Skip to main content

Toll-Like Receptors (TLRs) and Their Ligands

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 183))

The innate immune system is an evolutionally conserved host defense mechanism against pathogens. Innate immune responses are initiated by pattern recognition receptors (PRRs), which recognize microbial components that are essential for the survival of the microorganism. PRRs are germline-encoded, nonclonal, and expressed constitutively in the host. Different PRRs react with specific ligands and lead to distinct antipathogen responses. Among them, Toll-like receptors (TLRs) are capable of sensing organisms ranging from bacteria to fungi, protozoa, and viruses, and they play a major role in innate immunity. Here, we review the mechanism of pathogen recognition by TLRs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akira Aikawa M (1988) Human cerebral malaria. Am J Trop Med Hyg 39: 3-10

    Google Scholar 

  • S (2004) Toll receptor families: structure and function. Semin Immunol 16: 1-2

    Google Scholar 

  • Akira S, Hemmi H (2003) Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 85: 85-95

    CAS  PubMed  Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, and Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732-738

    CAS  PubMed  Google Scholar 

  • Alexopoulou L, Thomas V, Schnare M, Lobet Y, Anguita J, Schoen RT, Medzhitov R, Fikrig E, and Flavell RA (2002) Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat Med 8: 878-884

    CAS  PubMed  Google Scholar 

  • Andersen-Nissen E, Smith KD, Strobe KL, Barrett SL, Cookson BT, Logan SM, Aderem A (2005) Evasion of Toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci USA 102: 9247-9252

    CAS  PubMed  Google Scholar 

  • Arese P, Schwarzer E (1997) Malarial pigment (haemozoin): A very active ‘inert’ substance. Ann Trop Med Parasitol 91: 501-516

    CAS  PubMed  Google Scholar 

  • Bafica A, Santiago HC, Goldszmid R, Ropert C, Gazzinelli RT, Sher A (2006) Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection. J Immunol 17: 3515-3519

    Google Scholar 

  • Balachandran S, Thomas E, Barber GN (2004) A FADD-dependent innate immune mechanism in mammalian cells. Nature 432: 401-405

    CAS  PubMed  Google Scholar 

  • Becker I, Salaiza N, Aguirre M, Delgado J, Carrillo-Carrasco N, Kobeh LG, Ruiz A, Cervantes R Torres AP, Cabrera N, et al. (2003) Leishmania lipophosphoglycan (LPG) activates NK cells through Toll-like receptor-2. Mol Biochem Parasitol 130: 65-74

    CAS  PubMed  Google Scholar 

  • Bieback K, Lien E, Klagge IM, Avota E, Schneider-Schaulies J, Duprex WP, Wagner H, Kirschning CJ, Ter Meulen V, Schneider-Schaulies S (2002) Hemagglutinin protein of wild-type measles virus activates Toll-like receptor 2 signaling. J Virol 76: 8729-8736

    CAS  PubMed  Google Scholar 

  • Bischoff V, Vignal C, Boneca IG, Michel T, Hoffmann JA, Royet J (2004) Function of the Drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nat Immunol 5: 1175-1180

    CAS  PubMed  Google Scholar 

  • Boutros M, Agaisse H, Perrimon N (2002) Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev Cell 3: 711-722

    CAS  PubMed  Google Scholar 

  • Brennan CA, Anderson KV (2004) Drosophila: The genetics of innate immune recognition and response. Annu Rev Immunol 22: 457-483

    CAS  PubMed  Google Scholar 

  • Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL, Martinez-Pomares L, Wong SY, Gordon S (2002) Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med 196: 407-412

    CAS  PubMed  Google Scholar 

  • Brown, P (2001) Cinderella goes to the ball. Nature 410: 1018-1020

    CAS  PubMed  Google Scholar 

  • Brown WC, Corral RS (2002) Stimulation of B lymphocytes, macrophages, and dendritic cells by protozoan DNA Microbes Infect 4: 969-974

