Skip to main content

Advertisement

Log in

Synovial and inflammatory diseases in childhood: role of new imaging modalities in the assessment of patients with juvenile idiopathic arthritis

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Juvenile idiopathic arthritis (JIA) represents a group of heterogeneous diseases characterized by a chronic inflammatory process primarily targeting the synovial membrane. A persistent synovitis is associated with an increased risk of osteocartilaginous damage.

With the advent of effective structure-modifying treatment for JIA, it may be possible to significantly reduce or even completely prevent structural damage and associated functional disability. The trend towards early suppression of inflammation, in order to prevent erosive disease, shifts the emphasis away from conventional radiographic detectable structural damage to the slightest traces of early joint damage, and drives the need for alternative imaging techniques more sensitive in detecting early signs of disease activity and damage. In this regard MRI and US are playing an increasing role in the evaluation of arthritic joints.

This article will review the key aspects of the current status and recent important advances of imaging techniques available to investigate the child with rheumatic disease, briefly discussing conventional radiography, and particularly focusing on MRI and US. In this era of advancing imaging technology, knowledge of the relative values of available imaging techniques is necessary to optimize the management of children with JIA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ravelli A, Martini A (2007) Juvenile idiopathic arthritis. Lancet 369:767–778

    Article  CAS  PubMed  Google Scholar 

  2. van Rossum MA, Zwinderman AH, Boers M et al (2003) Radiologic features in juvenile idiopathic arthritis: a first step in the development of a standardized assessment method. Arthritis Rheum 48:507–515

    Article  PubMed  Google Scholar 

  3. Wallace CA, Levinson JE (1991) Juvenile rheumatoid arthritis: outcome and treatment for the 1990s. Rheum Dis Clin North Am 17:891–905

    CAS  PubMed  Google Scholar 

  4. Miller ML (2002) Use of imaging in the differential diagnosis of rheumatic disease in children. Rheum Dis Clin North Am 28:483–492

    Article  PubMed  Google Scholar 

  5. Petty RE, Southwood TR, Manners P et al (2004) International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton 2001. J Rheumatol 31:390–392

    PubMed  Google Scholar 

  6. Lovell DJ, Giannini EH, Reiff A et al (2000) Etanercept in children with polyarticular juvenile rheumatoid arthritis. Pediatric Rheumatology Collaborative Study Group. N Engl J Med 342:763–769

    Article  CAS  PubMed  Google Scholar 

  7. Lovell DJ, Ruperto N, Goodman S et al (2008) Adalimumab with or without methotrexate in juvenile rheumatoid arthritis. N Engl J Med 359:810–820

    Article  CAS  PubMed  Google Scholar 

  8. Swee RG, Gray JE, Beabout JW et al (1997) Screen-film versus computed radiography imaging of the hand: a direct comparison. AJR 168:539–542

    CAS  PubMed  Google Scholar 

  9. van der Jagt EJ, Hofman S, Kraft BM et al (2000) Can we see enough? A comparative study of film-screen vs digital radiographs in small lesions in rheumatoid arthritis. Eur Radiol 10:304–307

    Article  PubMed  Google Scholar 

  10. Ludwig K, Henschel A, Bernhardt TM et al (2003) Performance of a flat-panel detector in the detection of artificial erosive changes: comparison with conventional screen-film and storage-phosphor radiography. Eur Radiol 13:1316–1323

    PubMed  Google Scholar 

  11. US Department of Health and Human Services; Food and Drug Administration. Guidance for industry: clinical development programs for drugs, devices, and biological products for the treatment of rheumatoid arthritis. Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research, Center for Devices and Radiologic Health; February 1999. Available at: http://www.fda.gov/cber/gdlns/rheumcln.pdf. Accessed December 3, 2007

  12. Ravelli A (2008) The time has come to include assessment of radiographic progression in juvenile idiopathic arthritis clinical trials. J Rheumatol 35:553–557

    PubMed  Google Scholar 

  13. Østergaard M, Peterfy C, Conaghan P et al (2003) OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging Studies. Core set of MRI acquisitions, joint pathology definitions, and the OMERACT RA-MRI scoring system. J Rheumatol 30:1385–1386

