004) Susceptibility to Paget’s disease of bone is influenced by a common polymorphic variant of osteoprotegerin. J Bone Miner Res 19(9):1506–1511

    Article  PubMed  CAS  Google Scholar 

  • Deng HW, Chen WM, Conway T, Zhou Y, Davies KM, Stegman MR, Deng H, Recker R (2000) Determination of bone mineral density of the hip and spine in human pedigrees by genetic and life-style factors. Genetic Epi 19:160–177

    Article  CAS  Google Scholar 

  • Deng HW, Xu FH, Huang QY, Shen H, Deng H, Conway T, Liu YJ, Liu YZ, Li JL, Zhang HT, Davies KM, Recker RR (2002) A whole-genome linkage scan suggests several genomic regions potentially containing quantitative trait loci for osteoporosis. J Clin Endocrinol Metab 87:5151–5159

    Article  PubMed  CAS  Google Scholar 

  • Duncan EL, Cardon LR, Sinsheimer JS, Wass JA, Brown MA (2003) Site and gender specificity of inheritance of bone mineral density. J Bone Miner Res 18:1531–1538

    Article  PubMed  Google Scholar 

  • Excoffier L, Slatkin M (1995) Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 12:921–927

    PubMed  CAS  Google Scholar 

  • Ferrari SL, Deutsch S, Choudhury U, Chevalley T, Bonjour JP, Dermitzakis ET, Rizzoli R, Antonarakis SE (2004) Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am J Hum Genet 74(5):866–875

    Article  PubMed  CAS  Google Scholar 

  • Han JH, Choi SJ, Kurihara N, Koide M, Oba Y, Roodman GD (2001) Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood 97(11):3349–3353

    Article  PubMed  CAS  Google Scholar 

  • Hao K, Niu T, Sangokoya C, Li J, Xu X (2002) SNPkit: an efficient approach to systematic evaluation of candidate single nucleotide polymorphisms in public databases. Biotechniques 33(4):822, 824–826, 828 passim

    Google Scholar 

  • Hoh J, Wille A, Ott J (2001) Trimming, weighting, and grouping SNPs in human case-control association studies. Genome Res 11(12):2115–2119

    Article  PubMed  CAS  Google Scholar 

  • Honore P, Luger NM, Sabino MA, Schwei MJ, Rogers SD, Mach DB, O’keefe PF, Ramnaraine ML, Clohisy DR, Mantyh PW (2000) Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat Med 6(5):521–528

    Article  PubMed  CAS  Google Scholar 

  • Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ, Sarosi I, Wang L, Xia XZ, Elliott R, Chiu L, Black T, Scully S, Capparelli C, Morony S, Shimamoto G, Bass MB, Boyle WJ (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 96(7):3540–3545

    Article  PubMed  CAS  Google Scholar 

  • Hsu YH, Venners SA, Terwedow H, Feng Y, Niu T, Li Z, Laird N, Brain J, Cummings S, Bouxsein ML, Rosen CJ, Xu X (2005) Relationship of body composition, fat mass and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr (in press)

  • Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, van Hul W, Whyte MP, Nakatsuka K, Hovy L, Anderson DM (2000) Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet 24(1):45–48

    Article  PubMed  CAS  Google Scholar 

  • Kammerer CM, Schneider JL, Cole SA, Hixson JE, Samollow PB, O’Connell JR, Perez R, Dyer TD, Almasy L, Blangero J, Bauer RL, Mitchell BD (2003) Quantitative trait loci on chromosomes 2p, 4p, and 13q influence bone mineral density of the forearm and hip in Mexican Americans. J Bone Miner Res 18(12):2245–2252

    Article  PubMed  CAS  Google Scholar 

  • Karasik D, Myers RH, Cupples LA, Hannan MT, Gagnon DR, Herbert A, Kiel DP (2002) Genome screen for quantitative trait loci contributing to normal variation in bone mineral density: the Framingham study. J Bone Miner Res 17(9):1718–1727

    Article  PubMed  CAS  Google Scholar 

  • Kim N, Odgren PR, Kim DK, Marks SC Jr, Choi Y (2000) Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene. Proc Natl Acad Sci USA 97(20):10905–10910

    Article  PubMed  CAS  Google Scholar 

  • Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, Wong T, Campagnuolo G, Moran E, Bogoch ER, Van G, Nguyen LT, Ohashi PS, Lacey DL, Fish E, Boyle WJ, Penninger JM (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402(6759):304–309

    Article  PubMed  CAS  Google Scholar 

  • Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176

    Article  PubMed  CAS  Google Scholar 

  • Laird NM, Horvath S, Xu X (2000) Implementing a unified approach to family-based tests of association. Genet Epidemiol 19(Suppl 1):S36–S42

    Article  PubMed  Google Scholar 

  • Langdahl BL, Carstens M, Stenkjaer L, Eriksen EF (2002) Polymorphisms in the osteoprotegerin gene are associated with osteoporotic fractures. J Bone Miner Res 17(7):1245–1255

    Article  PubMed  CAS  Google Scholar 

  • Lange C, Silverman EK, Xu X, Weiss ST, Laird NM (2003) A multivariate family-based association test using generalized estimating equations: FBAT–GEE. Biostatistics 4(2):195–206

