Skip to main content

Advertisement

Log in

Genetics of systemic sclerosis

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Systemic sclerosis (SSc) is connective tissue disorder in which fibrosis of the skin and internal organs is the main hallmark. Despite the difficulties of studying a complex disease, significant advances have been achieved in the SSc genetics field. In this review, we will describe the firmest genetic susceptibility markers known to date. We will analyze the most recent findings in the HLA region and in non-HLA genes. Furthermore, we will propose functional connections of these loci with the mechanisms involved in SSc pathogenesis. However, only non-HLA genetic regions that have been associated with SSc at the genome-wide significance level or that have been reported to be associated with the disease in at least two different independent studies will be considered. In spite of the increasing number of SSc genetic susceptibility factors identified, further studies with larger sample sizes, deeper phenotype characterization of the patients and innovative analyses will be needed to translate SSc genetics into clinical practice and patient care in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Feghali-Bostwick C, Medsger TA Jr, Wright TM (2003) Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum 48:1956–1963

    Article  PubMed  Google Scholar 

  2. Arnett FC, Cho M, Chatterjee S, Aguilar MB, Reveille JD, Mayes MD (2001) Familial occurrence frequencies and relative risks for systemic sclerosis (scleroderma) in three United States cohorts. Arthritis Rheum 44:1359–1362

    Article  CAS  PubMed  Google Scholar 

  3. Hemminki K, Li X, Sundquist J, Sundquist K (2009) Familial associations of rheumatoid arthritis with autoimmune diseases and related conditions. Arthritis Rheum 60:661–668

    Article  PubMed  Google Scholar 

  4. Reveille JD, Fischbach M, McNearney T, Friedman AW, Aguilar MB, Lisse J et al (2001) Systemic sclerosis in 3 US ethnic groups: a comparison of clinical, sociodemographic, serologic, and immunogenetic determinants. Semin Arthritis Rheum 30:332–346

    Article  CAS  PubMed  Google Scholar 

  5. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H et al (2014) The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42:D1001–1006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661-678

  7. Radstake TR, Gorlova O, Rueda B, Martin JE, Alizadeh BZ, Palomino-Morales R et al (2010) Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat Genet 42:426–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Gourh P et al (2006) Association of the PTPN22 R620 W polymorphism with anti-topoisomerase I- and anticentromere antibodypositive systemic sclerosis. Arthritis Rheum 54:3945–3953

  9. Dieude P et al (2008) The PTPN22 620 W allele confers susceptibility to sysremic sclerosis: Wndings of a large case-control study of european Causcasians and a meta-analysis. Arthritis Rheum 58:2183–2188

  10. Zhou X, Lee JE, Arnett FC, Xiong M, Park MY, Yoo YK et al (2009) HLA-DPB1 and DPB2 are genetic loci for systemic sclerosis: a genome-wide association study in Koreans with replication in North Americans. Arthritis Rheum 60:3807–3814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Allanore Y, Saad M, Dieude P, Avouac J, Distler JH, Amouyel P et al (2011) Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genet 7:e1002091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Fernando MM, Stevens CR, Walsh EC, De Jager PL, Goyette P, Plenge RM et al (2008) Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet 4:e1000024

    Article  PubMed Central  PubMed  Google Scholar 

  13. Gilchrist FC, Bunn C, Foley PJ, Lympany PA, Black CM, Welsh KI et al (2001) Class II HLA associations with autoantibodies in scleroderma: a highly significant role for HLA-DP. Genes Immun 2:76–81

    Article  CAS  PubMed  Google Scholar 

  14. Arnett FC, Gourh P, Shete S, Ahn CW, Honey RE, Agarwal SK et al (2010) Major histocompatibility complex (MHC) class II alleles, haplotypes and epitopes which confer susceptibility or protection in systemic sclerosis: analyses in 1300 Caucasian, African-American and Hispanic cases and 1000 controls. Ann Rheum Dis 69:822–827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Beretta L, Rueda B, Marchini M, Santaniello A, Simeon CP, Fonollosa V et al (2012) Analysis of Class II human leucocyte antigens in Italian and Spanish systemic sclerosis. Rheumatology (Oxford) 51:52–59