    PubMed  Google Scholar 

  14. Nistala K, Babar J, Johnson K et al (2007) Clinical assessment and core outcome variables are poor predictors of hip arthritis diagnosed by MRI in juvenile idiopathic arthritis. Rheumatology 46:699–702

    Article  CAS  PubMed  Google Scholar 

  15. Argyropoulou MI, Fanis SL, Xenakis T et al (2002) The role of MRI in the evaluation of hip joint disease in clinical subtypes of juvenile idiopathic arthritis. Br J Radiol 75:229–233

    CAS  PubMed  Google Scholar 

  16. El-Miedany YM, Housny IH, Mansour HM et al (2001) Ultrasound versus MRI in the evaluation of juvenile idiopathic arthritis of the knee. Joint Bone Spine 68:222–230

    Article  CAS  PubMed  Google Scholar 

  17. Miller E, Roposch A, Uleryk E et al (2009) Juvenile idiopathic arthritis of peripheral joints: quality of reporting of diagnostic accuracy of conventional MRI. Acad Radiol 16:739–757

    Article  PubMed  Google Scholar 

  18. Miller E, Uleryk E, Doria AS (2009) Evidence-based outcomes of studies addressing diagnostic accuracy of MRI of juvenile idiopathic arthritis. AJR 192:1209–1218

    Article  PubMed  Google Scholar 

  19. Lamer S, Sebag GH (2000) MRI and ultrasound in children with juvenile chronic arthritis. Eur J Radiol 33:85–93

    Article  CAS  PubMed  Google Scholar 

  20. Brown AK, Quinn MA, Karim Z et al (2006) Presence of significant synovitis in rheumatoid arthritis patients with disease-modifying antirheumatic drug-induced clinical remission: evidence from an imaging study may explain structural progression. Arthritis Rheum 54:3761–3773

    Article  CAS  PubMed  Google Scholar 

  21. Gardner-Medwin JM, Killeen OG, Ryder CA et al (2006) Magnetic resonance imaging identifies features in clinically unaffected knees predicting extension of arthritis in children with monoarthritis. J Rheumatol 33:2337–2343

    PubMed  Google Scholar 

  22. Cimmino MA, Bountis C, Silvestri E et al (2000) An appraisal of magnetic resonance imaging of the wrist in rheumatoid arthritis. Semin Arthritis Rheum 30:180–195

    Article  CAS  PubMed  Google Scholar 

  23. Sugimoto H, Takeda A, Kano S (1998) Assessment of disease activity in rheumatoid arthritis using magnetic resonance imaging: quantification of pannus volume in the hands. Br J Rheumatol 37:854–861

    Article  CAS  PubMed  Google Scholar 

  24. Bird P, Lassere M, Shnier R et al (2003) Computerized measurement of magnetic resonance imaging erosion volumes in patients with rheumatoid arthritis: a comparison with existing magnetic resonance imaging scoring systems and standard clinical outcome measures. Arthritis Rheum 48:614–624

    Article  PubMed  Google Scholar 

  25. Zikou AK, Argyropoulou MI, Voulgari PV et al (2006) Magnetic resonance imaging quantification of hand synovitis in patients with rheumatoid arthritis treated with adalimumab. J Rheumatol 33:219–223

    CAS  PubMed  Google Scholar 

  26. Ostergaard M, Hansen M, Stoltenberg M et al (1999) Magnetic resonance imaging-determined synovial membrane volume as a marker of disease activity and a predictor of progressive joint destruction in the wrists of patients with rheumatoid arthritis. Arthritis Rheum 42:918–929

    Article  CAS  PubMed  Google Scholar 

  27. Graham TB, Laor T, Dardzinski BJ (2005) Quantitative magnetic resonance imaging of the hands and wrists of children with juvenile rheumatoid arthritis. J Rheumatol 32:1811–1820

    PubMed  Google Scholar 

  28. Gylys-Morin VM, Graham TB, Blebea JS et al (2001) Knee in early juvenile rheumatoid arthritis: MR imaging findings. Radiology 220:696–706

    Article  CAS  PubMed  Google Scholar 

  29. Hodgson RJ, O’Connor P, Moots R (2008) MRI of rheumatoid arthritis image quantitation for the assessment of disease activity, progression and response to therapy. Rheumatology 47:13–21

