Skip to main content

Advertisement

Log in

The brain renin–angiotensin system: a diversity of functions and implications for CNS diseases

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The classic renin–angiotensin system (RAS) was initially described as a hormone system designed to mediate cardiovascular and body water regulation, with angiotensin II as its major effector. The discovery of an independent local brain RAS composed of the necessary functional components (angiotensinogen, peptidases, angiotensins, and specific receptor proteins) significantly expanded the possible physiological and pharmacological functions of this system. This review first describes the enzymatic pathways resulting in active angiotensin ligands and their interaction with AT1, AT2, and AT4 receptor subtypes. Next, we discuss the classic physiologies and behaviors controlled by the RAS including cardiovascular, thirst, and sodium appetite. A final section summarizes non-classic functions and clinical conditions mediated by the brain RAS with focus on memory and Alzheimer’s disease. There is no doubt that the brain RAS is an important component in the development of dementia. It also appears to play a role in normal memory consolidation and retrieval. The presently available anti-dementia drugs are proving to be reasonably ineffective, thus alternative treatment approaches must be developed. At the same time, presently available drugs must be tested for their efficacy to treat newly identified syndromes and diseases connected with the RAS. The list of non-classic physiologies and behaviors is ever increasing in both number and scope, attesting to the multidimensional influences of the RAS. Such diversity in function presents a dilemma for both researchers and clinicians. Namely, the blunting of RAS subsystems in the hopes of combating one constellation of underlying causes and disease symptoms may be counter-balanced by unanticipated and unwanted consequences to another RAS subsystem. For example, the use of angiotensin-converting enzyme inhibitors and AT1 and/or AT2 receptor blockers have shown great promise in the treatment of cardiovascular related pathologies; however, their use could negate the cerebroprotective benefits offered by this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aizawa K, Sato S, Terakawa M, Saitoh D, Tsuda H, Ashida H, Obara M (2009) Accelerated adhesion of grafted skin by laser-induced stress wave-based gene transfer of hepatocyte growth factor. J Biomed Opt 14:064043

    PubMed  Google Scholar 

  2. Akimoto M, Baba A, Ikeda-Matsuo Y, Yamada MK, Itamura R, Nishiyama N, Ikegaya Y, Matsuki N (2004) Hepatocyte growth factor as an enhancer of NMDA currents and synaptic plasticity in the hippocampus. Neurosci 128:155–62

    CAS  Google Scholar 

  3. Albiston AL, Allen AM, Mendelsohn FA, Ping SE, Barrett GL, Murphy M, Morris MJ, McDowall SG, Chai SY (2004) Effect of I.C.V. injection of AT4 receptor ligands, NLE1-angiotensin IV and LVV-hemorphin 7, on spatial learning in rats. Neurosci 124:341–9

    Google Scholar 

  4. Albiston AL, Diwakaria S, Fernando RN, Mountford SJ, Yeatman H, Morgan B, Pham V, Holien JK, Parker MW, Thompson PE, Chai SY (2011) Identification and development of specific inhibitors for insulin-regulated aminopeptidase as a new class of cognitive enhancers. Br J Pharmacol 164:37–47

    CAS  PubMed  Google Scholar 

  5. Albiston AL, Fernando R, Ye S, Peck GR, Chai SY (2004) Alzheimer’s, angiotensin IV and an aminopeptidase. Biol Pharm Bul 27:765–7

    CAS  Google Scholar 

  6. Albiston AL, Fernando RN, Yeatman HR, Burns P, Ng L, Daswani D, Diwakarla S, Pham V, Chai SY (2010) Gene knockout of insulin-regulated aminopeptidase: loss of the specific binding site for angiotensin IV and age-related deficit in spatial memory. Neurobiol Learn Mem 93:19–30

    CAS  PubMed  Google Scholar 

  7. Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T, Lee J, Mendelsohn FA, Simpson RJ, Connolly LM, Chai SY (2001) Evidence that the angiotensin IV (AT4) receptor is the enzyme insulin regulated aminopeptidase. J Biol Chem 276:48263–6

    Google Scholar 

  8. Albiston AL, Morton CJ, Ng HI, Pham V, Yeatman HR, Ye S, Fernando RN, De Bundel D, Ascher DB, Mendelsohn FA, Parker MW, Chai SY (2008) Identification and characterization of a new cognitive enhancer based on inhibition of insulin-regulated aminopeptidase. FASEB J 22:4209–17

    CAS  PubMed  Google Scholar 

  9. Albiston AL, Mustafa T, McDowall SG, Mendelsohn FA, Lee J, Chai SY (2003) AT(4) receptor is insulin-regulated membrane aminopeptidase: potential mechanisms of memory enhancement. Trends Endocrinol Metab 14:72–7

    CAS  PubMed  Google Scholar 

  10. Albiston AL, Peck GR, Yeatman HR, Fernando R, Ye S, Chai SY (2007) Therapeutic targeting of insulin-regulated aminopeptidase: heads and tails? Pharmacol Ther 116:417–27

    CAS  PubMed  Google Scholar 

  11. Albiston AL, Pederson ES, Burns P, Purcell B, Wright JW, Harding JW, Mendelsohn FA, Weisinger RS, Chai SY (2004) Attenuation of scopolamine-induced learning deficits by LVV-hermorphin-7 in rats in the passive avoidance and water maze paradigms. Behav Brain Res 154:239–43

    CAS  PubMed  Google Scholar 

  12. Albrecht D, Broser M, Kruger H (1997) Excitatory action of angiotensins II and IV on hippocampal neuronal activity in urethane anesthetized rats. Regul Pept 70:105–9

    CAS  PubMed  Google Scholar 

  13. Allen AM, Oldfield BJ, Giles ME, Paxinos G, McKinley MJ, Mendelsohn FA (2000) Localization of angiotensin receptors in the nervous system. In: Quirion R, Bjorklund A, Hodfelt T (eds) Handbook of chemical neuroanatomy. Elsevier, Amsterdam, pp 79–124

    Google Scholar 

  14. Allen AM, Zhuo J, Mendelsohn FA (2001) AT1-receptors in the central nervous system. J Renin Angiotensin Aldosterone Syst 2(Suppl1):S95–101

    CAS  Google Scholar 

  15. Andersson H, Demaegdt H, Vauquelin G, Lindeberg G, Karlen A, Hallberg M (2008) Ligands to the (IRAP)/AT4 receptor encompassing a 4-hydroxydiphenylmethane scaffold replacing Tyr2. Biorg Med Chem 16:6924–35

    CAS  Google Scholar 

  16. Avrith D, Fitzsimons J (1980) Increased sodium appetite in the rat induced by intracranial administration components of the renin–angiotensin system. J Physiol 301:349–64

    CAS  PubMed  Google Scholar 

  17. Axen A, Andersson H, Lindeberg G, Ronnholm H, Kortesmaa J, Demaegdt H, Vauquelin B, Karlen A, Hallberg M (2007) Small potent ligands to the insulin-regulated aminopeptidase (IRAP)/AT(4) receptor. J Pept Sci 13:434–44

    CAS  PubMed  Google Scholar 

  18. Bae MH, Bissonette GB, Mars WM, Michalopoulos GK, Achim CL, Depireux DA, Powell EM (2010) Hepatocyte growth factor (HGF) modulates GABAergic inhibition and seizure susceptibility. Exp Neurol 221:129–35

    CAS  PubMed  Google Scholar 

  19. Baltatu OC, Campos LA, Bader M (2011) Local renin–angiotensin system and the brain—a continuous quest for knowledge. Peptides 32:1083–6

    CAS  PubMed  Google Scholar 

  20. Banegas I, Prieto I, Vives F, Alba F, de Gasparo M, Segarra AB, Hermoso F, Duran R, Ramírez M (2006) Brain aminopeptidases and hypertension. Renin Angiotensin Aldosterone Syst 7:129–34

    CAS  Google Scholar 

  21. Basso N, Paglia N, Stella I (2005) Protective effect of the inhibition of the renin–angiotensin system on aging. Regul Pept 128:247–52

    CAS  PubMed  Google Scholar 

  22. Bennett JP Jr, Snyder SH (1976) Angiotensin II binding to mammalian brain membranes. J Biol Chem 251:7423–30

    CAS  PubMed  Google Scholar 

  23. Benoist CC, Wright JW, Zhu M, Appleyard SM, Wayman GA, Harding JW (2011) Facilitation of hippocampal synaptogenesis and spatial memory by C-terminal truncated Nle1-angiotensin IV analogues. J Pharmacol Exp Ther 339:35–44

    CAS  PubMed  Google Scholar 

  24. Bernier SG, Bellemare JM, Escher E, Guillemette G (1998) Characterization of AT4 receptor from bovine aortic endothelial photosensitive analogues of angiotensin IV. Biochem 37:4280–7

    CAS  Google Scholar 

  25. Bichu P, Nistala R, Khan A, Sowers JR, Whaley-Connell A (2009) Angiotensin receptor blockers for the reduction of proteinuria in diabetic patients with overt nephropathy: results from the AMADEO study. Vasc Health Risk Manag 5:129–40

    CAS  PubMed  Google Scholar 

  26. Bickerton RK, Buckley JP (1961) Evidence for a central mechanism in angiotensin induced hypertension. Proc Soc Exp Biol Med 106:834–9

    CAS  Google Scholar 

  27. Blair-West JR, Carey KD, Denton DA, Madden IJ, Weisinger RS, Shade RE (2001) Possible contribution of brain angiotensin III to ingestive behaviors in baboons. Am J Physiol Regul Integr Comp Physiol 281:R1633–6

    CAS  PubMed  Google Scholar 

  28. Booth DA (1968) Mechanism of action of norepinephrine in eliciting an eating response on injection into the rat hypothalamus. J Pharmacol Exp Ther 150:336–48