    Article  CAS  Google Scholar 

  16. Parkes M, Cortes A, van Heel DA, Brown MA (2013) Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet 14:661–673

    Article  CAS  PubMed  Google Scholar 

  17. Raychaudhuri S, Sandor C, Stahl EA, Freudenberg J, Lee HS, Jia X et al (2012) Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet 44:291–296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Mayes MD, Bossini-Castillo L, Gorlova O, Martin JE, Zhou X, Chen WV et al (2014) Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis. Am J Hum Genet 94:47–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Rapin N, Hoof I, Lund O, Nielsen M (2008) MHC motif viewer. Immunogenetics 60:759–765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Nielsen M, Lundegaard C, Blicher T, Peters B, Sette A, Justesen S et al (2008) Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Comput Biol 4:e1000107

    Article  PubMed Central  PubMed  Google Scholar 

  21. Albert FW, Kruglyak L (2015) The role of regulatory variation in complex traits and disease. Nat Rev Genet 16:197–212

    Article  CAS  PubMed  Google Scholar 

  22. Crouse J, Kalinke U, Oxenius A (2015) Regulation of antiviral T cell responses by type I interferons. Nat Rev Immunol 15:231–242

    Article  CAS  PubMed  Google Scholar 

  23. van Bon L, Affandi AJ, Broen J, Christmann RB, Marijnissen RJ, Stawski L et al (2014) Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N Engl J Med 370:433–443

    Article  PubMed Central  PubMed  Google Scholar 

  24. Wu M, Assassi S (2013) The role of type 1 interferon in systemic sclerosis. Front Immunol 4:266

    Article  PubMed Central  PubMed  Google Scholar 

  25. Barnes BJ, Richards J, Mancl M, Hanash S, Beretta L, Pitha PM (2004) Global and distinct targets of IRF-5 and IRF-7 during innate response to viral infection. J Biol Chem 279:45194–45207

    Article  CAS  PubMed  Google Scholar 

  26. Ryzhakov G, Eames HL, Udalova IA (2015) Activation and function of interferon regulatory factor 5. J Interf Cytokine Res: Off J Int Soc Interf Cytokine Res 35:71–78

    Article  CAS  Google Scholar 

  27. Ito I, Kawaguchi Y, Kawasaki A, Hasegawa M, Ohashi J, Hikami K et al (2009) Association of a functional polymorphism in the IRF5 region with systemic sclerosis in a Japanese population. Arthritis Rheum 60:1845–1850

    Article  CAS  PubMed  Google Scholar 

  28. Dieude P, Guedj M, Wipff J, Avouac J, Fajardy I, Diot E et al (2009) Association between the IRF5 rs2004640 functional polymorphism and systemic sclerosis: a new perspective for pulmonary fibrosis. Arthritis Rheum 60:225–233

    Article  CAS  PubMed  Google Scholar 

  29. Dieude P, Dawidowicz K, Guedj M, Legrain Y, Wipff J, Hachulla E et al (2010) Phenotype-haplotype correlation of IRF5 in systemic sclerosis: role of 2 haplotypes in disease severity. J Rheumatol 37:987–992

    Article  CAS  PubMed  Google Scholar 

  30. Carmona FD, Martin JE, Beretta L, Simeon CP, Carreira PE, Callejas JL et al (2013) The systemic lupus erythematosus IRF5 risk haplotype is associated with systemic sclerosis. PLoS One 8:e54419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Kottyan LC, Zoller EE, Bene J, Lu X, Kelly JA, Rupert AM et al (2015) The IRF5-TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share. Hum Mol Genet 24:582–596

    Article  CAS  PubMed  Google Scholar 

  32. Sharif R, Mayes MD, Tan FK, Gorlova OY, Hummers LK, Shah AA et al (2012) IRF5 polymorphism predicts prognosis in patients with systemic sclerosis. Ann Rheum Dis 71:1197–1202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Gorlova O, Martin JE, Rueda B, Koeleman BP, Ying J, Teruel M et al (2011) Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy. PLoS Genet 7:e1002178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wang H, Morse HC 3rd (2009) IRF8 regulates myeloid and B lymphoid lineage diversification. Immunol Res 43:109–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Carmona FD, Gutala R, Simeon CP, Carreira P, Ortego-Centeno N, Vicente-Rabaneda E et al (2012) Novel identification of the IRF7 region as an anticentromere autoantibody propensity locus in systemic sclerosis. Ann Rheum Dis 71:114–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T et al (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434:772–777

    Article  CAS  PubMed  Google Scholar 

  37. Trinchieri G (1997) Function and clinical use of interleukin-12. Curr Opin Hematol 4:59–66

    Article  CAS  PubMed  Google Scholar 

  38. van Wanrooij RL, Zwiers A, Kraal G, Bouma G (2012) Genetic variations in interleukin-12 related genes in immune-mediated diseases. J Autoimmun 39:359–368