    CAS  Google Scholar 

  • Camargo MM, Andrade AC, Almeida IC, Travassos LR, Gazzinelli RT (1997) Glycoconjugates isolated from Trypanosoma cruzi but not from Leishmania species membranes trigger nitric oxide synthesis as well as microbicidal activity in IFN-gamma-primed macrophages. J Immunol 159: 6131-6139

    CAS  PubMed  Google Scholar 

  • Campos MA, Almeida IC, Takeuchi O, Akira S, Valente EP, Procopio DO, Travassos LR, Smith JA, Golenbock DT, Gazzinelli RT (2001) Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J Immunol 167: 416-423

    CAS  PubMed  Google Scholar 

  • Channe Gowda D (2002) Structure and activity of glycosylphosphatidylinositol anchors of Plasmodium falciparum. Microbes Infect 4: 983-990

    CAS  PubMed  Google Scholar 

  • Chen P, Rodriguez A, Erskine R, Thach T, Abrams JM (1998) Dredd, a novel effector of the apoptosis activators reaper, grim, and hid in Drosophila. Dev Biol 201: 202-216

    CAS  PubMed  Google Scholar 

  • Choe KM, Werner T, Stoven S, Hultmark D, Anderson KV (2002) Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296: 359-362

    CAS  PubMed  Google Scholar 

  • Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S, Yamamoto M, Takeuchi O, Itagaki S, Kumar N, et al. (2005) Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med 201: 19-25

    CAS  PubMed  Google Scholar 

  • Coban C, Ishii KJ, Sullivan DJ, Kumar N (2002) Purified malaria pigment (hemozoin) enhances dendritic cell maturation and modulates the isotype of antibodies induced by a DNA vaccine. Infect Immun 70: 3939-3943

    CAS  PubMed  Google Scholar 

  • Coban C, Ishii KJ, Uematsu S, Arisue N, Sato S, Yamamoto M, Kawai T, Takeuchi O, Hisaeda H, Horii T, Akira S (2007) Pathological role of Toll-like receptor signaling in cerebral malaria. Int Immunol 19: 67-79

    CAS  PubMed  Google Scholar 

  • Compton T, Kurt-Jones EA, Boehme KW, Belko J, Latz E, Golenbock DT, Finberg RW (2003) Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol 77: 4588-4596

    CAS  PubMed  Google Scholar 

  • de Veer MJ, Curtis JM, Baldwin TM, DiDonato JA, Sexton A, McConville MJ, Handman E, Schofield L (2003) MyD88 is essential for clearance of Leishmania major: Possible role for lipophosphoglycan and Toll-like receptor 2 signaling. Eur J Immunol 33: 2822-2831

    CAS  PubMed  Google Scholar 

  • Debierre-Grockiego F, Azzouz N, Schmidt J, Dubremetz, JF, Geyer H, Geyer R, Weingart R, Schmidt RR, Schwarz RT (2003) Roles of glycosylphosphatidylinositols of Toxoplasma gondii. Induction of tumor necrosis factor-alpha production in macrophages. J Biol Chem 278: 32987-32993

    CAS  PubMed  Google Scholar 

  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis E, Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA Science 303: 1529-1531

    CAS  Google Scholar 

  • Dunstan SJ, Hawn TR, Hue NT, Parry CP, Ho VA, Vinh H, Diep TS, House D, Wain J, Aderem A, et al. (2005) Host susceptibility and clinical outcomes in Toll-like receptor 5-deficient patients with typhoid fever in Vietnam. J Infect Dis 191: 1068-1071

    CAS  PubMed  Google Scholar 

  • Elrod-Erickson M, Mishra S, Schneider D (2000) Interactions between the cellular and humoral immune responses in Drosophila. Curr Biol 10: 781-784

    CAS  PubMed  Google Scholar 

  • Engwerda C, Belnoue E, Gruner AC, Renia L (2005) Experimental models of cerebral malaria. Curr Top Microbiol Immunol 297: 103-143

    CAS  PubMed  Google Scholar 

  • Foley E, O’Farrell PH (2004) Functional dissection of an innate immune response by a genomewide RNAi screen. PLoS Biol 2: E203