    Google Scholar 

  29. Braszko JJ (2006) D2 dopamine receptor blockade prevents cognitive effects of AngIV and des-Phe6 AngIV. Physiol Behav 88:152–9

    CAS  PubMed  Google Scholar 

  30. Braszko JJ (2009) Dopamine D4 receptor antagonist L745,870 abolishes cognitive effects of intracerebroventricular angiotensin IV and des-Phe(6)-AngIV in rats. Eur Neuropsychopharmacol 19:85–91

    CAS  PubMed  Google Scholar 

  31. Braszko JJ (2010) Participation of D1-4 dopamine receptors in the pro-cognitive effects of angiotensin IV and des-Phe6 angiotensin IV. Neurosci Biobehav Rev 34:343–350

    CAS  PubMed  Google Scholar 

  32. Braszko JJ, Kulskowska A, Karwowska-Polecka W (1998) CGP 42112A antagonism of the angiotensin II and angiotensin II(3-7) facilitation of recall in rats. Pharmacol Res 38:461–8

    CAS  PubMed  Google Scholar 

  33. Braszko JJ, Kupryszewski G, Witczuk B, Wisniewski K (1988) Angiotensin II (3-8)-hexapeptide affects motor activity, performance of passive avoidance, and a conditioned avoidance response in rats. Neuroscience 27:777–83

    CAS  PubMed  Google Scholar 

  34. Braszko JJ, Walesiuk A, Wielgat P (2006) Cognitive effects attributed to angiotensin II may result from its conversion to angiotensin IV. J Renin Angiotensin Aldosterone Syst 7:168–74

    CAS  PubMed  Google Scholar 

  35. Braszko JJ, Wielgat P, Walesiuk A (2008) Effect of D(3) dopamine receptor blockade on the cognitive effects of angiotensin IV in rats. Neuropeptides 42:301–309

    CAS  PubMed  Google Scholar 

  36. Braszko JJ, Wlasienko J, Koziolkiewicz W, Janecka A, Wisniewski K (1991) The 3-7 fragment of angiotensin II is probably responsible for its psychoactive properties. Brain Res 542:49–54

    CAS  PubMed  Google Scholar 

  37. Braun-Menendez E, Fasiolo JC, Leioir LF, Munoz JM (1940) The substance causing renal hypertension. J Physiol (Lond) 98:283–98

    CAS  Google Scholar 

  38. Bregonzio C, Seltzer A, Armando I, Pavel J, Saavedra J (2008) Angiotensin II AT(1) receptor blockade selectively enhances brain AT(2) receptor expression, and abolishes the cold-restraint stress-induced increase in tyrosine hydroxylase mRNA in the locus coeruleus of spontaneously hypertensive rats. Stress 11:457–66

    CAS  PubMed  Google Scholar 

  39. Buggy J, Fisher AE (1976) Anteroventral third ventricle site of action for angiotensin induced thirst. Pharmacol Biochem Behav 4:651–60

    CAS  PubMed  Google Scholar 

  40. Buggy J, Fisher AE, Hoffman WE, Johnson AK, Phillips MI (1975) Ventricular obstruction: effect on drinking induced by intracranial injection of angiotensin. Sci 190:72–4

    CAS  Google Scholar 

  41. Buggy J, Johnson AK (1978) Angiotensin-induced thirst: effects of third ventricle obstruction and periventricular ablation. Brain Res 149:117–28

    CAS  PubMed  Google Scholar 

  42. Buggy J, Jonklaas J (1984) Sodium appetite decreased by central angiotensin blockade. Physiol Behav 32:749–53

    Google Scholar 

  43. Bumpus FM, Schwarz H, Page IH (1957) Synthesis and pharmacology of the octapeptide angiotonin. Science 125:886–7

    CAS  PubMed  Google Scholar 

  44. Bumpus FM, Schwarz H, Page IH (1958) Synthesis and properties of angiotonin. Circulation 17:664–7

    CAS  PubMed  Google Scholar 

  45. Caputo R, Rowland N, Fregly M (1992) Angiotensin-related intakes of water and NaCl in Fischer 344 and Sprague–Dawley rats. Am J Physiol 262:R382–8

    CAS  PubMed  Google Scholar 

  46. Cat AN, Touyz RM (2011) A new look at the renin–angiotensin system—focusing on the vascular system. Peptides 32:2141–50

    Google Scholar 

  47. Chai SY, Bastias MA, Clune EF, Matsacos DJ, Mustafa T, Lee JH, McDowall SG, Paxinos G, Mendelsohn FA, Albiston AL (2000) Distribution of angiotensin IV binding sites (AT4 receptor) in the human forebrain, midbrain and pons as visualized by in vitro receptor autoradiography. J Chem Neuroanat 20:339–48

    CAS  PubMed  Google Scholar 

  48. Chai SY, Fernando R, Peck G, Ye SY, Mendelsohn FA, Jenkins TA, Albiston AL (2004) The angiotensin IV/AT4 receptor. CMLS Cell Mol Life Sci 61:2728–37

    CAS  Google Scholar 

  49. Chai SY, Yeatman HR, Parker MW, Ascher DB, Thomspon PE, Mulvery HT, Albiston AL (2008) Development of cognitive enhancers based on inhibition of insulin-regulated aminopeptidase. BMC Neurosci 9(Suppl 2):S14

    PubMed  Google Scholar 

  50. Chaturvedi N, Porta M, Klien R, Orchard T, Fuller J, Parving HH, Bilous R, Sjolie AK (2008) Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type 1 diabetes: randomized, placebo-controlled trials. Lancet 372:1394–1402

    CAS  PubMed  Google Scholar 

  51. Chauvel EN, Llorens-Cortes C, Coric P, Wilk S, Roques BP, Fournie-Zaluski MC (1994) Differential inhibition of aminopeptidase A and aminopeptidase N by new-amino thiols. J Med Chem 37:2950–7

    CAS  PubMed  Google Scholar 

  52. Chen SG, Si J, Rifai A, Dworkin LD, Gong R (2008) Candesartan suppresses chronic renal inflammation by a novel antioxidant action independent of AT1R blockade. Kidney Int 74:1128–38

    CAS  PubMed  Google Scholar 

  53. Chen JK, Zimpelmann J, Harris RC, Burns KD (2001) Angiotensin IV induces tyrosine phosphorylation of focal adhesion kinase and paxillin in proximal tubule cells. Am J Physiol Renal Physiol 280:F980–8

    CAS  PubMed  Google Scholar 

  54. Chiarelli F, Di Marzio D, Santilli F, Mohn A, Blasetti A, Cipollone F, Mezzetti A, Verrotti A (2005) Effects of irbesartan on intracellular antioxidant enzyme expression and activity in adolescents and young adults with early diabetic angiopathy. Diabet Care 28:1690–7

    CAS  Google Scholar 

  55. Ciobica A, Bild W, Hritcu L, Haulica I (2009) Brain renin–angiotensin system in cognitive function: pre-clinical findings and implications for prevention and treatment of dementia. Acta Neurol Belg 109:171–80

    PubMed  Google Scholar 

  56. Comoglio PM, Giordano S, Trusolino L (2008) Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 7:504–16

    CAS  PubMed  Google Scholar 

  57. Conway K, Price P, Harding KG, Jiang WG (2006) The molecular and clinical impact of hepatocyte growth factor, its receptor, activators, and inhibitors in wound healing. Wound Repair Regen 14:2–10

    PubMed  Google Scholar 

  58. Conway K, Ruge F, Price P, Harding KG, Jiang WG (2007) Hepatocyte growth factor regulation: an integral part of why wounds become chronic. Wound Repair Regen 15:683–92

    PubMed  Google Scholar 

  59. Culman J, Blume A, Gohlke P, Unger T (2002) The renin–angiotensin system in the brain: possible therapeutic implications for AT1-receptor blockers. J Hum Hypertens 16:S64–70

    CAS  PubMed  Google Scholar 

  60. Culman J, Hohle S, Qadri F, Edling O, Blume A, Lebrun C, Unger T (1995) Angiotensin as neuromodulator/neurotransmitter in central control of body fluid and electrolyte homoeostasis. Clin Exp Hypertens 17:281–93

    CAS  PubMed  Google Scholar 

  61. Dalmay F, Pesteil F, Allard J, Nisse-Durgeat S, Fernandez L, Fournier A (2001) Angiotensin IV decreases acute stroke mortality in the gerbil. Hypertens 14:56A

    Google Scholar 

  62. Dampney RA, Hirooka Y, Potts PD, Head GA (1996) Functions of angiotensin peptides in the rostral ventrolateral medulla. Clin Exp Pharmacol Physiol 3(Suppl):S105–11

    CAS  Google Scholar 

  63. Daniels D (2010) Allan N. Epstein award: intracellular signaling and ingestive behaviors. Physiol Behav 100:496–502

    CAS  PubMed  Google Scholar 

  64. Daniels D, Yee DK, Faulconbridge LF, Fluharty SJ (2005) Divergent behavioral roles of angiotensin receptor intracellular signaling cascades. Endocrinol 146:5552–60

    CAS  Google Scholar 

  65. Daniels D, Yee DK, Fluharty SJ (2007) Angiotensin II receptor signaling. Exp Physiol 92:523–7

    CAS  PubMed  Google Scholar 

  66. Danielyan L, Klein R, Hanson LR, Buadze M, Schwab M, Gleiter CH, Frey WH (2010) Protective effects of intranasal losartan in the APP/PS1 transgenic mouse model of Alzheimer disease. Rejuvenation Res 13:195–201

    CAS  PubMed  Google Scholar 

  67. Dasgupta C, Zhang L (2011) Angiotensin II receptors and drug discovery in cardiovascular disease. Drug Discov Today 16:22–34

    CAS  PubMed  Google Scholar 

  68. Date I, Takagi N, Takagi K, Kago T, Matsumoto K, Nakamura T, Takeo S (2004) Hepatocyte growth factor attenuates cerebral ischemia-induced learning dysfunction. Biochem Biophys Res Commun 319:1152–8