    Article  PubMed  Google Scholar 

  39. Bossini-Castillo L, Martin JE, Broen J, Gorlova O, Simeon CP, Beretta L et al (2012) A GWAS follow-up study reveals the association of the IL12RB2 gene with systemic sclerosis in Caucasian populations. Hum Mol Genet 21:926–933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Lopez-Isac E, Bossini-Castillo L, Guerra SG, Denton C, Fonseca C, Assassi S et al (2014) Identification of IL12RB1 as a novel systemic sclerosis susceptibility locus. Arthritis Rheum 66:3521–3523

    Article  CAS  Google Scholar 

  41. Liang Y, Pan HF, Ye DQ (2014) Therapeutic potential of STAT4 in autoimmunity. Expert Opin Ther Targets 18:945–960

    Article  CAS  PubMed  Google Scholar 

  42. Nguyen KB, Watford WT, Salomon R, Hofmann SR, Pien GC, Morinobu A et al (2002) Critical role for STAT4 activation by type 1 interferons in the interferon-gamma response to viral infection. Science 297:2063–2066

    Article  CAS  PubMed  Google Scholar 

  43. Rueda B, Broen J, Simeon C, Hesselstrand R, Diaz B, Suarez H et al (2009) The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype. Hum Mol Genet 18:2071–2077

    Article  CAS  PubMed  Google Scholar 

  44. Dieude P, Guedj M, Wipff J, Ruiz B, Hachulla E, Diot E et al (2009) STAT4 is a genetic risk factor for systemic sclerosis having additive effects with IRF5 on disease susceptibility and related pulmonary fibrosis. Arthritis Rheum 60:2472–2479

    Article  CAS  PubMed  Google Scholar 

  45. Gourh P, Agarwal SK, Divecha D, Assassi S, Paz G, Arora-Singh RK et al (2009) Polymorphisms in TBX21 and STAT4 increase the risk of systemic sclerosis: evidence of possible gene-gene interaction and alterations in Th1/Th2 cytokines. Arthritis Rheum 60:3794–3806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Tsuchiya N, Kawasaki A, Hasegawa M, Fujimoto M, Takehara K, Kawaguchi Y et al (2009) Association of STAT4 polymorphism with systemic sclerosis in a Japanese population. Ann Rheum Dis 68:1375–1376

    Article  CAS  PubMed  Google Scholar 

  47. Yi L, Wang JC, Guo XJ, Gu YH, Tu WZ, Guo G et al (2013) STAT4 is a genetic risk factor for systemic sclerosis in a Chinese population. Int J Immunopathol Pharmacol 26:473–478

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Avouac J, Furnrohr BG, Tomcik M, Palumbo K, Zerr P, Horn A et al (2011) Inactivation of the transcription factor STAT-4 prevents inflammation-driven fibrosis in animal models of systemic sclerosis. Arthritis Rheum 63:800–809

    Article  CAS  PubMed  Google Scholar 

  49. Barnes J, Agarwal SK (2011) Targeting STAT4 in systemic sclerosis: a promising new direction. Expert Rev Clin Immunol 7:445–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Rodriguez AM, Rodin D, Nomura H, Morton CC, Weremowicz S, Schneider MC (1997) Identification, localization, and expression of two novel human genes similar to deoxyribonuclease I. Genomics 42:507–513

    Article  CAS  PubMed  Google Scholar 

  51. Al-Mayouf SM, Sunker A, Abdwani R, Abrawi SA, Almurshedi F, Alhashmi N et al (2011) Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat Genet 43:1186–1188

    Article  CAS  PubMed  Google Scholar 

  52. Ueki M, Kimura-Kataoka K, Takeshita H, Fujihara J, Iida R, Sano R et al (2014) Evaluation of all non-synonymous single nucleotide polymorphisms (SNPs) in the genes encoding human deoxyribonuclease I and I-like 3 as a functional SNP potentially implicated in autoimmunity. FEBS J 281:376–390

    Article  CAS  PubMed  Google Scholar 

  53. Zochling J, Newell F, Charlesworth JC, Leo P, Stankovich J, Cortes A et al (2014) An Immunochip-based interrogation of scleroderma susceptibility variants identifies a novel association at DNASE1L3. Arthritis Res Ther 16:438

    Article  PubMed Central  PubMed  Google Scholar 

  54. Martin JE, Assassi S, Diaz-Gallo LM, Broen JC, Simeon CP, Castellvi I et al (2013) A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci. Hum Mol Genet 22:4021–4029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Bhattacharya A, Eissa NT (2013) Autophagy and autoimmunity crosstalks. Front Immunol 4:88

