Skip to main content

Advertisement

Log in

IL-17 producing T cells in mouse models of multiple sclerosis and rheumatoid arthritis

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Multiple Sclerosis (MS) and Rheumatoid Arthritis (RA) are amongst the most common autoimmune diseases in the northern hemisphere. There is mounting evidence that in both afflictions, not only environmental and genetic factors influence disease, but cellular components such as autoreactive T cells also contribute to pathology. Animal models are key in the study and subsequent therapeutic development for human autoimmune diseases. As patient material is often difficult to obtain and in some cases—as in MS, where the central nervous system (CNS) is concerned—even not accessible, animal models provide a multifaceted tool to explore disease-underlying mechanisms. The pro-inflammatory T cell cytokine IL-17 has recently moved to center stage due to its crucial role in autoimmune diseases including MS and RA. A plethora of studies in animal models has sustained the relevance of this cytokine pathway for the development of autoimmunity and shed light on its cellular sources and patho-mechanisms. This review addresses the role of IL-17 producing T lymphocytes, in particular CD4+ and γδ T cells, in three commonly used mouse models for MS and RA, namely experimental autoimmune encephalomyelitis (EAE), collagen-induced arthritis (CIA), and antigen-induced arthritis (AIA). Comparing and combining knowledge gained from different animal models will broaden our understanding of the IL-17 biology and facilitate the translation to the human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Firestine GS (2005) Etiology and pathogenesis of rheumatoid arthritis. Kelley's textbook of rheumatology, 7th edn. Saunders, W.B, Phildadelphia, pp 996–1042

    Google Scholar 

  2. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952

    PubMed  CAS  Google Scholar 

  3. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, Pin JJ, Garrone P, Garcia E, Saeland S et al (1996) T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 183:2593–2603

    PubMed  CAS  Google Scholar 

  4. Yao Z, Painter SL, Fanslow WC, Ulrich D, Macduff BM, Spriggs MK, Armitage RJ (1995) Human IL-17: a novel cytokine derived from T cells. J Immunol 155:5483–5486

    PubMed  CAS  Google Scholar 

  5. Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, Frappart L, Miossec P (1999) Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum 42:963–970

    PubMed  CAS  Google Scholar 

  6. Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer-Gould A, Strober S, Cannella B, Allard J et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8:500–508

    PubMed  CAS  Google Scholar 

  7. Matusevicius D, Kivisakk P, He B, Kostulas N, Ozenci V, Fredrikson S, Link H (1999) Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler 5:101–104

    PubMed  CAS  Google Scholar 

  8. Lubberts E, Joosten LA, Oppers B, van den Bersselaar L, Coenen-de Roo CJ, Kolls JK, Schwarzenberger P, van de Loo FA, van den Berg WB (2001) IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis. J Immunol 167:1004–1013

    PubMed  CAS  Google Scholar 

  9. Rivers TM, Sprunt DH, Berry GP (1933) Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J Exp Med 58:39–53

    PubMed  CAS  Google Scholar 

  10. Stuart G, Krikorian KS (1928) The neuro-paralytic accidents of rabies treatment. Ann Trop Med Parasitol 22:327–377

    Google Scholar 

  11. Kabat EA, Wolf A, Bezer A (1947) The rapid production of acute disseminated encephalomyelitis in rhesus monkeys by injections of heterologous and homologous brain tissue with adjuvants. J Exp Med 85:117–130

    PubMed  CAS  Google Scholar 

  12. Hofstetter HH, Shive CL, Forsthuber TG (2002) Pertussis toxin modulates the immune response to neuroantigens injected in incomplete Freund's adjuvant: induction of Th1 cells and experimental autoimmune encephalomyelitis in the presence of high frequencies of Th2 cells. J Immunol 169:117–125

    PubMed  CAS  Google Scholar 

  13. Waldner H, Collins M, Kuchroo VK (2004) Activation of antigen-presenting cells by microbial products breaks self tolerance and induces autoimmune disease. J Clin Invest 113:990–997

    PubMed  CAS  Google Scholar 

  14. Paterson PY (1960) Transfer of allergic encephalomyelitis in rats by means of lymph node cells. J Exp Med 111:119–136