    CAS  PubMed  Google Scholar 

  69. Date I, Takagi N, Takagi K, Kago T, Matsumoto K, Nakamura T, Takeo S (2004) Hepatocyte growth factor improved learning and memory dysfunction of microsphere-embolized rats. J Neurosci Res 78:442–53

    CAS  PubMed  Google Scholar 

  70. Davis CJ, Kramar EA, De A, Meighan PC, Simasko SM, Wright JW, Harding JW (2006) AT4 receptor activation increases intracellular calcium influx and induces a non-N-methyl-D-aspartate dependent form of long-term potentiation. Neurosci 137:1369–79

    CAS  Google Scholar 

  71. De Bundel D, Smolders I, Vanderheyden P, Michotte Y (2008) AngII and AngIV: unraveling the mechanism of action on synaptic plasticity, memory, and epilepsy. CNS Neurosci Ther 14:315–39

    PubMed  Google Scholar 

  72. De Bundel D, Smolders I, Yang R, Albiston AL, Michotte Y, Chai SY (2009) Angiotensin IV and LVV-haemorphin 7 enhance spatial working memory in rats: effects on hippocampal glucose levels and blood flow. Neurobiol Learn Mem 92:19–26

    PubMed  Google Scholar 

  73. De Bundle DD, Demaegdt H, Lahoutte T, Caveliers V, Kersemans K, Ceulemans AG, Vauquelin G, Clinckers R, Vanderheyden P, Michotte Y, Smolders I (2010) Involvement of the AT1 receptor subtype in the effects of angiotensin IV and LVV-haemorphin 7 on hippocampal neurotransmitter levels and spatial working memory. J Neurochem 112:1223–34

    Google Scholar 

  74. de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (2000) International Union of Pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–72

    PubMed  Google Scholar 

  75. de Gasparo M, Husain A, Alexander W, Catt KJ, Chiu AT, Drew M, Goodfriend T, Harding JW, Inagami T, Timmermans PB (1995) Proposed update of angiotensin receptor nomenclature. Hypertens 25:924–39

    CAS  Google Scholar 

  76. Demaegdt H, De Backer JP, Lukaszuk A, Toth G, Szemenyei E, Tourwe D, Vauquelin G (2011) Angiotensin IV displays only low affinity for native insulin-regulated aminopeptidase (IRAP). Fundam Clin Pharmacol 26:194–7

    PubMed  Google Scholar 

  77. Demaegdt H, Gard P, De Backer JP, Lukaszuk A, Szemenyei E, Toth G, Tourwe D, Vauquelin G (2011) Binding of “AT4 receptor” ligands to insulin regulated aminopeptidase (IRAP) in intact Chinese hamster ovary cells. Mol Cell Endocrinol 339:34–44

    CAS  PubMed  Google Scholar 

  78. Demaegdt H, Lenaerts PJ, Swales J, De Backer JP, Laeremans H, Le MT, Kersemans K, Vogel LK, Michotte Y, Vanderheyden P, Vauquelin G (2006) Angiotensin AT4 receptor ligand interaction with cystinyl aminopeptidase and aminopeptidase N: [125I] angiotensin IV only binds to the cystinyl aminopeptidase apo-enzyme. Eur J Pharmacol 28:19–27

    Google Scholar 

  79. Dulin N, Madhun ZT, Chang CH, Berti-Mattera L, Dickens D, Douglas JG (1995) Angiotensin IV receptors and signaling in opossum kidney cells. Am J Physiol 269:F644–52

    CAS  PubMed  Google Scholar 

  80. Dupont AG, Brouwers S (2010) Brain angiotensin peptides regulate sympathetic tone and blood pressure. J Hypertens 28:1599–1610

    CAS  PubMed  Google Scholar 

  81. Duron E, Hanon O (2010) Antihypertensive treatments, cognitive decline, and dementia. J Alzheimers Dis 20:903–14

    PubMed  Google Scholar 

  82. El Messari S, Ait-Ikhlef A, Ambroise DH, Penicaud L, Arluison M (2002) Expression of insulin-responsive glucose transporter GLUT4 mRNA in the rat brain and spinal cord: an in situ hybridization study. J Chem Neuroanat 24:225–42

    CAS  PubMed  Google Scholar 

  83. El Messari S, Leloup C, Quignon M, Brisorgueil MJ, Penicaud L, Arluison M (1998) Immunocytochemical localization of the insulin-responsive glucose transporter 4 (Glut4) in the rat central nervous system. J Comp Neurol 399:492–512

    CAS  PubMed  Google Scholar 

  84. Ellul J, Archer N, Foy CM, Poppe M, Boothby H, Nicholas H, Brown RG, Lovestone S (2006) The effects of commonly prescribed drugs in patients with Alzheimer’s disease on the rate of deterioration. J Neurol Neurosurg Psychiatry 78:233–9

    PubMed  Google Scholar 

  85. Epstein AN (1982) Mineralocorticoids and cerebral angiotensin may act together to produce sodium appetite. Peptides 3:493–4

    CAS  PubMed  Google Scholar 

  86. Epstein AN, Fitzsimons JT, Rolls BJ (1970) Drinking induced by injection of angiotensin into the brain of the rat. J Physiol (Lond) 210:457–74

    CAS  Google Scholar 

  87. Esteban V, Ruperez M, Sanchez-Lopez E, Rodriguez-Vita J, Lorenzo O, Demaegdt H, Vanderheyden P, Egido J, Ruiz-Ortega M (2005) Angiotensin IV activates the nuclear transcription factor-kappaB and related proinflammatory genes in vascular smooth muscle cells. Circ Res 96:965–73

    CAS  PubMed  Google Scholar 

  88. Faure S, Chapot R, Tallet D, Javellaud J, Achard JM, Oudart N (2006) Cerebroprotective effect of angiotensin IV in experimental ischemic stroke in the rat mediated by AT(4) receptors. J Physiol Pharmacol 57:329–42

    CAS  PubMed  Google Scholar 

  89. Fernando RN, Albiston AL, Chai SY (2008) The insulin-regulated aminopeptidase IRAP is colocalised with GLUT4 in the mouse hippocampus—potential role in modulation of glucose uptake in neurons? Eur J Neurosci 28:588–598

    PubMed  Google Scholar 

  90. Fernando RN, Larm J, Albiston AL, Chai SY (2005) Distribution and cellular localization of insulin-regulated aminopeptidase in the rat central nervous system. J Comp Neurol 487:372–90

    CAS  PubMed  Google Scholar 

  91. Fernando RN, Luff SE, Albiston AL, Chai SY (2007) Sub-cellular localization of insulin-regulated membrane aminopeptidase, IRAP to vesicles in neurons. J Neurochem 102:967–76

    CAS  PubMed  Google Scholar 

  92. Ferrario CM, Chappell MD (2004) Novel angiotensin peptides. Cell Mol Life Sci 61:2720–7

    CAS  PubMed  Google Scholar 

  93. Fink GD, Bruner CA (1985) Hypertension during chronic peripheral and central infusion of angiotensin III. Am J Physiol 249:E201–8

    CAS  PubMed  Google Scholar 

  94. Fitts DA (1993) Angiotensin and captopril increase alcohol intake. Pharmacol Biochem Behav 45:3543

    Google Scholar 

  95. Fitts DA, Masson DB (1989) Forebrain sites of action for drinking and salt appetite to angiotensin or captopril. Behav Neurosci 103:865–72

    CAS  PubMed  Google Scholar 

  96. Fitzsimons JT (1971) The effect on drinking of peptide precursors and of shorter chain peptide fragments of angiotensin II injected into the rat’s diencephalon. J Physiol (Lond) 214:295–303

    CAS  Google Scholar 

  97. Fitzsimons JT (1980) Angiotensin stimulation of the central nervous system. Rev Physiol Biochem Pharmacol 87:117–67

    CAS  PubMed  Google Scholar 

  98. Fitzsimons JT (1998) Angiotensin, thirst, and sodium appetite. Physiol Rev 78:583–686

    CAS  PubMed  Google Scholar 

  99. Fournier A, Messerti FH, Achard JM, Fernandez I (2004) Cerebroprotection mediated by angiotensin II: a hypothesis supported by recent randomized clinical trials. J Am Coll Cardiol 43:1343–7

    PubMed  Google Scholar 

  100. Fournier A, Oprisiu-Fournier R, Serot JM, Godefroy O, Achard JM, Faure S, Mazouz H, Temmar M, Albu A, Bordet R, Hanon O, Gueyffier F, Wang J, Black S, Sato N (2009) Prevention of dementia by antihypertensive drugs: how AT1-receptor-blockers and dihydropyridines better prevent dementia in hypertensive patients than thiazides and ACE-inhibitors. Expert Rev Neurother 9:1413–31

    CAS  PubMed  Google Scholar 

  101. Fyhrquist F, Saijonmaa O (2008) Renin–angiotensin system revisited. J Internal Med 264:224–36

    CAS  PubMed  Google Scholar 

  102. Galletti F, Cupini LM, Corbelli I, Calabresi P, Sarchielli P (2009) Pathophysiological basis of migraine prophylaxis. Prog Neurobiol 89:176–92

    CAS  PubMed  Google Scholar 

  103. Ganten D, Boucher R, Genest J (1971) Renin activity in brain tissue of puppies and adult dogs. Brain Res 33:557–9

    CAS  PubMed  Google Scholar 

  104. Ganten D, Marquez-Julio A, Granger P, Hayduk K, Karsunky KP, Boucher R, Genest J (1971) Renin in dog brain. Am J Physiol 221:1733–7

    CAS  PubMed  Google Scholar 

  105. Gard PR (2002) The role of angiotensin II in cognition and behaviour. Eur J Pharmacol 438:1–14

    CAS  PubMed  Google Scholar 

  106. Gard PR (2004) Angiotensin as a target for the treatment of Alzheimer’s disease, anxiety and depression. Expert Opin Ther Targets 8:7–14

