Skip to main content

Advertisement

Log in

New discoveries in CRMO: IL-1β, the neutrophil, and the microbiome implicated in disease pathogenesis in Pstpip2-deficient mice

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Chronic non-bacterial osteomyelitis (CNO), chronic recurrent multifocal osteomyelitis (CRMO) and synovitis, acne, pustulosis, hyperostosis and osteitis (SAPHO) syndrome are autoinflammatory disorder(s) in which sterile osteomyelitis is frequently accompanied by inflammatory conditions of the joints, skin, or intestine. Patients with CRMO commonly have a personal or family history of psoriasis, inflammatory bowel disease, and inflammatory arthritis, suggesting shared disease pathogenesis. Work by our group and others has demonstrated that dysregulation of interleukin-1 (IL-1) signaling can drive sterile osteomyelitis in the two human monogenic forms of the disease. Recent work in the chronic multifocal osteomyelitis (cmo) mouse model demonstrates that the disease is IL-1-mediated, that neutrophils are critical effector cells and that both caspase-1 and caspase-8 play redundant roles in mediating the cleavage of pro-IL-1β into its biologically active form. Recent data in the cmo mouse demonstrate that dietary manipulation alters the cmo microbiome and can prevent the development of osteomyelitis. Further investigation is needed to determine the specific components of the diet that result in protection from disease and if this finding can be translated into a treatment for human CRMO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Hedrich CM, Hofmann SR, Pablik J, Morbach H, Girschick HJ (2013) Autoinflammatory bone disorders with special focus on chronic recurrent multifocal osteomyelitis (CRMO). Pediatr Rheumatol Online J 11:47

    Article  PubMed Central  PubMed  Google Scholar 

  2. Stern SM, Ferguson PJ (2013) Autoinflammatory bone diseases. Rheum Dis Clin N Am 39:735–49

    Article  Google Scholar 

  3. Jansson A, Renner ED, Ramser J, Mayer A, Haban M, Meindl A, Grote V, Diebold J, Jansson V, Schneider K, Belohradsky BH (2007) Classification of non-bacterial osteitis: retrospective study of clinical, immunological and genetic aspects in 89 patients. Rheumatology (Oxford) 46:154–60

    Article  CAS  Google Scholar 

  4. Kahn MF, Chamot AM (1992) SAPHO syndrome. Rheum Dis Clin N Am 18:225–46

    CAS  Google Scholar 

  5. Giedion A, Holthusen W, Masel LF, Vischer D (1972) Subacute and chronic “symmetrical” osteomyelitis. Ann Radiol (Paris) 15:329–42

    CAS  Google Scholar 

  6. Girschick HJ, Raab P, Surbaum S, Trusen A, Kirschner S, Schneider P, Papadopoulos T, Muller-Hermelink HK, Lipsky PE (2005) Chronic non-bacterial osteomyelitis in children. Ann Rheum Dis 64:279–85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Schultz C, Holterhus PM, Seidel A, Jonas S, Barthel M, Kruse K, Bucsky P (1999) Chronic recurrent multifocal osteomyelitis in children. Pediatr Infect Dis J 18:1008–13

    Article  CAS  PubMed  Google Scholar 

  8. Ferguson PJ, Brown DR, Sundel R, Killian J, El-Shanti HI (2005) Chronic inflammatory disorders in first and second degree relatives of children with chronic recurrent multifocal osteomyelitis. Arthritis Rheum 52:747

    Google Scholar 

  9. Sasaki T (1967) A case of osteomyelitis of the bilateral clavicles associated with pustulosis palmaris et plantaris. Rinsho Seikeigeka 2:333–7

    Google Scholar 

  10. Bjorksten B, Gustavson KH, Eriksson B, Lindholm A, Nordstrom S (1978) Chronic recurrent multifocal osteomyelitis and pustulosis palmoplantaris. J Pediatr 93:227–31

    Article  CAS  PubMed  Google Scholar 

  11. Bergdahl K, Bjorksten B, Gustavson KH, Liden S, Probst F (1979) Pustulosis palmoplantaris and its relation to chronic recurrent multifocal osteomyelitis. Dermatologica 159:37–45

