Skip to main content

Advertisement

Log in

Kynurenic acid, an endogenous constituent of rheumatoid arthritis synovial fluid, inhibits proliferation of synoviocytes in vitro

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Kynurenic acid is an antagonist of ionotropic glutamate receptors. It has been found that glutamate antagonists inhibit proliferation of different human tumor cells. Since the hyperplasia of synovial fibroblasts is one of the most striking features of inflammatory arthritis, the main goals of this study were detection and quantification of kynurenic acid in synovial fluid obtained from patients with rheumatoid arthritis, and determination of its effect on proliferation of synoviocytes in vitro. Presence of kynurenic acid was determined by HPLC in all 58 samples of synovial fluid. The mean concentration was 15.89 pmol/ml. Kynurenic acid inhibited synoviocyte proliferation with the IC50 value of 5.9 mM. In subthreshold concentration of 0.3 mM it enhanced antiproliferative action of celecoxib and nimesulide. In conclusion, the presence of kynurenic acid in synovial fluid was documented in patients with rheumatoid arthritis. Its potential role as an endogenous substance, controlling synoviocyte proliferation can be suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Ospelt C, Neidhart M, Gay RE, Gay S (2004) Synovial activation in rheumatoid arthritis. Front Biosci 9:2323–2334

    Article  PubMed  CAS  Google Scholar 

  2. Kramer I, Wibulswas A, Croft D, Genot E (2003) Rheumatoid arthritis: targeting the proliferative fibroblasts. Prog Cell Cycle Res 5:59–70

    PubMed  Google Scholar 

  3. Ritchlin C (2000) Fibroblasts biology. Effector signals released by the synovial fibroblasts in arthritis. Arthritis Res 2:356–360

    Article  PubMed  CAS  Google Scholar 

  4. Qu Z, Garcia CH, O’Rourke LM, Planck SR, Kohli M, Rosenbaum JT (1994) Local proliferation of fibroblast-like synoviocytes contributes to synovial hyperplasia. Results of proliferating cell nuclear antigen/cyclin, c-myc and nucleolar organizer region staining. Arthritis Rheum 37:212–220

    Article  PubMed  CAS  Google Scholar 

  5. Kurowska M, Rudnicka W, Kontny E, Janicka I, Chorazy M, Kowalczewski J, Ziolkowska M, Ferrari-Lacraz S, Strom TB, Maslinski W (2002) Fibroblast-like synoviocytes from rheumatoid arthritis patients express functional IL-15 receptor complex: endogenous IL-15 in autocrine fashion enhances cell proliferation and expression of Bcl-x(L) and Bcl-2. J Immunol 169:1760–1767

    PubMed  CAS  Google Scholar 

  6. Lacey D, Sampey A, Mitchell R, Bucala R, Santos L, Leech M, Morand E (2003) Control of fibroblast-like synoviocyte proliferation by macrophage migration inhibitory factor. Arthritis Rheum 48:103–109

    Article  PubMed  CAS  Google Scholar 

  7. Ganong AH, Lanthorn TH, Cotman CW (1983) Kynurenic acid inhibits synaptic and amino acid-induced responses in the rat hippocampus and spinal cord. Brain Res 273:170–174

    Article  Google Scholar 

  8. Birch PJ, Grossman CJ, Hayes AG (1988) Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor. Eur J Pharmacol 154:85–87

    Article  PubMed  CAS  Google Scholar 

  9. Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473

    PubMed  CAS  Google Scholar 

  10. Milart P, Urbańska EM, Turski WA, Paszkowski T, Sikorski R (1999) Intrapartum levels of endogenous glutamate antagonist - kynurenic acid in amniotic fluid, umbilical and maternal blood. Neurosci Res Com 24:173–178

    Article  CAS  Google Scholar 

  11. Swartz KJ, Matson WR, MacGarvey U, Ryan EA, Beal MF (1990) Measurement of kynurenic acid in mammalian brain extracts and cerebrospinal fluid by high-performance liquid chromatography with fluorometric and coulometric electrode array detection. Anal Biochem 1990:363–376

    Article  Google Scholar 

  12. Turski WA, Nakamura M, Todd WP, Carpenter BK, Whetsell WO Jr, Schwarcz R (1988) Identification and quantification of kynurenic acid in human brain tissue. Brain Res 454:164–169

    Article  PubMed  CAS  Google Scholar 

  13. Rejdak R, Zarnowski T, Turski WA, Kocki T, Zagorski Z, Zrenner E, Schuettauf F (2003) Alteriations of kynurenic acid content in the retina in response to retinal ganglion cell damage. Vision Res 43:497–503

    Article  PubMed  CAS  Google Scholar 

  14. Foster AC, Vezzani A, French ED, Schwarcz R (1984) Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci Lett 48:273–278