    CAS  PubMed  Google Scholar 

  107. Gard PR (2008) Cognitive-enhancing effects of angiotensin IV. BMC Neurosci 9(Suppl 2):S2–15

    Google Scholar 

  108. Gard PR, Mandy A, Sutcliffe MA (1999) Evidence of a possible role of altered angiotensin function in the treatment, but not etiology, of depression. Biol Psychiatry 45:1030–4

    CAS  PubMed  Google Scholar 

  109. Garreau I, Chansel D, Vandermeersch S, Fruitier I, Piot JM, Ardaillou R (1998) Hemorphins inhibit angiotensin IV binding and interact with aminopeptidase N. Peptides 19:1339–48

    CAS  PubMed  Google Scholar 

  110. Gesualdo L, Ranicri E, Monno R, Rossiello MR, Colucci M, Semeraro N, Grandaliano G, Schena FP, Ursi M, Cerullo G (1999) Angiotensin IV stimulates plasminogen activator inhibitor-1 expression in proximal tubular epithelial cells. Kidney Int 56:461–70

    CAS  PubMed  Google Scholar 

  111. Grammatopoulos TN, Jones SM, Ahmadi FA, Hoover BR, Snell LD, Skoch J, Javeri VV, Poczobutt AM, Weyhenmeyer JA, Zawada WM (2007) Angiotensin type 1 receptor antagonist losartan, reduces MPTP-induced degeneration of dopaminergic neurons in substantia nigra. Mol Neurodegener 2:1

    PubMed  Google Scholar 

  112. Grammatopoulos TN, Outeiro TF, Hyman BT, Standaert DG (2007) Angiotensin II protects against α-synuclein toxicity and reduces protein aggregation in vitro. Bioch Biophysical Res Commun 363:846–51

    CAS  Google Scholar 

  113. Gupta M, Honos GN, Velazquez EJ, Chung N, Oigman W, Maggioni AP (2010) Evidence for the efficacy of ARBs across the cardiovascular continuum. Curr Med Res Opin 26:1203–18

    CAS  PubMed  Google Scholar 

  114. Gutierrez H, Dolcet X, Tolcos M, Davies A (2004) HGF regulates the development of cortical pyramidal dendrites. Dev 131:3717–26

    CAS  Google Scholar 

  115. Ha XQ, Lv TD, Hui L, Dong F (2010) Effects of mesenchymal stem cells transfected with human hepatocyte growth factor gene on healing of burn wounds. Chin J Traumatol 13:349–55

    CAS  PubMed  Google Scholar 

  116. Hajjar IM, Keown M, Frost B (2005) Antihypertensive agents for aging patients who are at risk for cognitive dysfunction. Curr Hypert Rep 7:466–73

    CAS  Google Scholar 

  117. Hamilton TA, Handa RK, Harding JW, Wright JW (2001) A role for the AT4/angiotensin IV system in mediating natriuresis in the rat. Peptides 22:935–44

    CAS  PubMed  Google Scholar 

  118. Handa RK (2001) Characterization and signaling of the AT(4) receptor in human proximal tubule epithelial (HK-2) cells. J Am Soc Nephrol 12:440–9

    CAS  PubMed  Google Scholar 

  119. Handa RK, Harding JW, Simasko SM (1999) Characterization and function of the bovine kidney epithelial angiotensin receptor subtype 4 using angiotensin IV and divalinal angiotensin IV as receptor ligands. J Pharmacol Exp Ther 291:1242–9

    CAS  PubMed  Google Scholar 

  120. Harding JW, Cook VI, Miller-Wing AV, Hanesworth JM, Sardinia MF, Hall KL, Stobb JW, Swanson GN, Coleman JK, Wright JW, Harding EC (1992) Identification of an AII (3-8) [AIV] binding site in guinea pig hippocampus. Brain Res 583:340–3

    CAS  PubMed  Google Scholar 

  121. Hashimoto N, Yamanaka H, Fukuoka T, Obata K, Mashimo T, Naguchi K (2001) Expression of hepatocyte growth factor in primary sensory neurons of adult rats. Brain Res Mol Brain Res 97:83–8

    CAS  PubMed  Google Scholar 

  122. Head GA (1996) Role of AT1 receptors in the central control of sympathetic vasomotor function. Clin Exp Pharmacol Physiol 3(Suppl):S93–8

    CAS  Google Scholar 

  123. Herbst JJ, Ross SA, Scott HM, Bobin SA, Morris NJ, Lienhard GE, Keller SR (1997) Insulin stimulates cell surface aminopeptidase activity toward vasopressin in adipocytes. Am J Physiol 272:E600–6

    CAS  PubMed  Google Scholar 

  124. Hines J, Fluharty SJ, Yee DK (2003) Structural determinants for the activation mechanism of the angiotensin II type 1 receptor differ for phosphoinositide hydrolysis and mitogen-activated protein kinase pathways. Biochem Pharmacol 66:251–62

    CAS  PubMed  Google Scholar 

  125. Hoogwerf BJ (2010) Renin–angiotensin system blockade and cardiovascular and renal protection. Am J Cardiol 105(Suppl):30A–5

    CAS  PubMed  Google Scholar 

  126. Inoue T (2003) Dynamics of calcium and its roles in the dendrite of the cerebellar Purkinje cell. Keio J Med 52:244–9

    CAS  PubMed  Google Scholar 

  127. Isingrini E, Desmidt T, Belzung C, Camus V (2009) Endothelial dysfunction: a potential target for geriatric depression and brain amyloid deposition in Alzheimer’s disease? Curr Opin Investig Drugs 10:46–55

    CAS  PubMed  Google Scholar 

  128. Jarvis MF, Gessner GW, Ly CG (1992) The angiotensin hexapeptide 3-8 fragment potently inhibits [125I] angiotensin II binding to non-AT1 or -AT2 recognition sites in bovine adrenal cortex. Eur J Pharmacol 219:319–22

    CAS  PubMed  Google Scholar 

  129. Jiang WG, Martin TA, Parr C, Davies G, Matsumoto K, Nakamura T (2005) Hepatocyte growth factor, its receptor, and their potential value in cancer therapies. Critical Rev Oncol/Hemat 53:35–69

    Google Scholar 

  130. Johnson AK, Epstein AN (1975) The cerebral ventricles as the avenue for the dipsogenic action of intracranial angiotensin. Brain Res 86:399–418

    CAS  PubMed  Google Scholar 

  131. Johnston CI (1990) Biochemistry and pharmacology of the renin–angiotensin system. Drugs 39:21–31

    CAS  PubMed  Google Scholar 

  132. Johnston CI, Franz VL (1992) Renin–angiotensin system: a dual tissue and hormonal system for cardiovascular control. J Hypertens Suppl 10:S13–26

    CAS  PubMed  Google Scholar 

  133. Kandror KV, Yu L, Pilch PF (1994) The major protein of GLUT4-containing vesicles, gp160, has aminopeptidase activity. J Biol Chem 269:30777–80

    CAS  PubMed  Google Scholar 

  134. Karamyan VT, Speth RC (2007) Enzymatic pathways of the brain renin–angiotensin system: unsolved problems and continuing challenges. Regul Pept 143:15–27

    CAS  PubMed  Google Scholar 

  135. Kawas LH, McCoy AT, Yamamoto BJ, Wright JW, Harding JW (2012) Development of angiotensin IV analogs as hepatocyte growth factor/met modifiers. J Pharmacol Exp Ther 340:539–48

    CAS  PubMed  Google Scholar 

  136. Kawas LH, Yamamoto BJ, Wright JW, Harding JW (2011) Mimics of the dimerization domain of hepatocyte growth factor exhibit anti-Met and anticancer activity. J Pharmacol Exp Ther 339:509–18

    CAS  PubMed  Google Scholar 

  137. Keller SR, Scott HM, Mastick CC, Aebersold R, Lienhard GE (1995) Cloning and characterization of a novel insulin-regulated membrane aminopeptidase from Glut4 vesicles. J Biol Chem 270:23612–8

    CAS  PubMed  Google Scholar 

  138. Kerins DM, Hao Q, Baughan DE (1995) Angiotensin induction of PAI-1 expression in endothelial cells is mediated by the hexapeptide angiotensin IV. J Clin Invest 96:2515–20

    CAS  PubMed  Google Scholar 

  139. Khachaturian AS, Zandi PP, Lyketsos CG, Hayden KM, Skoog I, Norton MC, Tschanz JT, Mayer LS, Welsh-Bohmer KA, Breitner JC (2006) Antihypertensive medication use and incident Alzheimer disease: the Cache County study. Arch Neurol 63:686–92

    PubMed  Google Scholar 

  140. Korhonen L, Sjoholm U, Takei N, Kern MA, Schirmacher P, Castren E, Lindholm D (2000) Expression of c-Met in developing rat hippocampus: evidence for HGF as a neurotrophic factor for calbindin D-expressing neurons. Eur J Neurosci 12:3453–61

    CAS  PubMed  Google Scholar 

  141. Kramár EA, Armstrong DL, Ikeda S, Wayner MJ, Harding JW, Wright JW (2001) The effects of angiotensin IV analogs on long-term potentiation within the CA1 region of the hippocampus in vitro. Brain Res 897:114–21

    PubMed  Google Scholar 

  142. Kramár EA, Harding JW, Wright JW (1997) Angiotensin II- and IV-induced changes in cerebral blood flow. Roles of AT1, AT2, and AT4 receptor subtypes. Regul Pept 68:131–8

    PubMed  Google Scholar 

  143. Kurtz TW, Klein U (2009) Next generation multifunctional angiotensin receptor blockers. Hypertens Res 32:826–34

    CAS  PubMed  Google Scholar 

  144. Lee J, Chai SY, Mendelsohn FA, Morris MJ, Allen AM (2001) Potentiation of cholinergic transmission in the rat hippocampus by angiotensin IV and LVV-hemorphin-7. Neuropharmacol 40:618–23