    Article  CAS  PubMed  Google Scholar 

  12. Paller AS, Pachman L, Rich K, Esterly NB, Gonzalez-Crussi F (1985) Pustulosis palmaris et plantaris: its association with chronic recurrent multifocal osteomyelitis. J Am Acad Dermatol 12:927–30

    Article  CAS  PubMed  Google Scholar 

  13. Laxer RM, Shore AD, Manson D, King S, Silverman ED, Wilmot DM (1988) Chronic recurrent multifocal osteomyelitis and psoriasis—a report of a new association and review of related disorders. Semin Arthritis Rheum 17:260–70

    Article  CAS  PubMed  Google Scholar 

  14. Bognar M, Blake W, Agudelo C (1998) Chronic recurrent multifocal osteomyelitis associated with Crohn’s disease. Am J Med Sci 315:133–5

    Article  CAS  PubMed  Google Scholar 

  15. Bousvaros A, Marcon M, Treem W, Waters P, Issenman R, Couper R, Burnell R, Rosenberg A, Rabinovich E, Kirschner BS (1999) Chronic recurrent multifocal osteomyelitis associated with chronic inflammatory bowel disease in children. Dig Dis Sci 44:2500–7

    Article  CAS  PubMed  Google Scholar 

  16. Jo Y, Matsumoto T, Nagamine R (2001) A case of Crohn’s disease with leg pain. Br J Radiol 74:203–4

    Article  CAS  PubMed  Google Scholar 

  17. Carpenter E, Jackson MA, Friesen CA, Scarbrough M, Roberts CC (2004) Crohn’s-associated chronic recurrent multifocal osteomyelitis responsive to infliximab. J Pediatr 144:541–4

    Article  PubMed  Google Scholar 

  18. Assmann G, Simon P (2011) The SAPHO syndrome—are microbes involved? Best Pract Res Clin Rheumatol 25:423–34

    Article  CAS  PubMed  Google Scholar 

  19. Rozin AP (2009) SAPHO syndrome: is a range of pathogen-associated rheumatic diseases extended? Arthritis Res Ther 11:131

    Article  PubMed Central  PubMed  Google Scholar 

  20. Assmann G, Kueck O, Kirchhoff T, Rosenthal H, Voswinkel J, Pfreundschuh M, Zeidler H, Wagner AD (2009) Efficacy of antibiotic therapy for SAPHO syndrome is lost after its discontinuation: an interventional study. Arthritis Res Ther 11:R140

    Article  PubMed Central  PubMed  Google Scholar 

  21. Huber AM, Lam PY, Duffy CM, Yeung RS, Ditchfield M, Laxer D, Cole WG, Kerr Graham H, Allen RC, Laxer RM (2002) Chronic recurrent multifocal osteomyelitis: clinical outcomes after more than five years of follow-up. J Pediatr 141:198–203

    Article  PubMed  Google Scholar 

  22. Bjorksten B, Boquist L (1980) Histopathological aspects of chronic recurrent multifocal osteomyelitis. J Bone Joint Surg (Br) 62:376–80

    Google Scholar 

  23. Jurik AG (2004) Chronic recurrent multifocal osteomyelitis. Semin Musculoskelet Radiol 8:243–53

    Article  PubMed  Google Scholar 

  24. Pelkonen P, Ryoppy S, Jaaskelainen J, Rapola J, Repo H, Kaitila I (1988) Chronic osteomyelitis-like disease with negative bacterial cultures. Am J Dis Child 142:1167–73

    CAS  PubMed  Google Scholar 

  25. King SM, Laxer RM, Manson D, Gold R (1987) Chronic recurrent multifocal osteomyelitis: a noninfectious inflammatory process. Pediatr Infect Dis J 6:907–11

    Article  CAS  PubMed  Google Scholar 

  26. Girschick HJ, Huppertz HI, Harmsen D, Krauspe R, Muller-Hermelink HK, Papadopoulos T (1999) Chronic recurrent multifocal osteomyelitis in children: diagnostic value of histopathology and microbial testing. Hum Pathol 30:59–65