    Article  CAS  PubMed  Google Scholar 

  30. Palosaari K, Vuotila J, Takalo R et al (2004) Contrast-enhanced dynamic and static MRI correlates with quantitative 99mTc-labelled nanocolloid scintigraphy. Study of early rheumatoid arthritis patients. Rheumatology 43:1364–1373

    Article  CAS  PubMed  Google Scholar 

  31. Ostergaard M, Ejbjerg B, Stoltenberg M et al (2001) Quantitative magnetic resonance imaging as marker of synovial membrane regeneration and recurrence of synovitis after arthroscopic knee joint synovectomy: a one year follow up study. Ann Rheum Dis 60:233–236

    Article  CAS  PubMed  Google Scholar 

  32. Tam LS, Griffith JF, Yu AB et al (2007) Rapid improvement in rheumatoid arthritis patients on combination of methotrexate and infliximab: clinical and magnetic resonance imaging evaluation. Clin Rheumatol 26:941–946

    Article  PubMed  Google Scholar 

  33. Reece RJ, Kraan MC, Radjenovic A et al (2002) Comparative assessment of leflunomide and methotrexate for the treatment of rheumatoid arthritis, by dynamic enhanced magnetic resonance imaging. Arthritis Rheum 46:366–372

    Article  CAS  PubMed  Google Scholar 

  34. Huang J, Stewart N, Crabbe J et al (2000) A 1-year follow-up study of dynamic magnetic resonance imaging in early rheumatoid arthritis reveals synovitis to be increased in shared epitope-positive patients and predictive of erosions at 1 year. Rheumatology 39:407–416

    Article  CAS  PubMed  Google Scholar 

  35. Malattia C, Damasio MB, Basso C et al (2010) Dynamic contrast-enhanced magnetic resonance imaging in the assessment of disease activity in patients with juvenile idiopathic arthritis. Rheumatology 49:178–185

    Article  PubMed  Google Scholar 

  36. Workie DW, Dardzinski BJ, Graham TB et al (2004) Quantification of dynamic contrast-enhanced MR imaging of the knee in children with juvenile rheumatoid arthritis based on pharmacokinetic modelling. Magn Reson Imaging 22:1201–1210

    Article  PubMed  Google Scholar 

  37. Workie DW, Graham TB, Laor T et al (2007) Quantitative MR characterization of disease activity in the knee in children with juvenile idiopathic arthritis: a longitudinal pilot study. Pediatr Radiol 37:535–543

    Article  PubMed  Google Scholar 

  38. Kubassova O, Boesen M, Cimmino MA et al (2009) A computer-aided detection system for rheumatoid arthritis MRI data interpretation and quantification of synovial activity. Eur J Radiol May 1 [Epub ahead of print]

  39. McQueen FM, Benton N, Perry D et al (2003) Bone edema scored on magnetic resonance imaging scans of the dominant carpus at presentation predicts radiographic joint damage of the hands and feet 6 years later in patients with rheumatoid arthritis. Arthritis Rheum 48:1814–1827

    Article  PubMed  Google Scholar 

  40. Benton N, Stewart N, Crabbe J et al (2004) MRI of the wrist in early rheumatoid arthritis can be used to predict functional outcome at 6 years. Ann Rheum Dis 63:555–561

    Article  CAS  PubMed  Google Scholar 

  41. Dalbeth N, Smith T, Gray S et al (2009) Cellular characterization of magnetic resonance imaging bone oedema in rheumatoid arthritis; implications for pathogenesis of erosive disease. Ann Rheum Dis 68:279–282

    Article  CAS  PubMed  Google Scholar 

  42. Peterfy CG, Genant HK (1996) Emerging applications of magnetic resonance imaging in the evaluation of articular cartilage. Radiol Clin North Am 34:195–213

    CAS  PubMed  Google Scholar 

  43. Doria AS, Babyn PS, Feldman B (2006) A critical appraisal of radiographic scoring systems for assessment of juvenile idiopathic arthritis. Pediatr Radiol 36:759–772