    CAS  Google Scholar 

  145. Lee J, Mustafa T, McDowall SG, Mendelsohn FA, Brennan M, Lew RA, Albiston AL, Chai SY (2003) Structure–activity study of LVV-hemorphin-7: angiotensin AT4 receptor ligand and inhibitor of insulin-regulated aminopeptidase. J Pharmacol Exp Ther 305:205–11

    CAS  PubMed  Google Scholar 

  146. Lew RA, Mustafa T, Ye S, McDowall SG, Chai SY, Albiston AL (2003) Angiotensin AT4 ligands are potent, competitive inhibitors of insulin regulated aminopeptidase (IRAP). J Neurochem 86:344–50

    CAS  PubMed  Google Scholar 

  147. Li YD, Block ER, Patel JM (2002) Activation of multiple signaling modules is critical in angiotensin IV-induced lung endothelial cell proliferation. Am J Physiol Lung Cell Mol Physiol 283:L707–16

    CAS  PubMed  Google Scholar 

  148. Li F, Shetty AK, Sugahara K (2007) Neuritogenic activity of chondroitin/dermatan sulfate hybrid chains of embryonic pig brain and their mimicry from shark liver. Involvement of the pleiotrophin and hepatocyte growth factor signaling pathways. J Biol Chem 282:2956–66

    CAS  PubMed  Google Scholar 

  149. Linazasoro JM, Diaz CH, Mendoza HC (1954) The kidney and thirst regulation. Bull Inst Med Res 7:53–61

    CAS  Google Scholar 

  150. Lind RW (1988) Sites of action of angiotensin in the brain. In: Harding JW, Wright JW, Speth RC, Barnes CD (eds) Angiotensin and blood pressure regulation. Academic, San Diego, pp 135–63

    Google Scholar 

  151. Lingham T, Perlanski E, Grupp LA (1990) Angiotensin converting enzyme inhibitors reduce alcohol consumption: some possible mechanisms and important conditions for its therapeutic use. Alcohol Clin Exp Res 14:92–9

    CAS  PubMed  Google Scholar 

  152. Llorens-Cortes C, Kordon C (2008) Jacques Benoit lecture: the neuroendocrine view of the angiotensin and apelin systems. J Neuroendocrinol 20:279–89

    CAS  PubMed  Google Scholar 

  153. Llorens-Cortes C, Mendelsohn FAO (2002) Organisation and functional role of the brain angiotensin system. J Renin Angiotensin Aldosterone Syst 3:S39–48

    PubMed  Google Scholar 

  154. Lochard N, Thibault G, Silversides DW, Touyz RM, Reudelhuber TL (2004) Chronic production of angiotensin IV in the brain leads to hypertension that is reversible with an angiotensin II AT1 receptor antagonist. Cir Res 94:1451–7

    CAS  Google Scholar 

  155. Lukaszuk A, Demaegdt H, Feytens D, Vanderheyden P, Vauquelin G, Tourwe D (2009) The replacement of His(4) in angiotensin IV by conformationally constrained residues provides highly potent and selective analogues. J Med Chem 52:5612–8

    CAS  PubMed  Google Scholar 

  156. Lukaszuk A, Demaegdt H, Van den Eynde I, Vanderheyden P, Vauquelin G, Tourwe D (2011) Confromational constraints in angiotensin IV to probe the role of Tyr2, Pro5 and Phe6. J Pept Sci 17:545–53

    CAS  PubMed  Google Scholar 

  157. Ma PC, Maulik G, Christensen J, Salgia R (2003) C-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev 22:309–25

    CAS  PubMed  Google Scholar 

  158. Magy L, Vincent F, Faure S, Messerli FH, Wang JG, Achard JM, Fournier A (2005) The renin–angiotensin systems: evolving pharmacological perspectives for cerebroprotection. Curr Pharm Des 11:3275–91

    CAS  PubMed  Google Scholar 

  159. Marc Y, Llorens-Cortes C (2011) The role of the brain renin–angiotensin system in hypertension: implications for new treatment. Prog Neurobiol 95:89–103

    CAS  PubMed  Google Scholar 

  160. Martin P, Massol J, Puech AJ (1990) Captopril as an antidepressant? Effects on the learned helplessness paradigm in rats. Biol Psychiatry 27:968–74

    CAS  PubMed  Google Scholar 

  161. Martins GJ, Plachez C, Powell EM (2007) Loss of embryonic MET signaling alters profiles of hippocampal interneurons. Dev Neurosci 29:143–58

    CAS  PubMed  Google Scholar 

  162. Matsoukas JM, Goghari MH, Scanlon MN, Franklin KJ, Moore GJ (1985) Synthesis and biological activities of analogues of angiotensins II and III containing O-methyltyrosine and D-tryptophan. J Med Chem 28:780–3

    CAS  PubMed  Google Scholar 

  163. Matsumoto H, Nagasaka T, Hattori A, Rogi T, Tsuruoka N, Mizutani S, Tsujimoto M (2001) Expression of placental leucine aminopeptidase/oxytocinase in neuronal cells and its action on neuronal peptides. Eur J Biochem 268:3259–66

    CAS  PubMed  Google Scholar 

  164. Matzke A, Sargsyan V, Holtmann B, Aramuni G, Asan E, Sendtner M, Pace G, Howells N, Zhang W, Ponta H, Orian-Rousseau V (2007) Haplo insufficiency of c-Met in cd44−/− mice identifies a collaboration of CD44 and c-Met in vivo. Mol Cell Biol 27:8797–806

    CAS  PubMed  Google Scholar 

  165. Mauer M, Zinman B, Gardiner R, Drummond KN, Suissa S, Donnelly SM, Strand TD, Kramer MS, Klein R, Sinaiko AR (2002) ACE-I and ARBs in early diabetic nephropathy. J Renin Angiotensin Aldosterone Syst 3:262–9

    CAS  PubMed  Google Scholar 

  166. McKinley MJ, Albiston AL, Allen AM, Mathai ML, May CN, McAllen RM, Oldfield BJ, Mendelsohn FA, Chai SY (2003) The brain renin–angiotensin system: location and physiological roles. Int J Biochem Cell Biol 35:901–18

    CAS  PubMed  Google Scholar 

  167. McKinley MJ, Denton DA, Oldield BJ, DeOlivera LB, Mathai ML (2006) Water intake and the neural correlates of the consciousness of thirst. Semin Nephrol 26:249–57

    PubMed  Google Scholar 

  168. Meighan SE, Meighan PC, Choudhury P, Davis CJ, Olson ML, Zornes PA, Wright JW, Harding JW (2006) Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity. J Neurochem 96:1227–41

    CAS  PubMed  Google Scholar 

  169. Meighan PC, Meighan SE, Davis CJ, Wright JW, Harding JW (2007) Effects of matrix metalloproteinase inhibition on short- and long-term plasticity of Schaffer collateral/CA1 synapses. J Neurochem 102:2085–96

    CAS  PubMed  Google Scholar 

  170. Mentlein R, Roos T (1996) Proteases involved in the metabolism of angiotensin II, bradykinin, calcitonin gene-related peptide (CGRP), and neuropeptide Y by vascular smooth muscle cells. Peptides 17:709–20

    CAS  PubMed  Google Scholar 

  171. Mertens B, Vanderheyden P, Michotte Y, Sarre S (2010) The role of the central renin–angiotensin system in Parkinson’s disease. J Renin Angiotensin Aldosterone Syst 11:49–56

    CAS  PubMed  Google Scholar 

  172. Mittrucker HW, Steeg C, Malissen B, Fleischer B (1995) The cytoplasmic tail of the T cell receptor zeta chain is required for signaling via CD26. Eur J Immunol 25:295–7

    CAS  PubMed  Google Scholar 

  173. Miyazawa T, Matsumoto K, Ohmichi H, Katoh H, Yamashima T, Hakamura T (1998) Protection of hippocampal neurons from ischemia-induced delayed neuronal death by hepatocyte growth factor: a novel neurotrophic factor. J Cereb Blood Flow Metab 18:345–8

    CAS  PubMed  Google Scholar 

  174. Moe KE, Weiss ML, Epstein AN (1984) Sodium appetite during captopril blockade of endogenous angiotensin II formation. Am J Physiol 247:R356–65

    CAS  PubMed  Google Scholar 

  175. Moeller I, Small DH, Reed G, Harding JW, Mendelsohn FA, Chai SY (1996) Angiotensin IV inhibits neurite outgrowth in cultured embryonic chicken sympathetic neurons. Brain Res 725:61–6

    CAS  PubMed  Google Scholar 

  176. Mogi M, Horiuchi M (2009) Effects of angiotensin II receptor blockers on dementia. Hypertens Res 32:738–40

    CAS  PubMed  Google Scholar 

  177. Morishita R, Nakamura S, Hayashi S, Taniyama Y, Moriguchi A, Nagano T, Taiji M, Noguchi H, Takeshita S, Matsumoto K, Nakamura T, Higaki J, Ogihara T (1999) Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy. Hypertens 33:1379–84

    CAS  Google Scholar 

  178. Muller H, Kroger J, Johren O, Szymczak S, Bader M, Dominiak P, Raasch W (2010) Stress sensitivity is increased in transgenic rats with low brain angiotensinogen. J Endocrin 204:85–92

    Google Scholar 

  179. Munoz A, Rey P, Guerra MJ (2006) Reduction of dopaminergic degeneration and oxidative stress by inhibition of angiotensin converting enzyme in a MPTP model of parkinsonism. Neuropharmacol 51:112–20