    Article  CAS  PubMed  Google Scholar 

  27. Carr AJ, Cole WG, Roberton DM, Chow CW (1993) Chronic multifocal osteomyelitis. J Bone Joint Surg (Br) 75:582–91

    CAS  Google Scholar 

  28. Yu L, Kasser JR, O’Rourke E, Kozakewich H (1989) Chronic recurrent multifocal osteomyelitis. Association with vertebra plana [see comments]. J Bone Joint Surg Am 71:105–12

    CAS  PubMed  Google Scholar 

  29. Manson D, Wilmot DM, King S, Laxer RM (1989) Physeal involvement in chronic recurrent multifocal osteomyelitis. Pediatr Radiol 20:76–9

    Article  CAS  PubMed  Google Scholar 

  30. Sharma M, Ferguson PJ (2013) Autoinflammatory bone disorders: update on immunologic abnormalities and clues about possible triggers. Curr Opin Rheumatol 25:658–64

    Article  CAS  PubMed  Google Scholar 

  31. Deutschmann A, Mache CJ, Bodo K, Zebedin D, Ring E (2005) Successful treatment of chronic recurrent multifocal osteomyelitis with tumor necrosis factor-alpha blockage. Pediatrics 116:1231–3

    Article  PubMed  Google Scholar 

  32. Kerrison C, Davidson JE, Cleary AG, Beresford MW (2004) Pamidronate in the treatment of childhood SAPHO syndrome. Rheumatology (Oxford) 43:1246–51

    Article  CAS  Google Scholar 

  33. Miettunen PM, Wei X, Kaura D, Reslan WA, Aguirre AN, Kellner JD (2009) Dramatic pain relief and resolution of bone inflammation following pamidronate in 9 pediatric patients with persistent chronic recurrent multifocal osteomyelitis (CRMO). Pediatr Rheumatol Online J 7:2

    Article  PubMed Central  PubMed  Google Scholar 

  34. Simm PJ, Allen RC, Zacharin MR (2008) Bisphosphonate treatment in chronic recurrent multifocal osteomyelitis. J Pediatr 152:571–5

    Article  CAS  PubMed  Google Scholar 

  35. Gleeson H, Wiltshire E, Briody J, Hall J, Chaitow J, Sillence D, Cowell C, Munns C (2008) Childhood chronic recurrent multifocal osteomyelitis: pamidronate therapy decreases pain and improves vertebral shape. J Rheumatol 35:707–12

    PubMed  Google Scholar 

  36. Amital H, Applbaum YH, Aamar S, Daniel N, Rubinow A (2004) SAPHO syndrome treated with pamidronate: an open-label study of 10 patients. Rheumatology (Oxford) 43:658–61

    Article  CAS  Google Scholar 

  37. Compeyrot-Lacassagne S, Rosenberg AM, Babyn P, Laxer RM (2007) Pamidronate treatment of chronic noninfectious inflammatory lesions of the mandible in children. J Rheumatol 34:1585–9

    CAS  PubMed  Google Scholar 

  38. Just A, Adams S, Brinkmeier T, Barsegian V, Lorenzen J, Schilling F, Frosch P (2008) Successful treatment of primary chronic osteomyelitis in SAPHO syndrome with bisphosphonates. J Dtsch Dermatol Ges 6:657–60

    Article  PubMed  Google Scholar 

  39. Hofmann SR, Schwarz T, Moller JC, Morbach H, Schnabel A, Rosen-Wolff A, Girschick HJ, Hedrich CM (2011) Chronic non-bacterial osteomyelitis is associated with impaired Sp1 signaling, reduced IL10 promoter phosphorylation, and reduced myeloid IL-10 expression. Clin Immunol 141:317–27

    Article  CAS  PubMed  Google Scholar 

  40. Hofmann SR, Roesen-Wolff A, Hahn G, Hedrich CM (2012) Update: cytokine dysregulation in chronic nonbacterial osteomyelitis (CNO). Int J Rheumatol 2012:310206

    Article  PubMed Central  PubMed  Google Scholar 

  41. Hofmann SR, Morbach H, Schwarz T, Rosen-Wolff A, Girschick HJ, Hedrich CM (2012) Attenuated TLR4/MAPK signaling in monocytes from patients with CRMO results in impaired IL-10 expression. Clin Immunol 145:69–76