    Article  PubMed  CAS  Google Scholar 

  15. Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vockler J, Dikranian K, Tenkova TI, Stefovska V, Turski L, Olney JW (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283:70–74

    Article  PubMed  CAS  Google Scholar 

  16. Rzeski W, Ikonomidou C, Turski L (2002) Glutamate antagonists limit tumor growth. Biochem Pharmacol 64:1195–2000

    Article  PubMed  CAS  Google Scholar 

  17. Rzeski W, Turski L Ikonomidou C (2001) Glutamate antagonists limit tumor growth. Proc Natl Acad Sci USA 98:6372–6377

    Article  PubMed  CAS  Google Scholar 

  18. Litchfield JT, Wilcoxon FA (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113

    PubMed  CAS  Google Scholar 

  19. Igari T, Tsuchizawa M, Obara K, Ono S (1969) Tryptophan metabolizm in the synovial fluid in rheumatoid arthritis and osteoarthritis. Tohoku J Exp Med 99:73–80

    Article  PubMed  CAS  Google Scholar 

  20. Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10

    Article  PubMed  CAS  Google Scholar 

  21. Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, Dilling LA, Elia J, Kruesi MJ, Lackner A (1992) Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 115:1249–73

    Article  PubMed  Google Scholar 

  22. Bertazzo A, Punzi L, Bertazzolo N, Pianon M, Pozzuoli A, Costa CV, Allegri G (1999) Tryptophan catabolism in synovial fluid of various arthropathies and its relationship with inflammatory cytokines. Adv Exp Med Biol 467:565–70

    PubMed  CAS  Google Scholar 

  23. Forrest CM, Kennedy A, Stone TW, Stoy N, Darlington LG (2003) Kynurenine and neopterin levels in patients with rheumatoid arthritis and osteoporosis during drug treatment. Adv Exp Med Biol 527:287–295

    PubMed  CAS  Google Scholar 

  24. Schroecksnadel K, Kaser S, Ledochowski M, Neurauter G, Mur E, Herold M, Fuchs D (2003) Increased degradation of tryptophan in blood of patients with rheumatoid arthritis. J Rheumatol 30:1935–1939

    PubMed  CAS  Google Scholar 

  25. McNearney T, Speegle D, Lawand N, Lisse J, Westlund KN (2000) Excitatory amino acid profiles of synovial fluid from patients with arthritis. J Rheum 27:739–745

    PubMed  CAS  Google Scholar 

  26. Lawand NB, McNearney T, Westlund KN (2000) Amino acid release into the knee joint: key role in nociception and inflammation. Pain 86:69–74

    Article  PubMed  CAS  Google Scholar 

  27. Sluka KA, Jordan HH, Willis WD, Westlund KN (1994) Differential effects of N-methyl-D-aspartate (NMDA) and non-NMDA receptor antagonists on spinal release of amino acids after development of acute arthritis in rats. Brain Res 664:77–84

    Article  PubMed  CAS  Google Scholar 

  28. Kristensen JD, Post C, Gordh T Jr, Svensson BA (1993) Spinal cord morphology and antinociception after chronic intrathecal administration of excitatory amino acid antagonists in the rat. Pain 54:309–316

    Article  PubMed  CAS  Google Scholar 

  29. Kusunoki N, Yamazaki R, Kawai S (2002) Induction of apoptosis in rheumatoid synovial fibroblasts by celecoxib, but not by other selective cyclooxygenase 2 inhibitors. Arthritis Rheum 46:3159–3167

    Article  PubMed  CAS  Google Scholar 

  30. Yamazaki R, Kusunoki N, Matsuzaki T, Hashimoto S, Kawai S (2002) Selective cyclooxygenase-2 inhibitors show a differential ability to inhibit proliferation and induce apoptosis of colon adenocarcinoma cells. FEBS Lett 531:278–284

    Article  PubMed  CAS  Google Scholar 

  31. Wu GS, Zou SQ, Liu ZR, Tang ZH, Wang JH (2003) Celecoxib inhibits proliferation and induces apoptosis via prostaglandin E2 pathway in human cholangiocarcinoma cell lines. World J Gastroenterol 9:1302–1306

    PubMed  CAS  Google Scholar 

  32. Eibl G, Reber HA, Wente MN, Hines OJ (2003) The selective cyclooxygenase-2 inhibitor nimesulide induces apoptosis in pancreatic cancer cells independent of COX-2. Pancreas 26:33–41

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the State Committee for Scientific Research (Poland), grant 2P05A03827.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Parada-Turska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parada-Turska, J., Rzeski, W., Zgrajka, W. et al. Kynurenic acid, an endogenous constituent of rheumatoid arthritis synovial fluid, inhibits proliferation of synoviocytes in vitro. Rheumatol Int 26, 422–426 (2006). https://doi.org/10.1007/s00296-005-0057-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-005-0057-4

Keywords

Navigation