    PubMed  Google Scholar 

  • Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM (2003) Collaborative induction of inflammatory responses by Dectin-1 and Toll-like receptor 2. J Exp Med 197: 1107-1117

    CAS  PubMed  Google Scholar 

  • Gazzinelli RT, Denkers EY (2006) Protozoan encounters with Toll-like receptor signalling path-ways: implications for host parasitism. Nat Rev Immunol 6: 895-906

    CAS  PubMed  Google Scholar 

  • Georgel P, Naitza S, Kappler C, Ferrandon D, Zachary D, Swimmer C, Kopczynski C, Duyk G, Reichhart JM, Hoffmann JA (2001) Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev Cell 1: 503-514

    CAS  PubMed  Google Scholar 

  • Gerold P, Dieckmann-Schuppert A, Schwarz RT (1994) Glycosylphosphatidylinositols synthesized by asexual erythrocytic stages of the malarial parasite, Plasmodium falciparum. Candidates for plasmodial glycosylphosphatidylinositol membrane anchor precursors and pathogenicity factors. J Biol Chem 269: 2597-2606

    CAS  PubMed  Google Scholar 

  • Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL (2001) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167: 1882-1885

    CAS  PubMed  Google Scholar 

  • Gobert V, Gottar M, Matskevich AA, Rutschmann S, Royet J, Belvin M, Hoffmann JA, Ferrandon D (2003) Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science 302: 2126-2130

    CAS  PubMed  Google Scholar 

  • Good MF, Xu H, Wykes M, Engwerda CR (2005) Development and regulation of cell-mediated immune responses to the blood stages of malaria: implications for vaccine research. Annu Rev Immunol 23: 69-99

    CAS  PubMed  Google Scholar 

  • Gottar M, Gobert V, Michel T, Belvin M, Duyk G, Hoffmann JA, Ferrandon D, Royet J (2002) The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416: 640-644

    CAS  PubMed  Google Scholar 

  • Gross O, Gewies A, Finger K, Schafer M, Sparwasser T, Peschel C, Forster I, Ruland J (2006) Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442: 651-656

    CAS  PubMed  Google Scholar 

  • Harris TH, Cooney NM, Mansfield JM, Paulnock DM (2006) Signal transduction, gene transcription, and cytokine production triggered in macrophages by exposure to trypanosome DNA Infect Immun 74: 4530-4537

    CAS  Google Scholar 

  • Hashimoto M, Asai Y, Ogawa T (2004) Separation and structural analysis of lipoprotein in a lipopolysaccharide preparation from Porphyromonas gingivalis. Int Immunol 16: 1431-1437

    CAS  PubMed  Google Scholar 

  • Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, Skerrett SJ, Beutler B, Schroeder L, Nachman A, et al. (2003) A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med 198: 1563-1572

    CAS  PubMed  Google Scholar 

  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099-1103

    CAS  PubMed  Google Scholar 

  • Haynes LM, Moore DD, Kurt-Jones EA, Finberg RW, Anderson LJ, Tripp RA (2001) Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J Virol 75: 10730-10737

    CAS  PubMed  Google Scholar 

  • Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303: 1526-1529

    CAS  PubMed  Google Scholar 

  • Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3: 196-200

    CAS  PubMed  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA Nature 408: 740-745

    CAS  Google Scholar 

  • Hochrein H, Schlatter B, O’Keeffe M, Wagner C, Schmitz F, Schiemann M, Bauer S, Suter M, Wagner H (2004) Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -independent pathways. Proc Natl Acad Sci USA 101: 11416-11421

    CAS  PubMed  Google Scholar 

  • Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, Sovath S, Shamel L, Hartung T, Zahringer U, Beutler B (2005) CD36 is a sensor of diacylglycerides. Nature 433: 523-527

    CAS  PubMed  Google Scholar 

  • Hoffmann JA (2003) The immune response of Drosophila. Nature 426: 33-38

    CAS  PubMed  Google Scholar 

  • Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: Evidence for TLR4 as the Lps gene product. J Immunol 162: 3749-3752