    CAS  Google Scholar 

  180. Muratami H (1996) Brain angiotensin and circulatory control. Clin Exp Pharmacol Physiol 23:458–64

    Google Scholar 

  181. Mustafa T, Lee JH, Chai SY, Albiston AL, McDowall SG, Mendelsohn FA (2001) Bioactive angiotensin peptides: focus on angiotensin IV. J Renin Angiotensin Aldosterone Syst 2:205–10

    CAS  PubMed  Google Scholar 

  182. Nairn RC, Mason CM, Corcoran AC (1956) The production of serous effusions in nephrectomized animals by the administration of renal extracts and renin. J Pathol Bacteriol 71:155–63

    CAS  PubMed  Google Scholar 

  183. Nakamura T, Muzuno S, Matsumoto K, Sawa Y, Matsuda H, Nakamura T (2000) Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest 106:1511–9

    CAS  PubMed  Google Scholar 

  184. Naveri L, Stromberg C, Saavedra JM (1994) Angiotensin IV reverses the acute cerebral blood flow reduction after experimental subarachnoid hemorrhage in the rat. J Cereb Blood Flow Metab 14:1096–9

    CAS  PubMed  Google Scholar 

  185. Nishimura Y, Ito T, Hoe KL, Saavedra JM (2000) Chronic peripheral administration of the angiotensin II AT(1) receptor antagonist candesartan blocks brain AT(1) receptors. Brain Res 871:29–38

    CAS  PubMed  Google Scholar 

  186. Ohno T, French LC, Hirano S, Ossoff RH, Rousseau B (2008) Effect of hepatocyte growth factor on gene expression of extracellular matrix during wound healing of the injured rat vocal fold. Ann Otol Rhinol Laryngol 117:696–702

    PubMed  Google Scholar 

  187. Olson ML, Olson EA, Qualls JH, Stratton JJ, Harding JW, Wright JW (2004) Norleucine1-angiotensin IV alleviates mecamylamine-induced spatial memory deficits. Peptides 25:233–41

    CAS  PubMed  Google Scholar 

  188. Osborn JW, Fink GD, Kuroki MT (2011) Neural mechanisms of angiotensin II-salt hypertension: implications for therapies targeting neural control of the splanchnic circulation. Curr Hypertens Rep 13:221–8

    PubMed  Google Scholar 

  189. Page IH, Helmer OM (1940) A crystalline pressor substance (angiotonin) resulting from the action between renin and renin-activator. J Exp Med 71:29–42

    CAS  PubMed  Google Scholar 

  190. Paul M, Poyan Mehr A, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev 86:747–803

    CAS  PubMed  Google Scholar 

  191. Pavel J, Benicky J, Murakami Y, Sanchez-Lemus E, Saavedra JM (2008) Peripherally administered angiotensin II AT1 receptor antagonists are anti-stress compounds in vivo. Ann N Y Acad Sci 1148:360–6

    CAS  PubMed  Google Scholar 

  192. Pederson ES, Krishnan R, Harding JW, Wright JW (2001) A role for the angiotensin AT4 receptor subtype in overcoming scopolamine-induced spatial memory deficits. Regul Pept 102:147–56

    CAS  PubMed  Google Scholar 

  193. Pelegrini-Da-Silva A, Rosa E, Guethe LJ, Juliano MA, Prado WA, Martins AR (2009) Angiotensin III modulates the nociceptive control mediated by the periaquaductal gray matter. Neuroscience 164:1263–73

    CAS  PubMed  Google Scholar 

  194. Phillips MI (1987) Functions of angiotensin in the central nervous system. Annu Rev Physiol 49:413–35

    CAS  PubMed  Google Scholar 

  195. Phillips MI, Felix D (1976) Specific angiotensin II receptive neurons in the cat subfornical organ. Brain Res 109:531–40

    CAS  PubMed  Google Scholar 

  196. Phillips MI, Menezes de Oliveira E (2008) Brain renin angiotensin in disease. J Mol Med 86:715–22

    CAS  PubMed  Google Scholar 

  197. Phillips MI, Sumners C (1998) Angiotensin II in central nervous system physiology. Regul Pept 78:1–11

    CAS  PubMed  Google Scholar 

  198. Powell EM, Muhlfriedel S, Bolz J, Levitt P (2003) Differential regulation of thalamic and cortical axonal growth by hepatocyte growth factor/scatter factor. Dev Neurosci 25:197–206

    CAS  PubMed  Google Scholar 

  199. Prozherina YA (2008) Involvement of angiotensin II and angiotensin IV in producing the individual characteristics of defensive and feeding behavior in rats. Neurosci Behav Physiol 38:563–72

    CAS  PubMed  Google Scholar 

  200. Reardon KA, Mendelsohn FA, Chai SY, Horne MK (2000) The angiotensin converting enzyme (ACE) inhibitor, perindopril, modifies the clinical features of Parkinson’s disease. Aust N Z J Med 30:48–53

    CAS  PubMed  Google Scholar 

  201. Reudelhuber TL (2005) The renin–angiotensin system: peptides and enzymes beyond angiotensin II. Curr Opin Nephrol Hypertens 14:155–9

    CAS  PubMed  Google Scholar 

  202. Rich DH, Moon BJ, Harbeson S (1984) Inhibition of aminopeptidases by amastatin and bestatin derivatives, effect of inhibitor structure on slow-binding processes. J Med Chem 27:417–22

    CAS  PubMed  Google Scholar 

  203. Richter CP (1936) Increased salt appetite in adrenalectomized rats. Am J Physiol 115:155–61

    CAS  Google Scholar 

  204. Rodgers KE, Ellefson DD, Spinoza T, Maulhardt H, Roda N, Maldonado S, di Zerega GS (2006) Fragments of Nle3-angiotensin(1-7) accelerate healing in dermal models. J Peptide Res 66(suppl 1):41–7

    Google Scholar 

  205. Rogi T, Tsujimoto M, Nakazato H, Mizutani S, Tomoda Y (1996) Human placental leucine aminopeptidase/oxytocinase. A new member of type II membrane-spanning zinc metallopeptidase family. J Biol Chem 271:56–61

    CAS  PubMed  Google Scholar 

  206. Rompe F, Unger T, Steckelings UM (2010) The angiotensin AT2 receptor in inflammation. Drug News Perspect 23:104–11

    CAS  PubMed  Google Scholar 

  207. Ross SA, Scott HM, Morris NJ, Leung WY, Mao F, Lienhard GE, Keller SR (1996) Characterization of the insulin-regulated membrane aminopeptidase in 3 T3-L1 adipocytes. J Biol Chem 271:3328–32

    CAS  PubMed  Google Scholar 

  208. Saavedra JM (1992) Brain and pituitary angiotensin. Endocr Rev 13:329–80

    CAS  PubMed  Google Scholar 

  209. Saavedra JM (2005) Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities. Cell Mol Neurobiol 25:485–512

    CAS  PubMed  Google Scholar 

  210. Sakai RR, Epstein AN (1990) Dependence of adrenalectomy-induced sodium appetite on the action of angiotensin II in the brain of the rat. Behav Neurosci 104:167–76

    CAS  PubMed  Google Scholar 

  211. Santos AN, Langner J, Herrmann M, Riemann D (2000) Aminopeptidase N/CD13 is directly linked to signal transduction pathways in monocytes. Cell Immunol 201:22–32

    CAS  PubMed  Google Scholar 

  212. Schmitz Y, Luccarelli J, Kim M, Wang M, Sulzer D (2009) Glutamate controls growth rate and branching of dopaminergic axons. J Neurosci 29:11973–81

    CAS  PubMed  Google Scholar 

  213. Shah K, Qureshi SU, Johnson M, Parikh N, Schulz PE, Kunik ME (2009) Does use of antihypertensive drugs affect the incidence or progression of dementia? A systematic review. Am J Geriatr Pharmacother 7:250–61

    CAS  PubMed  Google Scholar 

  214. Shang J, Deguchi K, Ohta Y, Liu N, Zhang X, Tian F, Yamashita T, Ikeda Y, Matsuura T, Funakoshi H, Nakamura T, Abe K (2011) Strong neurogenesis, angiogenesis, synaptogenesis, and antifibrosis of hepatocyte growth factor in rats brain after transient middle cerebral artery occlusion. J Neurosci 89:86–95

    CAS  Google Scholar 

  215. Sharma SK (2010) Hepatocyte growth factor in synaptic plasticity and Alzheimer’s disease. Sci World J 10:457–61

    CAS  Google Scholar 

  216. Shimamura M, Sato N, Waguri S, Uchiyama Y, Hayashi T, Iida H, Nakamura T, Ogihara T, Kaneda Y, Morishita R (2006) Gene transfer of hepatocyte growth factor gene improves learning and memory in the chronic stage of cerebral infarction. Hypertens 47:742–51

    CAS  Google Scholar 

  217. Simpson JB, Routtenberg A (1973) Subfornical organ: site of drinking elicitation by angiotensin II. Sci 181:1172–5

    CAS  Google Scholar 

  218. Siragy HM (2010) Comparing angiotensin II receptor blockers on benefits beyond blood pressure. Adv Ther 27:257–84

    CAS  PubMed  Google Scholar 

  219. Skeggs LT, Kahn JR, Lentz KE, Shumway NP (1957) The preparation, purification and amino acid sequence of polypeptide renin substrate. J Exp Med 106:439–53

    CAS  PubMed  Google Scholar 

  220. Song L, Wilk S, Healy DP (1997) Aminopeptidase A antiserum inhibits intracerebroventricular angiotensin II-induced dipsogenic and pressor responses. Brain Res 744:1–6

    CAS  PubMed  Google Scholar 

  221. Speth RC, Brown TE, Barnes RD, Wright JW (2003) Brain angioensinergic activity: the state of our current knowledge. Proc West Pharmacol Soc 46:11–5

    CAS  PubMed  Google Scholar 

  222. Speth RC, Karamyan VT (2008) The significance of brain aminopeptidases in the regulation of the actions of angiotensin peptides in the brain. Heart Fail Rev 13:299–309