    PubMed  CAS  Google Scholar 

  15. Mokhtarian F, McFarlin DE, Raine CS (1984) Adoptive transfer of myelin basic protein-sensitized T cells produces chronic relapsing demyelinating disease in mice. Nature 309:356–358

    PubMed  CAS  Google Scholar 

  16. Krishnamoorthy G, Holz A, Wekerle H (2007) Experimental models of spontaneous autoimmune disease in the central nervous system. J Mol Med 85:1161–1173

    PubMed  CAS  Google Scholar 

  17. Mendel I, de Kerlero RN, Ben-Nun A (1995) A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic T cells. Eur J Immunol 25:1951–1959

    PubMed  CAS  Google Scholar 

  18. Kaushansky N, Hemo R, Eisenstein M, Ben-Nun A (2007) OSP/claudin-11-induced EAE in mice is mediated by pathogenic T cells primarily governed by OSP192Y residue of major encephalitogenic region OSP179-207. Eur J Immunol 37:2018–2031

    PubMed  CAS  Google Scholar 

  19. Fontoura P, Ho PP, DeVoss J, Zheng B, Lee BJ, Kidd BA, Garren H, Sobel RA, Robinson WH, Tessier-Lavigne M et al (2004) Immunity to the extracellular domain of Nogo-A modulates experimental autoimmune encephalomyelitis. J Immunol 173:6981–6992

    PubMed  CAS  Google Scholar 

  20. Krishnamoorthy G, Saxena A, Mars LT, Domingues HS, Mentele R, Ben-Nun A, Lassmann H, Dornmair K, Kurschus FC, Liblau RS et al (2009) Myelin-specific T cells also recognize neuronal autoantigen in a transgenic mouse model of multiple sclerosis. Nat Med 15:626–632

    PubMed  CAS  Google Scholar 

  21. Tuohy VK, Thomas DM (1995) Sequence 104–117 of myelin proteolipid protein is a cryptic encephalitogenic T cell determinant for SJL/J mice. J Neuroimmunol 56:161–170

    PubMed  CAS  Google Scholar 

  22. Tuohy VK, Lu Z, Sobel RA, Laursen RA, Lees MB (1989) Identification of an encephalitogenic determinant of myelin proteolipid protein for SJL mice. J Immunol 142:1523–1527

    PubMed  CAS  Google Scholar 

  23. Tuohy VK, Sobel RA, Lu Z, Laursen RA, Lees MB (1992) Myelin proteolipid protein: minimum sequence requirements for active induction of autoimmune encephalomyelitis in SWR/J and SJL/J mice. J Neuroimmunol 39:67–74

    PubMed  CAS  Google Scholar 

  24. Greer JM, Kuchroo VK, Sobel RA, Lees MB (1992) Identification and characterization of a second encephalitogenic determinant of myelin proteolipid protein (residues 178–191) for SJL mice. J Immunol 149:783–788

    PubMed  CAS  Google Scholar 

  25. Amor S, Groome N, Linington C, Morris MM, Dornmair K, Gardinier MV, Matthieu JM, Baker D (1994) Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J Immunol 153:4349–4356

    PubMed  CAS  Google Scholar 

  26. Morris-Downes MM, McCormack K, Baker D, Sivaprasad D, Natkunarajah J, Amor S (2002) Encephalitogenic and immunogenic potential of myelin-associated glycoprotein (MAG), oligodendrocyte-specific glycoprotein (OSP) and 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) in ABH and SJL mice. J Neuroimmunol 122:20–33

    PubMed  CAS  Google Scholar 

  27. Amor S, O'Neill JK, Morris MM, Smith RM, Wraith DC, Groome N, Travers PJ, Baker D (1996) Encephalitogenic epitopes of myelin basic protein, proteolipid protein, myelin oligodendrocyte glycoprotein for experimental allergic encephalomyelitis induction in Biozzi ABH (H-2Ag7) mice share an amino acid motif. J Immunol 156:3000–3008

    PubMed  CAS  Google Scholar 

  28. Fritz RB, Skeen MJ, Chou CH, Garcia M, Egorov IK (1985) Major histocompatibility complex-linked control of the murine immune response to myelin basic protein. J Immunol 134:2328–2332