    Article  PubMed  Google Scholar 

  44. Herve-Somma CM, Sebag GH, Prieur AM et al (1992) Juvenile rheumatoid arthritis of the knee: MR evaluation with Gd-DOTA. Radiology 182:93–98

    CAS  PubMed  Google Scholar 

  45. Eich GF, Halle F, Hodler J et al (1994) Juvenile chronic arthritis: imaging of the knees and hips before and after intraarticular steroid infection. Pediatr Radiol 24:558–563

    Article  CAS  PubMed  Google Scholar 

  46. Hardy PA, Recht MP, Piraino D et al (1996) Optimization of a dual echo in the steady state (DESS) free-precession sequence for imaging cartilage. J Magn Reson Imaging 6:329–335

    Article  CAS  PubMed  Google Scholar 

  47. Ruehm S, Zanetti M, Romero J et al (1998) MRI of patellar articular cartilage: evaluation of an optimized gradient echo sequence (3D-DESS). J Magn Reson Imaging 8:1246–1251

    Article  CAS  PubMed  Google Scholar 

  48. Reeder SB, Wen Z, Yu H et al (2004) Multicoil Dixon chemical species separation with an iterative least-squares estimation method. Magn Reson Med 51:35–45

    Article  CAS  PubMed  Google Scholar 

  49. Duerk JL, Lewin JS, Wendt M et al (1998) Remember true FISP? A high SNR, near 1-second imaging method for T2-like contrast in interventional MRI at .2T. J Magn Reson Imaging 8:203–208

    Article  CAS  PubMed  Google Scholar 

  50. Kight AC, Dardzinski BJ, Laor T et al (2004) Magnetic resonance imaging evaluation of the effects of juvenile rheumatoid arthritis on distal femoral weight-bearing cartilage. Arthritis Rheum 50:901–905

    Article  PubMed  Google Scholar 

  51. Potter K, Butler JJ, Horton WE et al (2000) Response of engineered cartilage tissue to biochemical agents as studied by proton magnetic resonance microscopy. Arthritis Rheum 43:1580–1590

    Article  CAS  PubMed  Google Scholar 

  52. Malattia C, Damasio MB, Magnaguagno F et al (2008) Magnetic resonance imaging, ultrasonography, and conventional radiography in the assessment of bone erosions in juvenile idiopathic arthritis. Arthritis Rheum 59:1764–1772

    Article  PubMed  Google Scholar 

  53. Gilkeson G, Polisson R, Sinclair H et al (1988) Early detection of carpal erosions in patients with rheumatoid arthritis: a pilot study of magnetic resonance imaging. J Rheumatol 15:1361–1366

    CAS  PubMed  Google Scholar 

  54. Backhaus M, Kamradt T, Sandrock D et al (1999) Arthritis of the finger joints: a comprehensive approach comparing conventional radiography, scintigraphy, ultrasound, and contrast-enhanced magnetic resonance imaging. Arthritis Rheum 42:1232–1245

    Article  CAS  PubMed  Google Scholar 

  55. McQueen FM, Stewart N, Crabbe J et al (1998) Magnetic resonance imaging of the wrist in early rheumatoid arthritis reveals a high prevalence of erosions at four months after symptom onset. Ann Rheum Dis 57:350–356

    Article  CAS  PubMed  Google Scholar 

  56. Hoving JL, Buchbinder R, Hall S et al (2004) A comparison of magnetic resonance imaging, sonography, and radiography of the hand in patients with early rheumatoid arthritis. J Rheumatol 31:663–675

    PubMed  Google Scholar 

  57. Østergaard M, Hansen M, Stoltenberg M et al (2003) New radiographic bone erosions in the wrists of patients with rheumatoid arthritis are detectable with magnetic resonance imaging a median of 2 years earlier. Arthritis Rheum 48:2128–2131

    Article  PubMed  Google Scholar 

  58. Perry D, Stewart N, Benton N et al (2005) Detection of erosions in the rheumatoid hand; a comparative study of multidetector computerized tomography versus magnetic resonance scanning. J Rheumatol 32:256–267

    PubMed  Google Scholar 

  59. Døhn UM, Ejbjerg BJ, Hasselquist M et al (2007) Rheumatoid arthritis bone erosion volumes on CT and MRI: reliability and correlations with erosion scores on CT, MRI and radiography. Ann Rheum Dis 66:1388–1392