    CAS  PubMed  Google Scholar 

  223. Spinosa G, Perlanski E, Leenen FH, Stewart RB, Grupp LA (1988) Angiotensin converting enzyme inhibitors: animal experiments suggest a new pharmacological treatment for alcohol abuse in humans. Alcohol Clin Exp Res 12:65–70

    CAS  PubMed  Google Scholar 

  224. Steckelings UM, Rompe F, Kaschina E, Unger T (2009) The evolving story of the RAAS in hypertension, diabetes and CV disease—moving from macrovascular to microvascular targets. Fundam Clin Pharmacol 23:693–703

    CAS  PubMed  Google Scholar 

  225. Stragier B, Clinckers R, Meurs A, De Bundel D, Sarre S, Ebinger G, Michotte Y, Smolders I (2006) Involvement of the somatostatin-2 receptor in the anti-convulsant effect of angiotensin IV against pilocarpine-induced limbic seizures in rats. J Neurochem 98:1100–13

    CAS  PubMed  Google Scholar 

  226. Stragier B, De Bundel D, Sarre S, Smolders I, Vauguelin G, Dupont A, Michotte Y, Vanderheyden P (2008) Involvement of insulin-regulated aminopeptidase in the effects of the renin-angiotensin fragment angiotensin IV: a review. Heart Fail Rev 13:321–37

    CAS  PubMed  Google Scholar 

  227. Stragier B, Demaegdt H, De Bundel D, Smolders I, Sarre S, Vauquelin G, Ebinger G, Michotte Y, Vanderheyden P (2007) Involvement of insulin-regulated aminopeptidase and/or aminopeptidase N in the angiotensin IV-induced effect on dopamine release in the striatum of the rat. Brain Res 1131:97–105

    CAS  PubMed  Google Scholar 

  228. Stragier B, Sarre S, Vanderheyden P, Vauquelin G, Fournie-Zaluski MC, Ebinger G, Michotte Y (2004) Metabolism of angiotensin II is required for its in vivo effect on dopamine release in the striatum of the rat. J Neurochem 90:1251–7

    CAS  PubMed  Google Scholar 

  229. Stricker EM, Sved AF (2000) Thirst. Nutrition 16:821–6

    CAS  PubMed  Google Scholar 

  230. Strittmatter SM, Thiele EA, Kapiloff MS, Snyder SH (1985) A rat brain isozyme of angiotensin-converting enzyme. Unique specificity for amidated peptide substrates. J Biol Chem 260:9825–32

    CAS  PubMed  Google Scholar 

  231. Stubley-Weatherly L, Harding JW, Wright JW (1996) Effects of discrete kainic acid-induced hippocampal lesions on spatial and contextual learning and memory in rats. Brain Res 716:29–38

    CAS  PubMed  Google Scholar 

  232. Summy-Long JY, Keil LC, Sells G, Kirby A, Ohee O, Severs WB (1983) Cerebroventricular sites for enkephalin inhibition of the central actions of angiotensin. Am J Physiol 244:R522–9

    CAS  PubMed  Google Scholar 

  233. Swanson GN, Hanesworth JM, Sardinia MF, Coleman JK, Wright JW, Hall KL, Miller-Wing AV, Stobb JW, Cook VI, Harding EC, Harding JW (1992) Discovery of a distinct binding site for angiotensin II (3-8), a putative angiotensin IV receptor. Regul Pept 40:409–19

    CAS  PubMed  Google Scholar 

  234. Tada R, Zhan H, Tanaka Y, Hongo K, Matsumoto K, Nakamura T (2006) Intraventricular administration of hepatocyte growth factor treats mouse communicating hydrocephalus induced by transforming growth factor beta1. Neurobiol Dis 21:576–85

    CAS  PubMed  Google Scholar 

  235. Takeo S, Takagi N, Takagi K (2007) Ischemic brain injury and hepatocyte growth factor. Yakugaku Zasshi 127:1813–23

    CAS  PubMed  Google Scholar 

  236. Takeuchi D, Sato N, Shimamura M, Kurinami H, Takeda S, Shinohara M, Suzuki S, Kojima M, Ogihara T, Morishita R (2008) Alleviation of Abeta-induced cognitive impairment by ultrasound-mediated gene transfer of HGF in a mouse model. Gene Ther 15:561–71

    CAS  PubMed  Google Scholar 

  237. Tchekalarova JD, Georgiev VP (1999) Adenosine-angiotensin II interactions in pentylenetetrazol seizure threshold in mice. J Physiol (Paris) 93:191–7

    CAS  Google Scholar 

  238. Tchekalarova JD, Georgiev VP (2005) Angiotensin peptides modulatory system: how is it implicated in the control of seizure susceptibility? Life Sci 76:955–70

    CAS  PubMed  Google Scholar 

  239. Tchekalarova JD, Georgiev VP (2006) Ang II and Ang III modulate PTZ seizure threshold in non-stressed and stressed mice: possible involvement of noradrenergic mechanism. Neuropeptides 40:339–48

    CAS  PubMed  Google Scholar 

  240. Tchekalarova JD, Kambourova T, Georgiev VP (2001) Angiotensin III and IV influence on pentylenetetrazol seizure susceptibility (threshold and kindling). Interaction with adenosine A1 receptors. Brain Res Bull 56:87–91

    CAS  PubMed  Google Scholar 

  241. Tchekalarova JD, Pehlivanova D, Kambourova T, Matsoukas J, Georgiev V (2003) The effects of sarmesin, an angiotensin II analogue on seizure susceptibility, nociception and memory retention. Regul Pept 111:191–7

    CAS  PubMed  Google Scholar 

  242. Thewke EP, Seeds NW (1999) The expression of mRNAs for hepatocyte growth factor/scatter factor, its receptor c-met, and one of its activators tissue-type plasminogen activator show a systematic relationship in the developing and adult cerebral cortex and hippocampus. Brain Res 821:356–67

    CAS  PubMed  Google Scholar 

  243. Thomas WG, Mendelsohn FA (2003) Molecules in focus. Angiotensin receptors: form and function and distribution. Int J Biochem Cell Biology 35:774–9

    CAS  Google Scholar 

  244. Thunhorst RL, Beltz TG, Johnson AK (2010) Drinking and arterial blood pressure responses to ANG II in young and old rats. Am J Physiol Regul Integr Comp Physiol 299:R1135–41

    CAS  PubMed  Google Scholar 

  245. Tonnaer JA, Wiegant VM, DeJong W, DeWied D (1982) Central effects of angiotensin on drinking and blood pressure: structure-activity relationships. Brain Res 236:417–28

    CAS  PubMed  Google Scholar 

  246. Tsuboi Y, Kakimoto K, Nakajima M, Akatsu H, Yamamoto T, Ogawa K, Ohnishi T, Daikuhara Y, Yamada T (2003) Increased hepatocyte growth factor level in cerebrospinal fluid in Alzheimer’s disease. Acta Neurol Scand 107:81–6

    CAS  PubMed  Google Scholar 

  247. Tsukuda K, Mogi M, Iwanami J, Min LJ, Sakata A, Jing F, Iwai M, Horiuchi M (2009) Cognitive deficit in amyloid-beta-injected mice was improved by pretreatment with a low dose of telmisartan partly because of peroxisome proliferator-activated receptor-gamma activation. Hypertens 54:782–7

    CAS  Google Scholar 

  248. Tsuzuki N, Miyazawa T, Matsumoto K, Hakamura T, Shima K (2001) Hepatocyte growth factor reduces the infarct volume after transient focal cerebral ischemia in rats. Neurol Res 23:417–24

    CAS  PubMed  Google Scholar 

  249. Tyndall SJ, Patel SJ, Walikonis RS (2007) Hepatocyte growth factor-induced enhancement of dendritic branching is blocked by inhibitors of N-methyl-D-aspartate receptors and calcium/calmodulin-dependent kinases. J Neurosci Res 85:2343–51

    CAS  PubMed  Google Scholar 

  250. Tyndall SJ, Walikonis RS (2006) The receptor tyrosine kinase Met and its ligand hepatocyte growth factor are clustered at excitatory synapses and can enhance clustering of synaptic proteins. Cell Cycle 5:1560–8

    CAS  PubMed  Google Scholar 

  251. Tyndall SJ, Walikonis RS (2007) Signaling by hepatocyte growth factor in neurons is induced by pharmacological stimulation of synaptic activity. Synapse 61:199–204

    CAS  PubMed  Google Scholar 

  252. Unger T (2004) The role of the renin–angiotensin–aldosterone system in heart failure. J Renin Angiotensin Aldosterone Syst 5:S7–10

    CAS  PubMed  Google Scholar 

  253. Unger T, Badoer E, Ganten D, Lang RE, Rettig R (1988) Brain angiotensin: pathways and pharmacology. Circ 77:140–54

    Google Scholar 

  254. Unger T, Becker H, Petty M, Demmert G, Schneider B, Ganten D, Lang RE (1985) Differential effects of central angiotensin II and substance P on sympathetic nerve activity in conscious rats. Implications for cardiovascular adaptation to behavioral responses. Circ Res 56:563–75

    CAS  PubMed  Google Scholar 

  255. Unger T, Horst PJ, Bauer M, Demmert G, Rettig R, Rohmeiss P (1989) Natriuretic action of central angiotensin II in conscious rats. Brain Res 486:33–8

    CAS  PubMed  Google Scholar 

  256. Van Belle E, Witzenbichler B, Chen D, Silver M, Chang L, Schwall R, Isner JM (1998) Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogenesis. Circ 97:381–90

    Google Scholar 

  257. Vanderheyden PM (2009) From angiotensin IV binding site to AT4 receptor. Mol Cell Endocrinol 302:159–66

    CAS  PubMed  Google Scholar 

  258. Vanderheyden PM, DeBacker JP, Demaegdt H, Matziari M, Vauquelin G, Yiotakis A (2008) Metabolism of AT4 receptor binding peptides in the presence of cell membranes of Chinese hamster ovary cells. FEBS J 275:322

