Skip to main content

Advertisement

Log in

Cardiac MRI in pulmonary artery hypertension: correlations between morphological and functional parameters and invasive measurements

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To compare cardiac MRI with right heart catheterisation in patients with pulmonary hypertension (PH) and to evaluate its ability to assess PH severity.

Materials and methods

Forty patients were included. MRI included cine and phase-contrast sequences, study of ventricular function, cardiac cavity areas and ratios, position of the interventricular septum (IVS) in systole and diastole, and flow measurements. We defined four groups according to the severity of PH and three groups according to IVS position: A, normal position; B, abnormal in diastole; C, abnormal in diastole and systole.

Results

IVS position was correlated with pulmonary artery pressures and PVR (pulmonary vascular resistance). Median pulmonary artery pressures and resistance were significantly higher in patients with an abnormal septal position compared with those with a normal position. Correlations were good between the right ventricular ejection fraction and PVR, right ventricular end-systolic volume and PAP, percentage of right ventricular area change and PVR, and diastolic and systolic ventricular area ratio and PVR. These parameters were significantly associated with PH severity.

Conclusion

Cardiac MRI can help to assess the severity of PH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AT:

acceleration time

CO:

cardiac output

CI:

cardiac index

dP gradient:

diastolic pressure gradient between aorta and pulmonary artery (aorta pressure obtained from peripheral superior arterial arm pressure)

dPAP:

diastolic pulmonary artery pressure

dRVP:

diastolic right ventricular pressure

dLVEI:

diastolic left ventricular eccentricity index

D area ratio:

area ratio between right and left ventricle

ET:

ejection time

HIV:

human immunodeficiency virus

IVS:

interventricular septum

IVC:

inferior vena cava

LV:

left ventricle

LVEF:

left ventricular ejection fraction

LVEV:

left ventricular ejection volume

LVESV and LVEDV:

left ventricular end-systolic and end-diastolic volumes

LVESA and LVEDA:

left ventricular end-systolic and end-diastolic areas

LA:

left atrium

MRI:

magnetic resonance imaging

mPAP:

mean pulmonary artery pressure

Mit E/A ratio:

E/A ratio across the mitral valve

PAEV:

pulmonary artery ejection volume

PAO:

pulmonary artery output

PVR:

pulmonary vascular resistance

PH:

pulmonary hypertension

RHC:

right heart catheterisation

RA:

right atrium

RV:

right ventricle

RVEF:

right ventricular ejection fraction

RVEV:

right ventricular ejection volume

RVEDV:

right ventricular end-diastolic volume

RVESV:

right ventricular end-systolic volume

RVO:

right ventricular output

RVESA and RVEDA:

right ventricular end-systolic and end-diastolic areas

%RVAC:

right ventricular area change between diastole and systole in per cent

RAP:

right atrial pressure

RAA:

right atrium surface

RVWT:

right ventricular wall thickness

sPAP:

systolic pulmonary artery pressure

sRVP:

systolic right ventricular pressure

sP gradient:

systolic pressure gradient between aorta and pulmonary artery (aorta pressure obtained from peripheral superior arterial arm pressure)

sLVEI:

systolic left ventricular eccentricity index

S area ratio:

area ratio between right and left ventricles in systole

Tri E/A ratio:

E/A ratio across the tricuspid valve

Time (ms) between E:

time delay between E waves

Time (ms) between A:

time delay between A waves

WU:

Wood’s unit

References

  1. Ley S, Mereles D, Puderbach M et al (2007) Value of MR phase-contrast flow measurements for functional assessment of pulmonary arterial hypertension. Eur Radiol 17:1892–1897

    Article  PubMed  Google Scholar 

  2. Dellegrottaglie S, Sanz J, Poon M et al (2007) Pulmonary hypertension: accuracy of detection with left ventricular septal-to–free wall curvature ratio measured at cardiac MR. Radiology 243:63–69