    Article  PubMed Central  PubMed  Google Scholar 

  56. Lopez-Isac E, Bossini-Castillo L, Simeon CP, Egurbide MV, Alegre-Sancho JJ, Callejas JL et al (2014) A genome-wide association study follow-up suggests a possible role for PPARG in systemic sclerosis susceptibility. Arthritis Res Ther 16:R6

    Article  PubMed Central  PubMed  Google Scholar 

  57. Wei J, Zhu H, Komura K, Lord G, Tomcik M, Wang W et al (2014) A synthetic PPAR-gamma agonist triterpenoid ameliorates experimental fibrosis: PPAR-gamma-independent suppression of fibrotic responses. Ann Rheum Dis 73:446–454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. O'Reilly S, Hugle T, van Laar JM (2012) T cells in systemic sclerosis: a reappraisal. Rheumatology (Oxford) 51:1540–1549

    Article  Google Scholar 

  59. Dieude P, Boileau C, Guedj M, Avouac J, Ruiz B, Hachulla E et al (2011) Independent replication establishes the CD247 gene as a genetic systemic sclerosis susceptibility factor. Ann Rheum Dis 70:1695–1696

    Article  CAS  PubMed  Google Scholar 

  60. Wang J, Yi L, Guo X, He D, Li H, Guo G et al (2014) Lack of Association of the CD247 SNP rs2056626 with systemic sclerosis in Han Chinese. Open Rheum J 8:43–45

    Article  Google Scholar 

  61. Okada M (2012) Regulation of the SRC family kinases by Csk. Int J Biol Sci 8:1385–1397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Martin JE, Broen JC, Carmona FD, Teruel M, Simeon CP, Vonk MC et al (2012) Identification of CSK as a systemic sclerosis genetic risk factor through genome wide association study follow-up. Hum Mol Genet 21:2825–2835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Vang T, Liu WH, Delacroix L, Wu S, Vasile S, Dahl R et al (2012) LYP inhibits T-cell activation when dissociated from CSK. Nat Chem Biol 8:437–446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Fiorillo E, Orru V, Stanford SM, Liu Y, Salek M, Rapini N et al (2010) Autoimmune-associated PTPN22 R620W variation reduces phosphorylation of lymphoid phosphatase on an inhibitory tyrosine residue. J Biol Chem 285:26506–26518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Diaz-Gallo LM, Gourh P, Broen J, Simeon C, Fonollosa V, Ortego-Centeno N et al (2011) Analysis of the influence of PTPN22 gene polymorphisms in systemic sclerosis. Ann Rheum Dis 70:454–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Yoshizaki A, Sato S (2015) Abnormal B lymphocyte activation and function in systemic sclerosis. Ann Dermatol 27:1–9

    Article  PubMed Central  PubMed  Google Scholar 

  67. Dieude P, Wipff J, Guedj M, Ruiz B, Melchers I, Hachulla E et al (2009) BANK1 is a genetic risk factor for diffuse cutaneous systemic sclerosis and has additive effects with IRF5 and STAT4. Arthritis Rheum 60:3447–3454

    Article  CAS  PubMed  Google Scholar 

  68. Rueda B, Gourh P, Broen J, Agarwal SK, Simeon C, Ortego-Centeno N et al (2010) BANK1 functional variants are associated with susceptibility to diffuse systemic sclerosis in Caucasians. Ann Rheum Dis 69:700–705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Coustet B, Dieude P, Guedj M, Bouaziz M, Avouac J, Ruiz B et al (2011) C8orf13-BLK is a genetic risk locus for systemic sclerosis and has additive effects with BANK1: results from a large french cohort and meta-analysis. Arthritis Rheum 63:2091–2096

    Article  CAS  PubMed  Google Scholar 

  70. Ito I, Kawaguchi Y, Kawasaki A, Hasegawa M, Ohashi J, Kawamoto M et al (2010) Association of the FAM167A-BLK region with systemic sclerosis. Arthritis Rheum 62:890–895

    Article  CAS  PubMed  Google Scholar 

  71. Gourh P, Agarwal SK, Martin E, Divecha D, Rueda B, Bunting H et al (2010) Association of the C8orf13-BLK region with systemic sclerosis in North-American and European populations. J Autoimmun 34:155–162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Shu C, Du W, Mao X, Li Y, Zhu Q, Wang W et al (2014) Possible single-nucleotide polymorphism loci associated with systemic sclerosis susceptibility: a genetic association study in a Chinese Han population. PLoS One 9:e113197