    Google Scholar 

  259. Vaughan DE (2002) Angiotensin and vascular fibrinolytic balance. Am J Hypertens 15(1 Pt2):3S–8

    CAS  PubMed  Google Scholar 

  260. Vauquelin G, Michotte Y, Smolders I, Sarre S, Ebinger G, Dupont A, Vanderheyden P (2002) Cellular targets for angiotensin II fragments: pharmacological and molecular evidence. J Renin Angiotensin Aldosterone Syst 3:195–204

    CAS  PubMed  Google Scholar 

  261. von Bohlen und Halbach O (2003) Angiotensin IV in the central nervous system. Cell Tissue Res 311:1–9

    Google Scholar 

  262. von Bohlen und Halbach O, Albrecht D (1998) Opposite effects of angiotensin II and IV in the lateral nucleus of the amygdala. Brain Res Bull 47:311–5

    Google Scholar 

  263. von Bohlen und Halbach O, Albrecht D (2006) The CNS renin–angiotensin system. Cell Tissue Res 326:599–616

    Google Scholar 

  264. Wallis MG, Lankford MF, Keller SR (2007) Vasopressin is a physiological substrate for the insulin-regulated aminopeptidase IRAP. Am J Physiol Endocrinol Metab 293:E1092–102

    CAS  PubMed  Google Scholar 

  265. Wang J, Ho L, Chen L, Zhoa Z, Zhao W, Qian X, Humala N, Seror I, Bartholomew S, Rosendorff C, Pasinetti GM (2007) Valsartan lowers brain beta-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J Clin Invest 117:3393–402

    CAS  PubMed  Google Scholar 

  266. Washida K, Ihara M, Nishio K, Fujita Y, Maki T, Yamada M, Takahashi J, Wu X, Kihara T, Ito H, Tomimoto H, Takahashi R (2010) Nonhypotensive dose of telmisartan attenuates cognitive impairment partially due to peroxisome proliferator-activated receptor-gamma activation in mice with chronic cerebral hypoperfusion. Stroke 41:1798–1806

    CAS  PubMed  Google Scholar 

  267. Wayner MJ, Armstrong DL, Phelix CF, Wright JW, Harding JW (2001) Angiotensin IV enhances LTP in rat dentate gyrus in vivo. Peptides 22:1403–14

    CAS  PubMed  Google Scholar 

  268. Weiss JI, Moe KE, Epstein AN (1986) Interference with central action of angiotensin II suppresses sodium appetite. Am J Physiol 250:R250–9

    CAS  PubMed  Google Scholar 

  269. Wilk S, Healy DP (1993) Glutamyl aminopeptidase (aminopeptidase A), the BP-1/6 C3 antigen. Adv Neuroimmunol 3:195–207

    CAS  Google Scholar 

  270. Wilson WL, Roques BP, Llorens-Cortes C, Speth RC, Harding JW, Wright JW (2005) Roles of brain angiotensins II and III in thirst and sodium appetite. Brain Res 1060:108–17

    CAS  PubMed  Google Scholar 

  271. Wong PC, Hart SD, Zaspel AM, Chiu AT, Ardecky RJ, Smith RD, Timmermans PB (1990) Functional studies of nonpeptide angiotensin II receptor subtype-specific ligands: DuP 753 (AII-1) and PD123177 (AII-2). J Pharmacol Exp Ther 255:584–92

    CAS  PubMed  Google Scholar 

  272. Woo KT, Wong KS, Chan CM (2009) Clinical trials of the past decade in the management of chronic kidney disease. Rev Recent Clin Trials 4:159–62

    CAS  PubMed  Google Scholar 

  273. Wright JW, Bechtholt AJ, Chambers SL, Harding JW (1996) Angiotensin III and IV activation of the brain AT1 receptor subtype in cardiovascular function. Peptides 17:1365–71

    CAS  PubMed  Google Scholar 

  274. Wright JW, Clemens JA, Panetta JA, Smalstig EB, Weatherly LA, Kramár EA, Pederson ES, Mungall BH, Harding JW (1996) Effects of LY231617 and angiotensin IV on ischemia-induced deficits in circular water maze and passive avoidance performance in rats. Brain Res 717:1–11

    CAS  PubMed  Google Scholar 

  275. Wright JW, Harding JW (1992) Regulatory role of brain angiotensins in the control of physiological and behavioral responses. Brain Res Rev 17:227–62

    CAS  PubMed  Google Scholar 

  276. Wright JW, Harding JW (1997) Important roles for angiotensin III and IV in the brain renin-angiotensin system. Brain Res Rev 25:96–124

    CAS  PubMed  Google Scholar 

  277. Wright JW, Harding JW (2004) The brain angiotensin system and extracellular matrix molecules in neural plasticity, learning, and memory. Prog Neurobiol 72:263–93

    CAS  PubMed  Google Scholar 

  278. Wright JW, Harding JW (2009) The brain angiotensin IV/AT4 receptor system as a new target for the treatment of Alzheimer’s disease. Drug Dev Res 70:472–80

    CAS  Google Scholar 

  279. Wright JW, Harding JW (2010) The brain RAS and Alzheimer’s disease. Exp Neurol 223:326–33

    CAS  PubMed  Google Scholar 

  280. Wright JW, Harding JW (2011) Brain renin–angiotensin: a new look at an old system. Prog Neurobiol 95:49–67

    CAS  PubMed  Google Scholar 

  281. Wright JW, Jensen LL, Roberts KA, Sardinia MF, Harding JW (1989) Structure–function analyses of brain angiotensin control of pressor action in rats. Am J Physiol 257:R1551–7

    CAS  PubMed  Google Scholar 

  282. Wright JW, Kramár EA, Meighan SE, Harding JW (2002) Extracellular matrix molecules, long-term potentiation, memory consolidation and the brain angiotensin system. Peptides 23:221–46

    CAS  PubMed  Google Scholar 

  283. Wright JW, Miller-Wing AV, Shaffer MJ, Higginson C, Wright DE, Hanesworth JM, Harding JW (1993) Angiotensin II(3-8) (ANG IV) hippocampal binding: potential role in the facilitation of memory. Brain Res Bull 32:497–502

    CAS  PubMed  Google Scholar 

  284. Wright JW, Morseth SL, Abhold RH, Harding JW (1985) Pressor action and dipsogenicity induced by angiotensin II and III in rats. Am J Physiol 249:R514–21

    CAS  PubMed  Google Scholar 

  285. Wright JW, Stubley L, Pederson ES, Kramár EA, Hanesworth JM, Harding JW (1999) Contributions of the brain angiotensin IV-AT4 receptor subtype system to spatial learning. J Neurosci 19:3952–61

    CAS  PubMed  Google Scholar 

  286. Wright JW, Tamura-Myers E, Wilson WL, Roques BP, Llorens-Cortes C, Speth RC, Harding JW (2002) Conversion of brain angiotensin II to angiotensin III is critical for pressor response in rats. Am J Physiol Regul Integr Comp Physiol 284:R725–33

    PubMed  Google Scholar 

  287. Wright JW, Yamamoto BJ, Harding JW (2008) Angiotensin receptor subtype mediated physiologies and behaviors: new discoveries and clinical targets. Prog Neurobiol 84:157–81

    CAS  PubMed  Google Scholar 

  288. Xu KP, Yu FS (2007) Cross talk between c-Met and epidermal growth factor receptor during retinal pigment epithelial wound healing. Invest Ophthalmol Vis Sci 48:2242–8

    PubMed  Google Scholar 

  289. Yamamoto BJ, Elias PD, Masino JA, Hudson BD, McCoy AT, Anderson ZJ, Varnum MD, Sardinia MF, Wright JW, Harding JW (2010) The angiotensin IV analog Nle-Tyr-Leu-psi-(CH2-NH2)3-4-His-Pro-Phe (norleual) can act as a hepatocyte growth factor/c-Met inhibitor. J Pharmacol Exp Ther 333:161–73

    CAS  PubMed  Google Scholar 

  290. Yang R, Smolders I, De Bundel D, Fouyn R, Halberg M, Demaegdt H, Vanderheyden P, Dupont AG (2008) Brain and peripheral angiotensin II type 1 receptors mediate renal vasoconstrictor and blood pressure responses to angiotensin IV in the rat. J Hypertens 26:998–1007

    CAS  PubMed  Google Scholar 

  291. Yang R, Walther T, Gembardt F, Smolders I, Vanderheyden P, Albiston AL, Chai SY, Dupont AG (2010) Renal vasoconstrictor and pressor responses to angiotensin IV in mice are AT1a-receptor mediated. J Hypertens 28:487–94

    CAS  PubMed  Google Scholar 

  292. Zhao W, Wang J, Ho L, Ono K, Teplow DB, Paninetti GM (2009) Identification of antihypertensive drugs which inhibit amyloid-β protein oligomerization. J Alzheimers Dis 16:49–57

    CAS  PubMed  Google Scholar 

  293. Zini S, Fournie-Zaluxki MC, Chauvel E, Roques BP, Corvol P, Llorens-Cortes C (1996) Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release. Proc Natl Acad Sci USA 93:11968–73

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research from our laboratory presented in this review was supported by the Edward E. and Lucille I. Lainge Endowment for Alzheimer’s Research, the Michael J. Fox Foundation, and funds provided for Medical and Biological Research by the State of Washington Initiative Measure No. 171.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Wright.

Additional information

This article is published as part of the special issue on Renin–Angiotensin System.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, J.W., Harding, J.W. The brain renin–angiotensin system: a diversity of functions and implications for CNS diseases. Pflugers Arch - Eur J Physiol 465, 133–151 (2013). https://doi.org/10.1007/s00424-012-1102-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1102-2

Keywords

Navigation