    Article  PubMed  Google Scholar 

  3. Sanz J, Kuschnir P, Rius T et al (2007) Pulmonary arterial hypertension: noninvasive detection with phase-contrast MR imaging. Radiology 243:70–79

    Article  PubMed  Google Scholar 

  4. Sanz J, Dellegrottaglie S, Kariisa M et al (2007) Prevalence and correlates of septal delayed contrast enhancement in patients with pulmonary hypertension. Am J Cardiol 100:731–735

    Article  PubMed  Google Scholar 

  5. Wang J, Prakasa K, Bomma C et al (2007) Comparison of novel echocardiographic parameters of right ventricular function with ejection fraction by cardiac magnetic resonance. J Am Soc Echocardiogr 20:1058–1064

    Article  PubMed  Google Scholar 

  6. Roeleveld RJ, Vonk-Noordegraaf A, Marcus JT et al (2004) Effects of epoprostenol on right ventricular hypertrophy and dilatation in pulmonary hypertension. Chest 125:572–579

    Article  CAS  PubMed  Google Scholar 

  7. Simonneau G, Galie N, Rubin LJ et al (2004) Clinical classification of pulmonary hypertension. J Am Coll Cardiol 43:5S–12S

    Article  PubMed  Google Scholar 

  8. Ulett KB, Marwick TH (2007) Incorporation of pulmonary vascular resistance measurement into standard echocardiography: implications for assessment of pulmonary hypertension. Echocardiography 24:1020–1022

    Article  PubMed  Google Scholar 

  9. Huez S, Vachiéry JL, Unger P, Brimioulle S, Naeije R (2007) Tissue Doppler imaging evaluation of cardiac adaptation to severe pulmonary hypertension. Am J Cardiol 100:1473–1478

    Article  PubMed  Google Scholar 

  10. Mousseaux E, Tasu JP, Jolivet O et al (1999) Pulmonary arterial resistance: noninvasive measurement with indexes of pulmonary flow estimated at velocity encoded MR imaging—preliminary experience. Radiology 212:896–902

    CAS  PubMed  Google Scholar 

  11. Laffon E, Laurent F, Bernard V et al (2001) Noninvasive assessment of pulmonary arterial hypertension by MR phase-mapping method. J Appl Physiol 90:2197–2202

    CAS  PubMed  Google Scholar 

  12. Roeleveld RJ, Marcus JT, Boonstra A et al (2005) A comparison of noninvasive MRI-based methods of estimating pulmonary artery pressure in pulmonary hypertension. J Magn Reson Imaging 22:67–72

    Article  PubMed  Google Scholar 

  13. Iino M, Dymarkowski S, Chaothawee L et al (2008) Time course of reversed cardiac remodeling after pulmonary endarterectomy in patients with chronic pulmonary thromboembolism. Eur Radiol 18:792–799

    Article  PubMed  Google Scholar 

  14. Reesink HJ, Marcus JT, Tulevski II et al (2007) Reverse right ventricular remodeling after pulmonary endarterectomy in patients with chronic thromboembolic pulmonary hypertension: utility of magnetic resonance. J Thorac Cardiovasc Surg 133:58–64

    Article  PubMed  Google Scholar 

  15. D’Armini AM, Zanotti G, Ghio S et al (2007) Reverse right ventricular remodeling after pulmonary endarterectomy. J Thorac Cardiovasc Surg 133:162–168

    Article  PubMed  Google Scholar 

  16. Gan TJ, Holverda S, Marcus JT et al (2007) Right ventricular diastolic dysfunction and the acute effects of sildenafil in pulmonary hypertension patients. Chest 132:11–17

    Article  CAS  PubMed  Google Scholar 

  17. Van Wolferen SA, Marcus JT, Boonstra A et al (2007) Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 28:1250–1257

    Article  PubMed  Google Scholar 

  18. Remme WJ, Swedberg K, Task force for the Diagnosis and Treatment of Chronic Heart Failure (2001) European Society of Cardiology. Guidelines for the diagnosis and treatment of chronic heart failure. Eur Heart J 22:2217–2218