    CAS  PubMed  Google Scholar 

  • Hu S, Yang X (2000) dfADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD J Biol Chem 275: 30761-30764

    CAS  PubMed  Google Scholar 

  • Hu X, Yagi Y, Tanji T, Zhou S, Ip YT (2004) Multimerization and interaction of Toll and Sp ätzle in Drosophila. Proc Natl Acad Sci USA 101: 9369-9374

    CAS  PubMed  Google Scholar 

  • Hultmark D (2003) Drosophila immunity: paths and patterns. Curr Opin Immunol 15: 12-19

    CAS  PubMed  Google Scholar 

  • Idro R, Jenkins NE, Newton CR (2005) Pathogenesis, clinical features, and neurological outcome of cerebral malaria. Lancet Neurol 4: 827-840

    PubMed  Google Scholar 

  • Ito T, Amakawa R, Kaisho T, Hemmi H, Tajima K, Uehira K, Ozaki Y, Tomizawa H, Akira S, Fukuhara S (2002) Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J Exp Med 195: 1507-1512

    CAS  PubMed  Google Scholar 

  • Khush RS, Cornwell WD, Uram JN, Lemaitre B (2002) A ubiquitin-proteasome pathway represses the Drosophila immune deficiency signaling cascade. Curr Biol 12: 1728-1737

    CAS  PubMed  Google Scholar 

  • Krishnegowda G, Hajjar AM, Zhu J, Douglass EJ, Uematsu S, Akira S, Woods AS, Gowda DC (2005) Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J Biol Chem 280: 8606-8616

    CAS  PubMed  Google Scholar 

  • Kropf P, Freudenberg MA, Modolell M, Price HP, Herath S, Antoniazi S, Galanos C, Smith DF, Muller I (2004) Toll-like receptor 4 contributes to efficient control of infection with the protozoan parasite Leishmania major. Infect Immun 72: 1920-1928

    CAS  PubMed  Google Scholar 

  • Krug A, French AR, Barchet W Fischer, JA, Dzionek A, Pingel JT, Orihuela MM, Akira S, Yokoyama WM, Colonna M (2004a) TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21: 107-119

    CAS  Google Scholar 

  • Krug A, Luker GD, Barchet W, Leib DA, Akira S, Colonna M (2004b) Herpes simplex virus type 1 activates murine natural interferon-producing cells through Toll-like receptor 9. Blood 103: 1433-1437

    CAS  Google Scholar 

  • Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R, Arnold MM, Knipe DM, Finberg RW (2004) Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci USA 101: 1315-1320

    CAS  PubMed  Google Scholar 

  • Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, Walsh EE, Freeman MW, Golenbock DT, Anderson LJ, Finberg RW (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1: 398-401

    CAS  PubMed  Google Scholar 

  • Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T, Golenbock DT (2004) TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5:190-198

    CAS  PubMed  Google Scholar 

  • Lemaitre B (2004) The road to Toll. Nat Rev Immunol 4: 521-527

    CAS  PubMed  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette Sp ätzle/Toll/Cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973-983

    CAS  PubMed  Google Scholar 

  • Leulier F, Rodriguez A, Khush RS, Abrams JM, Lemaitre B (2000) The Drosophila caspase Dredd is required to resist Gram-negative bacterial infection. EMBO Rep 1: 353-358

    CAS  PubMed  Google Scholar 

  • Leulier F, Vidal S, Saigo K, Ueda R, Lemaitre B (2002) Inducible expression of double-stranded RNA reveals a role for dFADD in the regulation of the antibacterial response in Drosophila adults. Curr Biol 12: 996-1000

    CAS  PubMed  Google Scholar 

  • Levashina EA, Langley E, Green C, Gubb D, Ashburner M, Hoffmann JA, Reichhart JM (1999) Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285: 1917-1919

    CAS  PubMed  Google Scholar 

  • Ligoxygakis P, Pelte N, Hoffmann JA, Reichhart JM (2002) Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297: 114-116

    CAS  PubMed  Google Scholar 

  • Lu Y, Wu LP, Anderson KV (2001) The antibacterial arm of the Drosophila innate immune response requires an IkappaB kinase. Genes Dev 15: 104-110