    Article  PubMed Central  PubMed  Google Scholar 

  73. Hugle T, O'Reilly S, Simpson R, Kraaij MD, Bigley V, Collin M et al (2013) Tumor necrosis factor-costimulated T lymphocytes from patients with systemic sclerosis trigger collagen production in fibroblasts. Arthritis Rheum 65:481–491

    Article  PubMed  Google Scholar 

  74. Murdaca G, Spano F, Contatore M, Guastalla A, Puppo F (2014) Potential use of TNF-alpha inhibitors in systemic sclerosis. Immunotherapy 6:283–289

    Article  CAS  PubMed  Google Scholar 

  75. Catrysse L, Vereecke L, Beyaert R, van Loo G (2014) A20 in inflammation and autoimmunity. Trends Immunol 35:22–31

    Article  CAS  PubMed  Google Scholar 

  76. Dieude P, Guedj M, Wipff J, Ruiz B, Riemekasten G, Matucci-Cerinic M et al (2010) Association of the TNFAIP3 rs5029939 variant with systemic sclerosis in the European Caucasian population. Ann Rheum Dis 69:1958–1964

    Article  CAS  PubMed  Google Scholar 

  77. Koumakis E, Giraud M, Dieude P, Cohignac V, Cuomo G, Airo P et al (2012) Brief report: candidate gene study in systemic sclerosis identifies a rare and functional variant of the TNFAIP3 locus as a risk factor for polyautoimmunity. Arthritis Rheum 64:2746–2752

    Article  CAS  PubMed  Google Scholar 

  78. Bossini-Castillo L, Martin JE, Broen J, Simeon CP, Beretta L, Gorlova OY et al (2013) Confirmation of TNIP1 but not RHOB and PSORS1C1 as systemic sclerosis risk factors in a large independent replication study. Ann Rheum Dis 72:602–607

    Article  CAS  PubMed  Google Scholar 

  79. Gough MJ, Weinberg AD (2009) OX40 (CD134) and OX40L. Adv Exp Med Biol 647:94–107

    Article  CAS  PubMed  Google Scholar 

  80. Ishii N, Takahashi T, Soroosh P, Sugamura K (2010) OX40-OX40 ligand interaction in T-cell-mediated immunity and immunopathology. Adv Immunol 105:63–98

    Article  CAS  PubMed  Google Scholar 

  81. Gourh P, Arnett FC, Tan FK, Assassi S, Divecha D, Paz G et al (2010) Association of TNFSF4 (OX40L) polymorphisms with susceptibility to systemic sclerosis. Ann Rheum Dis 69:550–555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Bossini-Castillo L, Broen JC, Simeon CP, Beretta L, Vonk MC, Ortego-Centeno N et al (2011) A replication study confirms the association of TNFSF4 (OX40L) polymorphisms with systemic sclerosis in a large European cohort. Ann Rheum Dis 70:638–641

    Article  CAS  PubMed  Google Scholar 

  83. Coustet B, Bouaziz M, Dieude P, Guedj M, Bossini-Castillo L, Agarwal S et al (2012) Independent replication and meta analysis of association studies establish TNFSF4 as a susceptibility gene preferentially associated with the subset of anticentromere-positive patients with systemic sclerosis. J Rheum 39:997–1003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This review was supported by the following grants: molecular reclassification to find clinically useful biomarkers for systemic autoimmune diseases (PRECISESAD) Innovative Medicines Initiative (IMI) partnership between the European Commission (FP7/2007-2013) and the European Federation of Pharmaceutical Industries and Associations (EFPIA) (ref: 115565); Identificación de nuevos factores genéticos comunes en enfermedades autoinmunes sistémicas mediante el análisis conjunto de estudios de asociación del genoma completo (meta-GWAS). (BIO-1395) Proyecto de Excelencia, Consejería de Innovación, Ciencia y Tecnología, Junta de Andalucía; Beyond genome-wide association studies: new strategies for identifying genetic determinants of scleroderma (SAF2012-34435) Ministerio de Economía y Competitividad. Principal investigator was as follows: Prof. Javier Martín Ibáñez, MD, PhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Martín.

Additional information

This article is a contribution to the Special Issue on Immunopathology of systemic sclerosis – Guest Editors: Jacob M. van Laar and John Varga

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bossini-Castillo, L., López-Isac, E., Mayes, M.D. et al. Genetics of systemic sclerosis. Semin Immunopathol 37, 443–451 (2015). https://doi.org/10.1007/s00281-015-0499-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-015-0499-z

Keywords

Navigation