Skip to main content

Delta-5 and Delta-6 Desaturases: Crucial Enzymes in Polyunsaturated Fatty Acid-Related Pathways with Pleiotropic Influences in Health and Disease

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 824))

Abstract

Polyunsaturated fatty acids (PUFA) play pleiotropic and crucial roles in biological systems. Both blood and tissue levels of PUFA are influenced not only by diet, but to a large extent also by genetic heritability. Delta-5 (D5D) and delta-6 desaturases (D6D), encoded respectively by FADS1 and FADS2 genes, are the rate-limiting enzymes for PUFA conversion and are recognized as main determinants of PUFA levels. Alterations of D5D/D6D activity have been associated with several diseases, from metabolic derangements to neuropsychiatric illnesses, from type 2 diabetes to cardiovascular disease, from inflammation to tumorigenesis. Similar results have been found by investigations on FADS1/FADS2 genotypes. Recent genome-wide association studies showed that FADS1/FADS2 genetic locus, beyond being the main determinant of PUFA, was strongly associated with plasma lipids and glucose metabolism. Other analyses suggested potential link between FADS1/FADS2 polymorphisms and cognitive development, immunological illnesses, and cardiovascular disease. Lessons from both animal models and rare disorders in humans further emphasized the key role of desaturases in health and disease. Remarkably, some of the above mentioned associations appear to be influenced by the environmental context/PUFA dietary intake, in particular the relative prevalence of ω-3 and ω-6 PUFA. In this narrative review we provide a summary of the evidences linking FADS1/FADS2 gene variants and D5D/D6D activities with various traits of human physiopathology. Moreover, we focus also on the potentially useful therapeutic application of D5D/D6D activity modulation, as suggested by anti-inflammatory and tumor-suppressing effects of D6D inhibition in mice models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jump D. The biochemistry of n-3 polyunsaturated fatty acids. J Biol Chem. 2002;277:8755–8.

    CAS  PubMed  Google Scholar 

  2. Leonard AE, Pereira SL, Sprecher H, Huang YS. Elongation of long-chain fatty acids. Prog Lipid Res. 2004;43:36–54.

    CAS  PubMed  Google Scholar 

  3. Das UN. Essential fatty acids: biochemistry, physiology and pathology. Biotechnol J. 2006;1:420–39.

    CAS  PubMed  Google Scholar 

  4. Das UN. Essential fatty acids – a review. Curr Pharm Biotechnol. 2006;7:467–82.

    CAS  PubMed  Google Scholar 

  5. Risérus U. Fatty acids and insulin sensitivity. Curr Opin Clin Nutr Metab Care. 2008;11:100–5.

    PubMed  Google Scholar 

  6. Zhang L, Keung W, Samokhvalov V, Wang W, Lopaschuk GD. Role of fatty acid uptake and fatty acid beta-oxidation in mediating insulin resistance in heart and skeletal muscle. Biochim Biophys Acta. 2010;1801:1–22.

    CAS  PubMed  Google Scholar 

  7. Jump DB, Clarke SD. Regulation of gene expression by dietary fat. Annu Rev Nutr. 1999;19:63–90.

    CAS  PubMed  Google Scholar 

  8. Davidson MH. Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. Am J Cardiol. 2006;98:27i–33.

    CAS  PubMed  Google Scholar 

  9. De Caterina R, Zampolli A. From asthma to atherosclerosis-5-lipoxygenase, leukotrienes, and inflammation. N Engl J Med. 2004;350:4–7.

    PubMed  Google Scholar 

  10. Wang D, Dubois RN. Eicosanoids and cancer. Nat Rev Cancer. 2010;10:181–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Weylandt KH, Kang JX. Rethinking lipid mediators. Lancet. 2005;366:618–20.