    Article  CAS  PubMed  Google Scholar 

  42. Ferguson PJ, El-Shanti HI (2007) Autoinflammatory bone disorders. Curr Opin Immunol 19:492

    CAS  Google Scholar 

  43. Golla A, Jansson A, Ramser J, Hellebrand H, Zahn R, Meitinger T, Belohradsky BH, Meindl A (2002) Chronic recurrent multifocal osteomyelitis (CRMO): evidence for a susceptibility gene located on chromosome 18q21.3–18q22. Eur J Hum Genet 10:217–21

    Article  PubMed  Google Scholar 

  44. Safra N, Johnson EG, Lit L, Foreman O, Wolf ZT, Aguilar M, Karmi N, Finno CJ, Bannasch DL (2013) Clinical manifestations, response to treatment, and clinical outcome for Weimaraners with hypertrophic osteodystrophy: 53 cases (2009–2011). J Am Vet Med Assoc 242:1260–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Safra N, Pedersen NC, Wolf Z, Johnson EG, Liu HW, Hughes AM, Young A, Bannasch DL (2011) Expanded dog leukocyte antigen (DLA) single nucleotide polymorphism (SNP) genotyping reveals spurious class II associations. Vet J 189:220–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Crumlish PT, Sweeney T, Jones B, Angles JM (2006) Hypertrophic osteodystrophy in the Weimaraner dog: lack of association between DQA1 alleles of the canine MHC and hypertrophic osteodystrophy. Vet J 171:308–13

    Article  CAS  PubMed  Google Scholar 

  47. Grosse J, Chitu V, Marquardt A, Hanke P, Schmittwolf C, Zeitlmann L, Schropp P, Barth B, Yu P, Paffenholz R, Stumm G, Nehls M, Stanley ER (2006) Mutation of mouse Mayp/Pstpip2 causes a macrophage autoinflammatory disease. Blood 107:3350–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Ferguson PJ, Bing X, Vasef MA, Ochoa LA, Mahgoub A, Waldschmidt TJ, Tygrett LT, Schlueter AJ, El-Shanti H (2006) A missense mutation in pstpip2 is associated with the murine autoinflammatory disorder chronic multifocal osteomyelitis. Bone 38:41–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Cassel SL, Janczy JR, Bing X, Wilson SP, Olivier AK, Otero JE, Iwakura Y, Shayakhmetov DM, Bassuk AG, Abu-Amer Y, Brogden KA, Burns TL, Sutterwala FS, Ferguson PJ (2014) Inflammasome-independent IL-1β mediates autoinflammatory disease in Pstpip2-deficient mice. Proc Natl Acad Sci U S A 111:1072–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Lukens JR, Gross JM, Calabrese C, Iwakura Y, Lamkanfi M, Vogel P, Kanneganti TD (2014) Critical role for inflammasome-independent IL-1β production in osteomyelitis. Proc Natl Acad Sci U S A 111:1066–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Chitu V, Ferguson PJ, de Bruijn R, Schlueter AJ, Ochoa LA, Waldschmidt TJ, Yeung YG, Stanley ER (2009) Primed innate immunity leads to autoinflammatory disease in PSTPIP2-deficient cmo mice. Blood 114:2497–505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Ferguson PJ, Chen S, Tayeh MK, Ochoa L, Leal SM, Pelet A, Munnich A, Lyonnet S, Majeed HA, El-Shanti H (2005) Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome). J Med Genet 42:551–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Aksentijevich I, Masters SL, Ferguson PJ, Dancey P, Frenkel J, van Royen-Kerkhoff A, Laxer R, Tedgard U, Cowen EW, Pham TH, Booty M, Estes JD, Sandler NG, Plass N, Stone DL, Turner ML, Hill S, Butman JA, Schneider R, Babyn P, El-Shanti HI, Pope E, Barron K, Bing X, Laurence A, Lee CC, Chapelle D, Clarke GI, Ohson K, Nicholson M, Gadina M, Yang B, Korman BD, Gregersen PK, van Hagen PM, Hak AE, Huizing M, Rahman P, Douek DC, Remmers EF, Kastner DL, Goldbach-Mansky R (2009) An autoinflammatory disease with deficiency of the interleukin-1 receptor antagonist. N Engl J Med 360:2426–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Reddy S, Jia S, Geoffrey R, Lorier R, Suchi M, Broeckel U, Hessner MJ, Verbsky J (2009) An autoinflammatory disease due to homozygous deletion of the IL1RN locus. N Engl J Med 360:2438–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Al-Mosawi ZS, Al-Saad KK, Ijadi-Maghsoodi R, El-Shanti HI, Ferguson PJ (2007) A splice site mutation confirms the role of LPIN2 in Majeed syndrome. Arthritis Rheum 56:960–4