    PubMed  CAS  Google Scholar 

  29. de Rosbo NK, Kaye JF, Eisenstein M, Mendel I, Hoeftberger R, Lassmann H, Milo R, Ben-Nun A (2004) The myelin-associated oligodendrocytic basic protein region MOBP15-36 encompasses the immunodominant major encephalitogenic epitope(s) for SJL/J mice and predicted epitope(s) for multiple sclerosis-associated HLA-DRB1*1501. J Immunol 173:1426–1435

    PubMed  Google Scholar 

  30. Holz A, Bielekova B, Martin R, Oldstone MB (2000) Myelin-associated oligodendrocytic basic protein: identification of an encephalitogenic epitope and association with multiple sclerosis. J Immunol 164:1103–1109

    PubMed  CAS  Google Scholar 

  31. Tuohy VK, Lu ZJ, Sobel RA, Laursen RA, Lees MB (1988) A synthetic peptide from myelin proteolipid protein induces experimental allergic encephalomyelitis. J Immunol 141:1126–1130

    PubMed  CAS  Google Scholar 

  32. Amor S, Smith PA, Hart B, Baker D (2005) Biozzi mice: of mice and human neurological diseases. J Neuroimmunol 165:1–10

    PubMed  CAS  Google Scholar 

  33. Amor S, Baker D, Groome N, Turk JL (1993) Identification of a major encephalitogenic epitope of proteolipid protein (residues 56–70) for the induction of experimental allergic encephalomyelitis in Biozzi AB/H and nonobese diabetic mice. J Immunol 150:5666–5672

    PubMed  CAS  Google Scholar 

  34. Thoua NM, van Noort JM, Baker D, Bose A, van Sechel AC, van Stipdonk MJ, Travers PJ, Amor S (2000) Encephalitogenic and immunogenic potential of the stress protein alphaB-crystallin in Biozzi ABH (H-2A(g7)) mice. J Neuroimmunol 104:47–57

    PubMed  CAS  Google Scholar 

  35. Huizinga R, Heijmans N, Schubert P, Gschmeissner S, `t Hart BA, Herrmann H, Amor S (2007) Immunization with neurofilament light protein induces spastic paresis and axonal degeneration in Biozzi ABH mice. J Neuropathol Exp Neurol 66:295–304

    PubMed  CAS  Google Scholar 

  36. Zamvil S, Nelson P, Trotter J, Mitchell D, Knobler R, Fritz R, Steinman L (1985) T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 317:355–358

    PubMed  CAS  Google Scholar 

  37. Zamvil SS, Mitchell DJ, Moore AC, Schwarz AJ, Stiefel W, Nelson PA, Rothbard JB, Steinman L (1987) T cell specificity for class II (I-A) and the encephalitogenic N-terminal epitope of the autoantigen myelin basic protein. J Immunol 139:1075–1079

    PubMed  CAS  Google Scholar 

  38. de Kerlero RN, Mendel I, Ben-Nun A (1995) Chronic relapsing experimental autoimmune encephalomyelitis with a delayed onset and an atypical clinical course, induced in PL/J mice by myelin oligodendrocyte glycoprotein (MOG)-derived peptide: preliminary analysis of MOG T cell epitopes. Eur J Immunol 25:985–993

    Google Scholar 

  39. Whitham RH, Jones RE, Hashim GA, Hoy CM, Wang RY, Vandenbark AA, Offner H (1991) Location of a new encephalitogenic epitope (residues 43 to 64) in proteolipid protein that induces relapsing experimental autoimmune encephalomyelitis in PL/J and (SJL × PL)F1 mice. J Immunol 147:3803–3808

    PubMed  CAS  Google Scholar 

  40. Goverman J, Woods A, Larson L, Weiner LP, Hood L, Zaller DM (1993) Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 72:551–560

    PubMed  CAS  Google Scholar 

  41. Lafaille JJ, Nagashima K, Katsuki M, Tonegawa S (1994) High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice. Cell 78:399–408

    PubMed  CAS  Google Scholar 

  42. Bettelli E, Pagany M, Weiner HL, Linington C, Sobel RA, Kuchroo VK (2003) Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J Exp Med 197:1073–1081

    PubMed  CAS  Google Scholar 

  43. Krishnamoorthy G, Lassmann H, Wekerle H, Holz A (2006) Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest 116:2385–2392

    PubMed  CAS  Google Scholar 

  44. Bettelli E, Baeten D, Jager A, Sobel RA, Kuchroo VK (2006) Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J Clin Invest 116:2393–2402