    CAS  PubMed  Google Scholar 

  • Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A (2003) Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 198: 513-520

    CAS  PubMed  Google Scholar 

  • Magez S, Stijlemans B, Radwanska M, Pays E, Ferguson MA, De Baetselier P (1998) The glycosyl-inositol-phosphate and dimyristoylglycerol moieties of the glycosylphosphatidylinositol anchor of the trypanosome variant-specific surface glycoprotein are distinct macrophageactivating factors. J Immunol 160: 1949-1956

    CAS  PubMed  Google Scholar 

  • Medzhitov R, Janeway CJ (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91: 295-298

    CAS  PubMed  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CJ (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394-397

    CAS  PubMed  Google Scholar 

  • Michel T, Reichhart JM, Hoffmann JA, Royet J (2001) Drosophila Toll is activated by Grampositive bacteria through a circulating peptidoglycan recognition protein. Nature 414: 756-759

    CAS  PubMed  Google Scholar 

  • Miller LH, Baruch DI, Marsh K, Doumbo OK (2002) The pathogenic basis of malaria. Nature 415: 673-679

    CAS  PubMed  Google Scholar 

  • Naik RS, Branch OH, Woods AS, Vijaykumar M, Perkins DJ, Nahlen BL, Lal AA, Cotter RJ, Costello CE, Ockenhouse CF et al. (2000) Glycosylphosphatidylinositol anchors of Plasmodium falciparum: Molecular characterization and naturally elicited antibody response that may provide immunity to malaria pathogenesis. J Exp Med 192: 1563-1576

    CAS  PubMed  Google Scholar 

  • Netea MG, Van der Graaf C, Van der Meer JW, Kullberg BJ (2004) Recognition of fungal pathogens by Toll-like receptors. Eur J Clin Microbiol Infect Dis 23: 672-676

    CAS  PubMed  Google Scholar 

  • Netea MG, Van Der Graaf CA, Vonk AG, Verschueren I, Van Der Meer JW, Kullberg BJ (2002a) The role of Toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis 185: 1483-1489

    CAS  Google Scholar 

  • Netea MG, van Deuren M, Kullberg BJ, Cavaillon JM, Van der Meer JW (2002b) Does the shape of lipid A determine the interaction of LPS with Toll-like receptors? Trends Immunol 23: 135-139

    CAS  Google Scholar 

  • Oliveira AC, Peixoto JR, de Arruda LB, Campos MA, Gazzinelli RT, Golenbock DT, Akira S, Pre-viato JO, Mendonca-Previato L, Nobrega A, Bellio M (2004) Expression of functional TLR4 confers proinflammatory responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher resistance to infection with T cruzi. J Immunol 173: 5688-5696

    CAS  PubMed  Google Scholar 

  • Ouaissi A, Guilvard E, Delneste Y, Caron G, Magistrelli G, Herbault N, Thieblemont N, Jeannin P (2002) The Trypanosoma cruzi Tc52-released protein induces human dendritic cell maturation, signals via Toll-like receptor 2: and confers protection against lethal infection. J Immunol 168: 6366-6374

    CAS  PubMed  Google Scholar 

  • Park JM, Brady H, Ruocco MG, Sun H, Williams D, Lee SJ, Kato T Jr, Richards N, Chan K, Mercurio F et al. (2004) Targeting of TAK1 by the NF-kappa B protein Relish regulates the JNK-mediated immune response in Drosophila. Genes Dev 18: 584-594

    CAS  PubMed  Google Scholar 

  • Pili-Floury S, Leulier F, Takahashi K, Saigo K, Samain E, Ueda R, Lemaitre B (2004) In vivo RNA interference analysis reveals an unexpected role for GNBP1 in the defense against Grampositive bacterial infection in Drosophila adults. J Biol Chem 279: 12848-12853

    CAS  PubMed  Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C et al. (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 282: 2085-2088