    Article  Google Scholar 

  19. Blyth KG, Groenning BA, Martin JN et al (2005) Contrast enhanced-cardiovascular magnetic resonance imaging in patients with pulmonary hypertension. Eur Heart J 26:1993–1999

    Article  PubMed  Google Scholar 

  20. Bohl S, Wassmuth R, Abdel-Aty H (2008) Delayed enhancement cardiac magnetic resonance imaging reveals typical patterns of myocardial injury in patients with various forms of non-ischemic heart disease. Int J Cardiovasc Imaging 24:597–607

    Article  PubMed  Google Scholar 

  21. Roeleveld RJ, Marcus JT, Faes TJ et al (2005) Interventricular septal configuration at MR imaging and pulmonary arterial pressure in pulmonary hypertension. Radiology 234:710–717

    Article  PubMed  Google Scholar 

  22. Frank H, Globits S, Glogar D et al (1993) Detection and quantification of pulmonary artery hypertension with MR imaging: results in 23 patients. AJR Am J Roentgenol 161:27–31

    CAS  PubMed  Google Scholar 

  23. Schena M, Clini E, Errera D et al (1996) Echo-Doppler evaluation of left ventricular impairment in chronic cor pulmonale. Chest 109:1446–1451

    Article  CAS  PubMed  Google Scholar 

  24. Mahmud E, Raisinghani A, Hassankhani A et al (2002) Correlation of left ventricular diastolic filling characteristics with right ventricular overload and pulmonary artery pressure in chronic thromboembolic pulmonary hypertension. J Am Coll Cardiol 40:318–324

    Article  PubMed  Google Scholar 

  25. Gan TJ, Lankhaar JW, Marcus JT et al (2006) Impaired left ventricular filling due to right-to-left ventricular interaction in patients with pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 290:H1528–H1533

    CAS  PubMed  Google Scholar 

  26. Stojnic BB, Brecker SJ, Xiao HB et al (1992) Left ventricular filling characteristics in pulmonary hypertension: a new mode of ventricular interaction. Br Heart J 68:16–20

    Article  CAS  PubMed  Google Scholar 

  27. Tardivon AA, Mousseaux E, Brenot F et al (1994) Quantification of hemodynamics in primary pulmonary hypertension with magnetic resonance imaging. Am J Respir Crit Care Med 150:1075–1080

    CAS  PubMed  Google Scholar 

  28. Kreitner KF, Ley S, Kauczor HU et al (2004) Chronic thromboembolic pulmonary hypertension: pre- and postoperative assessment with breath-hold MR imaging techniques. Radiology 232:535–543

    Article  PubMed  Google Scholar 

  29. Laffon E, Vallet C, Bernard V et al (2004) A computed method for noninvasive MRI assessment of pulmonary arterial hypertension. J Appl Physiol 96:463–468

    Article  PubMed  Google Scholar 

  30. Gan TJ, Lankhaar JW, Westerhof N et al (2007) Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest 132:1906–1912

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

JPA, BD, VC, and LT collected results, undertook data management and analysed the results. BD and LT carried out right heart catheterisation and patient follow-up. CA carried out statistical analysis. NB-S, AD, PO and HR gave advice in the preparation of the manuscript. JPA, VC and N Crowte participated in the preparation of the manuscript. VC coordinated the study. A Hermant and S Breil (Philips Healthcare) assisted us in the improvement of MRI sequences. We would like to warmly thank our MRI technicians for their important contribution to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Chabbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alunni, JP., Degano, B., Arnaud, C. et al. Cardiac MRI in pulmonary artery hypertension: correlations between morphological and functional parameters and invasive measurements. Eur Radiol 20, 1149–1159 (2010). https://doi.org/10.1007/s00330-009-1664-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1664-3

Keywords

Navigation