    Article  PubMed  Google Scholar 

  60. McQueen FM, Benton N, Crabbe J et al (2001) What is the fate of erosions in early rheumatoid arthritis? Tracking individual lesions using x rays and magnetic resonance imaging over the first 2 years of disease. Ann Rheum Dis 60:859–868

    CAS  PubMed  Google Scholar 

  61. Wakefield RJ, Balint PV, Szkudlarek M et al (2005) Musculoskeletal ultrasound including definitions for ultrasonographic pathology. J Rheumatol 32:2485–2487

    PubMed  Google Scholar 

  62. Muller L, Kellenberger CJ, Cannizzaro E et al (2009) Early diagnosis of temporomandibular joint involvement in juvenile idiopathic arthritis: a pilot study comparing clinical examination and ultrasound to magnetic resonance imaging. Rheumatology 48:680–685

    Article  PubMed  Google Scholar 

  63. Magni-Manzoni S, Epis O, Ravelli A et al (2009) Comparison of clinical versus ultrasound-determined synovitis in juvenile idiopathic arthritis. Arthritis Rheum 61:1497–1504

    Article  PubMed  Google Scholar 

  64. Haslam KE, McCann LJ, Wyatt S et al (2010) The detection of subclinical synovitis by ultrasound in oligoarticular juvenile idiopathic arthritis: a pilot study. Rheumatology 49:123–127

    Article  PubMed  Google Scholar 

  65. Giannini EH, Brewer EJ, Kuzmina N et al (1992) Methotrexate in resistant juvenile rheumatoid arthritis: results of the USA-USSR double-blind, placebo-controlled trial. The Pediatric Rheumatology Collaborative Study group and The Cooperative Children’s Study group. N Engl J Med 326:1043–1049

    Article  CAS  PubMed  Google Scholar 

  66. Ruperto N, Murray KJ, Gerloni V et al (2004) A randomized trial of parenteral methotrexate comparing an intermediate dose with a higher dose in children with juvenile idiopathic arthritis who failed to respond to standard doses of methotrexate. Arthritis Rheum 50:2191–2201

    Article  CAS  PubMed  Google Scholar 

  67. Doria AS, Kiss MH, Lotito AP et al (2001) Juvenile rheumatoid arthritis of the knee: evaluation with contrast enhanced color Doppler ultrasound. Pediatr Radiol 31:524–531

    Article  CAS  PubMed  Google Scholar 

  68. Newman JS, Laing TJ, McCarthy CJ et al (1996) Power Doppler sonography of synovitis: assessment of therapeutic response–preliminary observations. Radiology 198:582–584

    CAS  PubMed  Google Scholar 

  69. Strunk J, Klingenberger P, Strube K et al (2006) Three-dimensional Doppler sonographic vascular imaging in regions with increased MR enhancement in inflamed wrists of patients with rheumatoid arthritis. Joint Bone Spine 73:518–522

    Article  PubMed  Google Scholar 

  70. Mouterde G, Carotti M, D’Agostino MA (2009) Contrast-enhanced ultrasound in musculoskeletal diseases. J Radiol 90:148–155

    Article  CAS  PubMed  Google Scholar 

  71. Spannow AH, Pfeiffer-Jensen M, Andersen NT et al (2009) Inter- and intraobserver variation of ultrasonographic cartilage thickness assessments in small and large joints in healthy children. Pediatr Rheumatol Online J 7:12

    Article  PubMed  Google Scholar 

  72. Möller B, Bonel H, Rotzetter M et al (2009) Measuring finger joint cartilage by ultrasound as a promising alternative to conventional radiograph imaging. Arthritis Rheum 61:435–441

    Article  PubMed  Google Scholar 

  73. Wakefield RJ, O’Connor PJ, Conaghan PG et al (2007) Finger tendon disease in untreated early rheumatoid arthritis: a comparison of ultrasound and magnetic resonance imaging. Arthritis Rheum 57:1158–1164