    PubMed  CAS  Google Scholar 

  45. Na SY, Cao Y, Toben C, Nitschke L, Stadelmann C, Gold R, Schimpl A, Hunig T (2008) Naive CD8 T-cells initiate spontaneous autoimmunity to a sequestered model antigen of the central nervous system. Brain 131:2353–2365

    PubMed  Google Scholar 

  46. Waldner H, Whitters MJ, Sobel RA, Collins M, Kuchroo VK (2000) Fulminant spontaneous autoimmunity of the central nervous system in mice transgenic for the myelin proteolipid protein-specific T cell receptor. Proc Natl Acad Sci U S A 97:3412–3417

    PubMed  CAS  Google Scholar 

  47. Pollinger B, Krishnamoorthy G, Berer K, Lassmann H, Bosl MR, Dunn R, Domingues HS, Holz A, Kurschus FC, Wekerle H (2009) Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells. J Exp Med 206:1303–1316

    PubMed  Google Scholar 

  48. Trentham DE, Townes AS, Kang AH (1977) Autoimmunity to type II collagen an experimental model of arthritis. J Exp Med 146:857–868

    PubMed  CAS  Google Scholar 

  49. Glant TT, Mikecz K, Arzoumanian A, Poole AR (1987) Proteoglycan-induced arthritis in BALB/c mice. Clinical features and histopathology. Arthritis Rheum 30:201–212

    PubMed  CAS  Google Scholar 

  50. Carlsen S, Hansson AS, Olsson H, Heinegard D, Holmdahl R (1998) Cartilage oligomeric matrix protein (COMP)-induced arthritis in rats. Clin Exp Immunol 114:477–484

    PubMed  CAS  Google Scholar 

  51. Olivares ME, Hernandez Ramirez DF, Nunez-Alvarez CA, Cabiedes J (2011) Citrullinated proteins in rheumatoid arthritis. Reumatol Clin 7:68–71

    Google Scholar 

  52. Stuart JM, Dixon FJ (1983) Serum transfer of collagen-induced arthritis in mice. J Exp Med 158:378–392

    PubMed  CAS  Google Scholar 

  53. Holmdahl R, Klareskog L, Rubin K, Larsson E, Wigzell H (1985) T lymphocytes in collagen II-induced arthritis in mice. Characterization of arthritogenic collagen II-specific T-cell lines and clones. Scand J Immunol 22:295–306

    PubMed  CAS  Google Scholar 

  54. Campbell IK, Hamilton JA, Wicks IP (2000) Collagen-induced arthritis in C57BL/6 (H-2b) mice: new insights into an important disease model of rheumatoid arthritis. Eur J Immunol 30:1568–1575

    PubMed  CAS  Google Scholar 

  55. Brackertz D, Mitchell GF, Mackay IR (1977) Antigen-induced arthritis in mice. I. Induction of arthritis in various strains of mice. Arthritis Rheum 20:841–850

    PubMed  CAS  Google Scholar 

  56. Buchner E, Brauer R, Schmidt C, Emmrich F, Kinne RW (1995) Induction of flare-up reactions in rat antigen-induced arthritis. J Autoimmun 8:61–74

    PubMed  CAS  Google Scholar 

  57. Courtenay JS, Dallman MJ, Dayan AD, Martin A, Mosedale B (1980) Immunisation against heterologous type II collagen induces arthritis in mice. Nature 283:666–668

    PubMed  CAS  Google Scholar 

  58. Carlsen S, Nandakumar KS, Backlund J, Holmberg J, Hultqvist M, Vestberg M, Holmdahl R (2008) Cartilage oligomeric matrix protein induction of chronic arthritis in mice. Arthritis Rheum 58:2000–2011

    PubMed  CAS  Google Scholar 

  59. Potter M, Wax JS (1981) Genetics of susceptibility to pristane-induced plasmacytomas in BALB/cAn: reduced susceptibility in BALB/cJ with a brief description of pristane-induced arthritis. J Immunol 127:1591–1595

    PubMed  CAS  Google Scholar 

  60. Koga T, Kakimoto K, Hirofuji T, Kotani S, Ohkuni H, Watanabe K, Okada N, Okada H, Sumiyoshi A, Saisho K (1985) Acute joint inflammation in mice after systemic injection of the cell wall, its peptidoglycan, and chemically defined peptidoglycan subunits from various bacteria. Infect Immun 50:27–34