    CAS  PubMed  Google Scholar 

  • Rassa JC, Meyers JL, Zhang Y, Kudaravalli R, Ross SR (2002) Murine retroviruses activate B cells via interaction with Toll-like receptor 4. Proc Natl Acad Sci USA 99: 2281-2286

    CAS  PubMed  Google Scholar 

  • Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, Williams DL, Gordon S, Tybulewicz VL, Brown GD, Reis ESC (2005) Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22: 507-517

    CAS  PubMed  Google Scholar 

  • Ropert C, Gazzinelli RT (2004) Regulatory role of Toll-like receptor 2 during infection with Trypanosoma cruzi. J Endotoxin Res 10: 425-430

    PubMed  Google Scholar 

  • Rutschmann S, Jung AC, Zhou R, Silverman N, Hoffmann JA, Ferrandon D (2000) Role of Drosophila IKK gamma in a Toll-independent antibacterial immune response. Nat Immunol 1: 342-347

    CAS  PubMed  Google Scholar 

  • Saijo S, Fujikado N, Furuta T, Chung SH, Kotaki H, Seki K, Sudo K, Akira S, Adachi Y, Ohno N et al. (2007) Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat Immunol 8: 39-46

    CAS  PubMed  Google Scholar 

  • Schofield L, Grau GE (2005) Immunological processes in malaria pathogenesis. Nat Rev Immunol 5: 722-735

    CAS  PubMed  Google Scholar 

  • Schofield L, Hackett F (1993) Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J Exp Med 177: 145-153

    CAS  PubMed  Google Scholar 

  • Sherry BA, Alava G, Tracey KJ, Martiney J, Cerami A, Slater AF (1995) Malaria-specific metabolite hemozoin mediates the release of several potent endogenous pyrogens (TNF, MIP-1 alpha, and MIP-1 beta) in vitro, and altered thermoregulation in vivo. J Inflamm 45: 85-96

    CAS  PubMed  Google Scholar 

  • Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2: A molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189: 1777-1782

    CAS  PubMed  Google Scholar 

  • Shoda LK, Kegerreis KA, Suarez CE, Roditi I, Corral RS, Bertot GM, Norimine J, Brown WC (2001) DNA from protozoan parasites Babesia bovis, Trypanosoma cruzi, and T brucei is mitogenic for B lymphocytes and stimulates macrophage expression of interleukin-12: tumor necrosis factor alpha, and nitric oxide. Infect Immun 69: 2162-2171

    CAS  PubMed  Google Scholar 

  • Silverman N, Zhou R, Erlich RL, Hunter M, Bernstein E, Schneider D, Maniatis T (2003) Immune activation of NF-kappaB and JNK requires Drosophila TAK1. J Biol Chem 278: 48928-48934

    CAS  PubMed  Google Scholar 

  • Silverman N, Zhou R, Stoven S, Pandey N, Hultmark D, Maniatis T (2000) A Drosophila IkappaB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev 14: 2461-2471

    CAS  PubMed  Google Scholar 

  • Stoven S, Silverman N, Junell A, Hedengren-Olcott M, Erturk D, Engstrom Y, Maniatis T Hultmark, D (2003) Caspase-mediated processing of the Drosophila NF-kappaB factor Relish. Proc Natl Acad Sci USA 100: 5991-5996

    CAS  PubMed  Google Scholar 

  • Sullivan DJ (2002) Theories on malarial pigment formation and quinoline action. Int J Parasitol 32: 1645-1653

    CAS  PubMed  Google Scholar 

  • Sun H, Towb P, Chiem DN, Foster BA, Wasserman SA (2004) Regulated assembly of the Toll signaling complex drives Drosophila dorsoventral patterning. EMBO J 23: 100-110

    CAS  PubMed  Google Scholar 

  • Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, Crozat K, Mudd S, Shamel L, Sovath S, Goode J et al. (2004) Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci USA 101: 3516-3521

    CAS  PubMed  Google Scholar 

  • Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1-14

    CAS  PubMed  Google Scholar 

  • Takeda K, Kaisho T, Akira, S (2003) Toll-like receptors. Annu Rev Immunol 21: 335-376