    Article  CAS  PubMed  Google Scholar 

  74. Buchmann RF, Jaramillo D (2004) Imaging of articular disorders in children. Radiol Clin North Am 42:151–168

    Article  PubMed  Google Scholar 

  75. Rooney ME, McAllister C, Burns JF (2009) Ankle disease in juvenile idiopathic arthritis: ultrasound findings in clinically swollen ankles. J Rheumatol 36:1725–1729

    Article  PubMed  Google Scholar 

  76. McGonagle D, Benjamin M (2009) Towards a new clinico-immunopathological classification of juvenile inflammatory arthritis. J Rheumatol 36:1573–1574

    Article  PubMed  Google Scholar 

  77. Babyn P, Doria AS (2007) Radiologic investigation of rheumatic diseases. Rheum Dis Clin North Am 33:403–440

    Article  PubMed  Google Scholar 

  78. Chavhan GB, Babyn PS (2009) Pediatric musculoskeletal imaging at 3 Tesla. Semin Musculoskelet Radiol 13:181–195

    Article  PubMed  Google Scholar 

  79. Pettersson H, Rydholm U (1984) Radiologic classification of knee joint destruction in juvenile chronic arthritis. Pediatr Radiol 14:419–421

    Article  CAS  PubMed  Google Scholar 

  80. Poznanski AK, Hernandez RJ, Guire KE et al (1978) Carpal length in children- a useful measurement in the diagnosis of rheumatoid arthritis and some congenital malformation syndromes. Radiology 129:661–668

    CAS  PubMed  Google Scholar 

  81. Magni-Manzoni S, Rossi F, Pistorio A et al (2003) Prognostic factors for radiographic progression, damage, and disability in juvenile idiopathic arthritis. Arthritis Rheum 52:2865–2872

    Google Scholar 

  82. Doria AS, de Castro CC, Kiss MH et al (2003) Inter- and intrareader variability in the interpretation of two radiographic classification systems in juvenile rheumatoid arthritis. Pediatr Radiol 33:673–681

    Article  PubMed  Google Scholar 

  83. Van Rossum MA, Boers M, Zwinderman AH (2005) Development of a standardized method of assessment of radiographs and radiographic changes in juvenile idiopathic arthritis: introduction of the Dijkstra composite score. Arthritis Rheum 52:2865–2872

    Article  PubMed  Google Scholar 

  84. Rossi F, Di Dia F, Galipo O et al (2006) Use of the Sharp and Larsen scoring method in the assessment of radiographic progression in juvenile idiopathic arthritis. Arthritis Rheum 55:717–723

    Article  PubMed  Google Scholar 

  85. Ravelli A, Ioseliani M, Norambuena X et al (2007) Adapted versions of the Sharp/van der Heijde score are reliable and valid for assessment of radiographic progression in JIA. Arthritis Rheum 56:3087–3095

    Article  PubMed  Google Scholar 

  86. Bertamino M, Rossi F, Pistorio A et al (2010) Development and initial validation of a radiographic scoring system for the hip in juvenile idiopathic arthritis. J Rheumatol 37:432–439

    Article  PubMed  Google Scholar 

  87. Remedios D, Martin K, Kaplan G et al (1997) Juvenile chronic arthritis: diagnosis and management of tibio-talar and sub-talar disease. Br J Rheumatol 36:1214–1217

    Article  CAS  PubMed  Google Scholar 

  88. Kuseler A, Pederson TK, Herlin T et al (1998) Contrast enhanced magnetic resonance imaging asa method to diagnose early inflammation changes in the temporomandibular joint in children with juvenile chronic arthritis. J Rheumatol 25:1406–1412

    CAS  PubMed  Google Scholar 

  89. Karmazyn B, Bowyer SL, Schmidt KM et al (2007) US findings of metacarpophalangeal joints in children with idiopathic juvenile arthritis. Pediatr Radiol 37:475–482

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Beatrice Damasio.

Additional information

Drs Damasio and Malattia contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damasio, M.B., Malattia, C., Martini, A. et al. Synovial and inflammatory diseases in childhood: role of new imaging modalities in the assessment of patients with juvenile idiopathic arthritis. Pediatr Radiol 40, 985–998 (2010). https://doi.org/10.1007/s00247-010-1612-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-010-1612-z

Keywords

Navigation