    PubMed  CAS  Google Scholar 

  61. van den Broek MF, van den Berg WB, van de Putte LB, Severijnen AJ (1988) Streptococcal cell wall-induced arthritis and flare-up reaction in mice induced by homologous or heterologous cell walls. Am J Pathol 133:139–149

    PubMed  Google Scholar 

  62. Kouskoff V, Korganow AS, Duchatelle V, Degott C, Benoist C, Mathis D (1996) Organ-specific disease provoked by systemic autoimmunity. Cell 87:811–822

    PubMed  CAS  Google Scholar 

  63. Horai R, Saijo S, Tanioka H, Nakae S, Sudo K, Okahara A, Ikuse T, Asano M, Iwakura Y (2000) Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. J Exp Med 191:313–320

    PubMed  CAS  Google Scholar 

  64. Sakaguchi N, Takahashi T, Hata H, Nomura T, Tagami T, Yamazaki S, Sakihama T, Matsutani T, Negishi I, Nakatsuru S et al (2003) Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426:454–460

    PubMed  CAS  Google Scholar 

  65. Atsumi T, Ishihara K, Kamimura D, Ikushima H, Ohtani T, Hirota S, Kobayashi H, Park SJ, Saeki Y, Kitamura Y et al (2002) A point mutation of Tyr-759 in interleukin 6 family cytokine receptor subunit gp130 causes autoimmune arthritis. J Exp Med 196:979–990

    PubMed  CAS  Google Scholar 

  66. Iwakura Y, Tosu M, Yoshida E, Takiguchi M, Sato K, Kitajima I, Nishioka K, Yamamoto K, Takeda T, Hatanaka M (1991) Induction of inflammatory arthropathy resembling rheumatoid arthritis in mice transgenic for HTLV-I. Science 253:1026–1028

    PubMed  CAS  Google Scholar 

  67. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517

    PubMed  CAS  Google Scholar 

  68. Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, Sudo K, Iwakura Y (2006) IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 177:566–573

    PubMed  CAS  Google Scholar 

  69. Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM, Fugger L (2008) Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 172:146–155

    PubMed  CAS  Google Scholar 

  70. Montes M, Zhang X, Berthelot L, Laplaud DA, Brouard S, Jin J, Rogan S, Armao D, Jewells V, Soulillou JP et al (2009) Oligoclonal myelin-reactive T-cell infiltrates derived from multiple sclerosis lesions are enriched in Th17 cells. Clin Immunol 130:133–144

    PubMed  CAS  Google Scholar 

  71. Durelli L, Conti L, Clerico M, Boselli D, Contessa G, Ripellino P, Ferrero B, Eid P, Novelli F (2009) T-helper 17 cells expand in multiple sclerosis and are inhibited by interferon-beta. Ann Neurol 65:499–509

    PubMed  CAS  Google Scholar 

  72. Hedegaard CJ, Krakauer M, Bendtzen K, Lund H, Sellebjerg F, Nielsen CH (2008) T helper cell type 1 (Th1), Th2 and Th17 responses to myelin basic protein and disease activity in multiple sclerosis. Immunology 125:161–169

    PubMed  CAS  Google Scholar 

  73. Venken K, Hellings N, Hensen K, Rummens JL, Stinissen P (2010) Memory CD4 + CD127high T cells from patients with multiple sclerosis produce IL-17 in response to myelin antigens. J Neuroimmunol 226:185–191

    PubMed  CAS  Google Scholar 

  74. Ramgolam VS, Sha Y, Jin J, Zhang X, Markovic-Plese S (2009) IFN-beta inhibits human Th17 cell differentiation. J Immunol 183:5418–5427

    PubMed  CAS  Google Scholar 

  75. Sweeney CM, Lonergan R, Basdeo SA, Kinsella K, Dungan LS, Higgins SC, Kelly PJ, Costelloe L, Tubridy N, Mills KH et al (2011) IL-27 mediates the response to IFN-beta therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain Behav Immun 25:1170–1181

    PubMed  CAS  Google Scholar 

  76. Axtell RC, de Jong BA, Boniface K, van der Voort LF, Bhat R, De SP, Naves R, Han M, Zhong F, Castellanos JG et al (2010) T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat Med 16:406–412