    Article  PubMed  Google Scholar 

  • Lange C, Blacker D, Laird NM (2004) Family-based association tests for survival and times-to-onset analysis. Stat Med 23(2):179–189

    Article  PubMed  Google Scholar 

  • Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 97(4):1566–1571

    Article  PubMed  CAS  Google Scholar 

  • Liu YZ, Liu YJ, Recker R, Deng HW (2003) Molecular studies of identification of genes for osteoporosis: the 2002 update. J Endocrinol 177:147–196

    Article  PubMed  CAS  Google Scholar 

  • Morinaga T, Nakagawa N, Yasuda H, Tsuda E, Higashio K (1998) Cloning and characterization of the gene encoding human osteoprotegerin/osteoclastogenesis-inhibitory factor. Eur J Biochem 254(3):685–691

    Article  PubMed  CAS  Google Scholar 

  • Niu T, Qin ZS, Xu X, Liu JS (2002) Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms. Am J Hum Genet 70:157–169

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitz D, Laird N (2000) A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum Hered 50(4):211–223

    Article  PubMed  CAS  Google Scholar 

  • Ralston SH, Galwey N, MacKay I, Albagha OME, Cardon L, Compston JE, Cooper C, Duncan E, Keen R, Langdahl B, McLellan A, O’Riordan J, Pols HA, Reid DM, Uitterlinden AG, Wass J, Bennett ST (2005) Loci for regulation of bone mineral density in men and women identified by genome wide linkage scan: the FAMOS study. Hum Mol Genet 14(7):943–951

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols in the series methods in molecular biology. Humana Press, Totowa, pp 365–386

  • Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Amgen EST Program, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89(2):309–319

  • Styrkarsdottir U, Cazier JB, Kong A, Rolfsson O, Larsen H, Bjarnadottir E, Johannsdottir VD, Sigurdardottir MS, Bagger Y, Christiansen C, Reynisdottir I, Grant SF, Jonasson K, Frigge ML, Gulcher JR, Sigurdsson G, Stefansson K (2003) Linkage of osteoporosis to chromosome 20p12 and association to BMP2. PLoS Biol 1(3):E69

    Article  PubMed  Google Scholar 

  • Thirunavukkarasu K, Halladay DL, Miles RR, Yang X, Galvin RJ, Chandrasekhar S, Martin TJ, Onyia JE (2000) The osteoblast-specific transcription factor Cbfa1 contributes to the expression of osteoprotegerin, a potent inhibitor of osteoclast differentiation and function. J Biol Chem 275(33):25163–25172

    Article  PubMed  CAS  Google Scholar 

  • Wan M, Shi X, Feng X, Cao X (2001) Transcriptional mechanisms of bone morphogenetic protein-induced osteoprotegerin gene expression. J Biol Chem 276(13):10119–10125

    Article  PubMed  CAS  Google Scholar 

  • Wang MW, Wei S, Faccio R, Takeshita S, Tebas P, Powderly WG, Teitelbaum SL, Ross FP (2004) The HIV protease inhibitor ritonavir blocks osteoclastogenesis and function by impairing RANKL-induced signaling. J Clin Invest (2):206–213

    Article  CAS  Google Scholar 

  • Wilson SG, Reed PW, Bansal A, Chiano M, Lindersson M, Langdown M, Prince RL, Thompson D, Thompson E, Bailey M, Kleyn PW, Sambrook P, Shi MM, Spector TD (2003) Comparison of genome screens for two independent cohorts provides replication of suggestive linkage of bone mineral density to 3p21 and 1p36. Am J Hum Genet 72(1):144–155

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Niu T, Christiani DC, Weiss ST, Zhou Y, Chen C, Yang J, Fang Z, Jiang Z, Liang W, Zhang F (1996) Environmental and occupational determinants of blood pressure in rural communities in China. Ann Epidemiol 7:95–106

    Article  Google Scholar 

  • Xu X, Niu T, Chen C, Kuo AY, Rosen CJ (1998) Forearm bone mineral density in Chinese women: a community-based study. J Clin Densitometry 1:149–156

    Article  Google Scholar 

  • Yamada Y, Ando F, Niino N, Shimokata H (2003) Association of polymorphisms of the osteoprotegerin gene with bone mineral density in Japanese women but not men. Mol Genet Metab 80(3):344–349

    Article  PubMed  CAS  Google Scholar 

  • Yano K, Tsuda E, Washida N, Kobayashi F, Goto M, Harada A, Ikeda K, Higashio K, Yamada Y (1999) Immunological characterization of circulating osteoprotegerin/osteoclastogenesis inhibitory factor: increased serum concentrations in postmenopausal women with osteoporosis. J Bone Miner Res 14(4):518–527

    Article  PubMed  CAS  Google Scholar 

  • Zhang YH, Heulsmann A, Tondravi MM, Mukherjee A, Abu-Amer Y (2001) Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J Biol Chem 276(1):563–568

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by NIAMS grant R01 AR045651. We would like to thank Ms. Melissa Veno for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiping Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, YH., Niu, T., Terwedow, H.A. et al. Variation in genes involved in the RANKL/RANK/OPG bone remodeling pathway are associated with bone mineral density at different skeletal sites in men. Hum Genet 118, 568–577 (2006). https://doi.org/10.1007/s00439-005-0062-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-005-0062-4

Keywords

Navigation