    CAS  PubMed  Google Scholar 

  • Takehana A, Yano T, Mita S, Kotani A, Oshima Y, Kurata S (2004) Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. EMBO J 23: 4690-4700

    CAS  PubMed  Google Scholar 

  • Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999a) Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11: 443-451

    CAS  Google Scholar 

  • Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13: 933-940

    CAS  PubMed  Google Scholar 

  • Takeuchi O, Kawai T, Sanjo H, Copeland NG, Gilbert DJ, Jenkins NA, Takeda K, Akira S (1999b) TLR6: a novel member of an expanding Toll-like receptor family. Gene 231: 59-65

    CAS  Google Scholar 

  • Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S (2002) Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169: 10-14

    CAS  PubMed  Google Scholar 

  • Tanji T, Ip YT (2005) Regulators of the Toll and Imd pathways in the Drosophila innate immune response. Trends Immunol 26: 193-198

    CAS  PubMed  Google Scholar 

  • Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, Haynes K, Steele C, Botto M, Gordon S, and Brown GD (2007) Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 8: 31-38

    CAS  PubMed  Google Scholar 

  • Torok HP, Glas J, Tonenchi L, Mussack T, and Folwaczny C (2004) Polymorphisms of the lipopolysaccharide-signaling complex in inflammatory bowel disease: Association of a mutation in the Toll-like receptor 4 gene with ulcerative colitis. Clin Immunol 112: 85-91

    CAS  PubMed  Google Scholar 

  • Uematsu S, Jang MH, Chevrier N, Guo Z, Kumagai Y, Yamamoto M, Kato H, Sougawa N, Matsui H, Kuwata H, et al. (2006) Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c(+) lamina propria cells. Nat Immunol 7: 868-874

    CAS  PubMed  Google Scholar 

  • Underhill DM, Rossnagle E, Lowell CA, Simmons RM (2005) Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106: 2543-2550

    CAS  PubMed  Google Scholar 

  • Vidal S, Khush RS, Leulier F, Tzou P, Nakamura M, Lemaitre B (2001) Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of Rel/NFkappaB-dependent innate immune responses. Genes Dev 15: 1900-1912

    CAS  PubMed  Google Scholar 

  • Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10: 1366-1373

    PubMed  Google Scholar 

  • Weber AN, Tauszig-Delamasure S, Hoffmann JA, Lelievre E, Gascan H, Ray KP, Morse MA, Imler JL, Gay, NJ (2003) Binding of the Drosophila cytokine Sp ätzle to Toll is direct and establishes signaling. Nat Immunol 4: 794-800

    CAS  PubMed  Google Scholar 

  • Wu LP, Anderson KV (1997) Related signaling networks in Drosophila that control dorsoventral patterning in the embryo and the immune response. Cold Spring Harb Symp Quant Biol 62: 97-103

    CAS  PubMed  Google Scholar 

  • Yamamoto M, Sato S Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, and Akira S (2003) Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301: 640-643

    CAS  PubMed  Google Scholar 

  • Yarovinsky F, Kanzler H, Hieny S, Coffman RL, Sher A (2006) Toll-like receptor recognition regulates immunodominance in an antimicrobial CD4+ T cell response. Immunity 25: 655-664

    CAS  PubMed  Google Scholar 

  • Yarovinsky F, Sher A (2006) Toll-like receptor recognition of Toxoplasma gondii. Int J Parasitol 36: 255-259

    CAS  PubMed  Google Scholar 

  • Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S, Sher A (2005) TLR11 activation of dendritic cells by a protozoan Profilin-like protein. Science 308: 1626-1629

    CAS  PubMed  Google Scholar 

  • Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S (2004) A Toll-like receptor that prevents infection by uropathogenic bacteria. Science 303: 1522-1526

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Uematsu, S., Akira, S. (2008). Toll-Like Receptors (TLRs) and Their Ligands. In: Bauer, S., Hartmann, G. (eds) Toll-Like Receptors (TLRs) and Innate Immunity. Handbook of Experimental Pharmacology, vol 183. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72167-3_1

Download citation

Publish with us

Policies and ethics