    PubMed  CAS  Google Scholar 

  77. Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, Cua DJ, Ahlfors H, Wilhelm C, Tolaini M, Menzel U et al (2011) Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol 12:255–263

    PubMed  CAS  Google Scholar 

  78. Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, Sedgwick JD, Cua DJ (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198:1951–1957

    PubMed  CAS  Google Scholar 

  79. Miranda-Carus ME, Balsa A, Benito-Miguel M, de Perez AC, Martin-Mola E (2004) IL-15 and the initiation of cell contact-dependent synovial fibroblast-T lymphocyte cross-talk in rheumatoid arthritis: effect of methotrexate. J Immunol 173:1463–1476

    PubMed  CAS  Google Scholar 

  80. van Hamburg JP, Asmawidjaja PS, Davelaar N, Mus AM, Colin EM, Hazes JM, Dolhain RJ, Lubberts E (2011) Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum 63:73–83

    PubMed  Google Scholar 

  81. Ziolkowska M, Koc A, Luszczykiewicz G, Ksiezopolska-Pietrzak K, Klimczak E, Chwalinska-Sadowska H, Maslinski W (2000) High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J Immunol 164:2832–2838

    PubMed  CAS  Google Scholar 

  82. Zizzo G, De SM, Bosello SL, Fedele AL, Peluso G, Gremese E, Tolusso B, Ferraccioli G (2011) Synovial fluid-derived T helper 17 cells correlate with inflammatory activity in arthritis, irrespectively of diagnosis. Clin Immunol 138:107–116

    PubMed  CAS  Google Scholar 

  83. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, Tanaka S, Kodama T, Akira S, Iwakura Y et al (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203:2673–2682

    PubMed  CAS  Google Scholar 

  84. Hirota K, Yoshitomi H, Hashimoto M, Maeda S, Teradaira S, Sugimoto N, Yamaguchi T, Nomura T, Ito H, Nakamura T et al (2007) Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med 204:2803–2812

    PubMed  CAS  Google Scholar 

  85. Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, Uccelli A, Lanzavecchia A, Engelhardt B, Sallusto F (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10:514–523

    PubMed  CAS  Google Scholar 

  86. Hsu H-C, Yang P-A, Wang J, Wu Q, Myers R, Chen J, Yi J, Guentert T, Tousson A, Stanus AL et al (2008) Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nature Immunol 9:166–175

    CAS  Google Scholar 

  87. Doreau A, Belot A, Bastid J, Riche B, Trescol-Biémont M-C, Ranchin B, Fabien N, Cochat P, Pouteil-Noble C, Trolliet P et al (2009) Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nature Immunol 10(7):778–85

    CAS  Google Scholar 

  88. Mitsdoerffer M, Lee YL, Jäger A, Kim H-J, Korn T, Kolls JK, Cantor H, Bettelli E, Kuchroo VK (2010) Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc Natl Acad Sci USA 107:14292–14297

    PubMed  CAS  Google Scholar 

  89. Nakae S, Nambu A, Sudo K, Iwakura Y (2003) Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 171:6173–6177

    PubMed  CAS  Google Scholar 

  90. Ito Y, Usui T, Kobayashi S, Iguchi-Hashimoto M, Ito H, Yoshitomi H, Nakamura T, Shimizu M, Kawabata D, Yukawa N et al (2009) Gamma/delta T cells are the predominant source of interleukin-17 in affected joints in collagen-induced arthritis, but not in rheumatoid arthritis. Arthritis Rheum 60:2294–2303

    PubMed  CAS  Google Scholar 

  91. Pollinger B, Junt T, Metzler B, Walker UA, Tyndall A, Allard C, Bay S, Keller R, Raulf F, Di PF et al (2011) Th17 cells, not IL-17 + (gamma)(delta) T cells, drive arthritic bone destruction in mice and humans. J Immunol 186:2602–2612

    PubMed  Google Scholar 

  92. Roark CL, French JD, Taylor MA, Bendele AM, Born WK, O’Brien RL (2007) Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing gamma delta T cells. J Immunol 179:5576–5583

    PubMed  CAS  Google Scholar 

  93. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH (2009) Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31:331–341