    Article  CAS  PubMed  Google Scholar 

  56. Majeed HA, Kalaawi M, Mohanty D, Teebi AS, Tunjekar MF, al-Gharbawy F, Majeed SA, al-Gazzar AH (1989) Congenital dyserythropoietic anemia and chronic recurrent multifocal osteomyelitis in three related children and the association with Sweet syndrome in two siblings. J Pediatr 115:730–4

    Article  CAS  PubMed  Google Scholar 

  57. Majeed HA, El-Shanti H, Al-Rimawi H, Al-Masri N (2000) On mice and men: an autosomal recessive syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anemia. J Pediatr 137:441–2

    Article  CAS  PubMed  Google Scholar 

  58. Majeed HA, Al-Tarawna M, El-Shanti H, Kamel B, Al-Khalaileh F (2001) The syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia. Report of a new family and a review. Eur J Pediatr 160:705–10

    Article  CAS  PubMed  Google Scholar 

  59. Herlin T, Fiirgaard B, Bjerre M, Kerndrup G, Hasle H, Bing X, Ferguson PJ (2013) Efficacy of anti-IL-1 treatment in Majeed syndrome. Ann Rheum Dis 72:410–3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Reue K (2009) The lipin family: mutations and metabolism. Curr Opin Lipidol 20:165–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Donkor J, Zhang P, Wong S, O’Loughlin L, Dewald J, Kok BP, Brindley DN, Reue K (2009) A conserved serine residue is required for the phosphatidate phosphatase activity but not the transcriptional coactivator functions of lipin-1 and lipin-2. J Biol Chem 284:29968–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Lee JY, Sohn KH, Rhee SH, Hwang D (2001) Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through toll-like receptor 4. J Biol Chem 276:16683–9

    Article  CAS  PubMed  Google Scholar 

  64. Hwang D (2001) Modulation of the expression of cyclooxygenase-2 by fatty acids mediated through toll-like receptor 4-derived signaling pathways. FASEB J 15:2556–64

    Article  CAS  PubMed  Google Scholar 

  65. Valdearcos M, Esquinas E, Meana C, Pena L, Gil-de-Gomez L, Balsinde J, Balboa MA (2012) Lipin-2 reduces proinflammatory signaling induced by saturated fatty acids in macrophages. J Biol Chem 287:10894–904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Goldbach-Mansky R (2012) Immunology in clinic review series; focus on autoinflammatory diseases: update on monogenic autoinflammatory diseases: the role of interleukin (IL)-1 and an emerging role for cytokines beyond IL-1. Clin Exp Immunol 167:391–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Netea MG, van de Veerdonk FL, van der Meer JW, Dinarello CA, Joosten LA (2014) Inflammasome-independent regulation of IL-1-family cytokines. Annu Rev Immunol

  68. Lukens JR, Gurung P, Vogel P, Johnson GR, Carter RA, McGoldrick DJ, Bandi SR, Calabrese CR, Walle LV, Lamkanfi M, Kanneganti TD (2014) Dietary modulation of the microbiome affects autoinflammatory disease. Nature 516:246–249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

PJF is supported by the National Institutes of Health Grant R01 AR059703.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polly J. Ferguson.

Additional information

This article is a contribution to the Special Issue on The Inflammasome and Autoinflammatory Diseases - Guest Editors: Seth L. Masters, Tilmann Kallinich and Seza Ozen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferguson, P.J., Laxer, R.M. New discoveries in CRMO: IL-1β, the neutrophil, and the microbiome implicated in disease pathogenesis in Pstpip2-deficient mice. Semin Immunopathol 37, 407–412 (2015). https://doi.org/10.1007/s00281-015-0488-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-015-0488-2

Keywords

Navigation