    PubMed  CAS  Google Scholar 

  94. Petermann F, Rothhammer V, Claussen MC, Haas JD, Blanco LR, Heink S, Prinz I, Hemmer B, Kuchroo VK, Oukka M et al (2010) Gammadelta T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity 33:351–363

    PubMed  CAS  Google Scholar 

  95. Mix E, Olsson T, Correale J, Kostulas V, Link H (1990) CD4+, CD8+, and CD4- CD8- T cells in CSF and blood of patients with multiple sclerosis and tension headache. Scand J Immunol 31:493–501

    PubMed  CAS  Google Scholar 

  96. Selmaj K, Brosnan CF, Raine CS (1991) Colocalization of lymphocytes bearing gamma delta T-cell receptor and heat shock protein hsp65+ oligodendrocytes in multiple sclerosis. Proc Natl Acad Sci U S A 88:6452–6456

    PubMed  CAS  Google Scholar 

  97. Cua DJ, Tato CM (2010) Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 10:479–489

    PubMed  CAS  Google Scholar 

  98. Yang XO, Chang SH, Park H, Nurieva R, Shah B, Acero L, Wang YH, Schluns KS, Broaddus RR, Zhu Z et al (2008) Regulation of inflammatory responses by IL-17F. J Exp Med 205:1063–1075

    PubMed  CAS  Google Scholar 

  99. Haak S, Croxford AL, Kreymborg K, Heppner FL, Pouly S, Becher B, Waisman A (2009) IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Invest 119:61–69

    PubMed  CAS  Google Scholar 

  100. Hofstetter HH, Ibrahim SM, Koczan D, Kruse N, Weishaupt A, Toyka KV, Gold R (2005) Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. Cell Immunol 237:123–130

    PubMed  CAS  Google Scholar 

  101. Uyttenhove C, Sommereyns C, Theate I, Michiels T, Van SJ (2007) Anti-IL-17A autovaccination prevents clinical and histological manifestations of experimental autoimmune encephalomyelitis. Ann N Y Acad Sci 1110:330–336

    PubMed  CAS  Google Scholar 

  102. Rohn TA, Jennings GT, Hernandez M, Grest P, Beck M, Zou Y, Kopf M, Bachmann MF (2006) Vaccination against IL-17 suppresses autoimmune arthritis and encephalomyelitis. Eur J Immunol 36:2857–2867

    PubMed  CAS  Google Scholar 

  103. Uyttenhove C, Van SJ (2006) Development of an anti-IL-17A auto-vaccine that prevents experimental auto-immune encephalomyelitis. Eur J Immunol 36:2868–2874

    PubMed  CAS  Google Scholar 

  104. Lubberts E, Koenders MI, Oppers-Walgreen B, van den Bersselaar L, Coenen-de Roo CJ, Joosten LA, van den Berg WB (2004) Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum 50:650–659

    PubMed  CAS  Google Scholar 

  105. Koenders MI, Lubberts E, Oppers-Walgreen B, van den Bersselaar L, Helsen MM, Di Padova FE, Boots AM, Gram H, Joosten LA, van den Berg WB (2005) Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. Am J Pathol 167:141–149

    PubMed  CAS  Google Scholar 

  106. Secukinumab (AIN457), A novel monoclonal antibody targeting IL-17A demonstrates efficacy in active rheumatoid arthritis patients despite stable methotrexate treatment: results of a phase IIb study. ACR 2010 (abstract L9). 10-11-2010

  107. Nakae S, Saijo S, Horai R, Sudo K, Mori S, Iwakura Y (2003) IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci U S A 100:5986–5990

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The author wants to thank U. Sommer for providing FACS data of C57BL/6 mice undergoing AIA and C. Huck for technical assistance. The author wants to thank A. Schubart and B. Metzler for critically reviewing the manuscript. A special thanks to A. Littlewood-Evans for critically reviewing the manuscript and giving conceptual advice.

Conflict of interest

B.P. is an employee of Novartis Institutes for BioMedical Research. The company develops an anti-IL-17 antibody for the treatment of human autoimmune diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernadette Pöllinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pöllinger, B. IL-17 producing T cells in mouse models of multiple sclerosis and rheumatoid arthritis. J Mol Med 90, 613–624 (2012). https://doi.org/10.1007/s00109-011-0841-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0841-4

Keywords

Navigation