    PubMed  Google Scholar 

  12. Kang JX, Weylandt KH. Modulation of inflammatory cytokines by omega-3 fatty acids. Subcell Biochem. 2008;49:133–43.

    PubMed  Google Scholar 

  13. Martinelli N, Consoli L, Olivieri O. A ‘desaturase hypothesis’ for atherosclerosis: Janus-faced enzymes in omega-6 and omega-3 polyunsaturated fatty acid metabolism. J Nutrigenet Nutrigenomics. 2009;2:129–39.

    CAS  PubMed  Google Scholar 

  14. Pacher P, Kunos G. Modulating the endocannabinoid system in human health and disease-successes and failures. FEBS J. 2013;280:1918–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Silvestri C, Di Marzo V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab. 2013;17:475–90.

    CAS  PubMed  Google Scholar 

  16. Pisanti S, Picardi P, D’Alessandro A, Laezza C, Bifulco M. The endocannabinoid signaling system in cancer. Trends Pharmacol Sci. 2013;34:273–82.

    CAS  PubMed  Google Scholar 

  17. Jourdan T, Godlewski G, Cinar R, Bertola A, Szanda G, Liu J, et al. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat Med. 2013;19:1132–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Darios F, Davletov B. Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3. Nature. 2006;440:813–7.

    CAS  PubMed  Google Scholar 

  19. Marszalek JR, Lodish HF. Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breastmilk and fish are good for you. Annu Rev Cell Dev Biol. 2005;21:633–57.

    CAS  PubMed  Google Scholar 

  20. Thies F, Miles EA, Nebe-von-Caron G, Powell JR, Hurst TL, Newsholme EA, et al. Influence of dietary supplementation with long-chain n-3 or n-6 polyunsaturated fatty acids on blood inflammatory cell populations and functions and on plasma soluble adhesion molecules in healthy adults. Lipids. 2001;36:1183–93.

    CAS  PubMed  Google Scholar 

  21. Harris WS, Assaad B, Poston WC. Tissue omega-6/omega-3 fatty acid ratio and risk for coronary artery disease. Am J Cardiol. 2006;21(98):19i–26.

    Google Scholar 

  22. Breslow JL. n-3 fatty acids and cardiovascular disease. Am J Clin Nutr. 2006;83:1477S–82.

    CAS  PubMed  Google Scholar 

  23. De Caterina R. n-3 fatty acids in cardiovascular disease. N Engl J Med. 2011;23(364):2439–50.

    Google Scholar 

  24. GISSI-Prevenzione Investigators (Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico). Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet. 1999;354:447–55.

    Google Scholar 

  25. Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106:2747–57.

    PubMed  Google Scholar 

  26. McKenney JM, Sica D. Role of prescription omega-3 fatty acids in the treatment of hypertriglyceridemia. Pharmacotherapy. 2007;27:715–28.

    CAS  PubMed  Google Scholar 

  27. Kark JD, Kaufmann NA, Binka F, Goldberger N, Berry EM. Adipose tissue n-6 fatty acids and acute myocardial infarction in a population consuming a diet high in polyunsaturated fatty acids. Am J Clin Nutr. 2003;77:796–802.

    CAS  PubMed  Google Scholar 

  28. Baylin A, Campos H. Arachidonic acid in adipose tissue is associated with nonfatal acute myocardial infarction in the central valley of Costa Rica. J Nutr. 2004;134:3095–9.

    CAS  PubMed  Google Scholar 

  29. Meyer BJ, Mann NJ, Lewis JL. Dietary intakes and food sources of omega-6 and omega-3 polyunsaturated fatty acids. Lipids. 2003;38:391–8.

    CAS  PubMed  Google Scholar 

  30. Glaser C, Heinrich J, Koletzko B. Role of FADS1 and FADS2 polymorphisms in polyunsaturated fatty acid metabolism. Metabolism. 2010;59:993–9.

    CAS  PubMed  Google Scholar 

  31. Cunnane SC, Anderson MJ. The majority of dietary linoleate in growing rats is beta-oxidized or stored in visceral fat. J Nutr. 1997;127:146–52.

    CAS  PubMed  Google Scholar 

  32. Jakobsson A, Westerberg R, Jacobsson A. Fatty acid elongases in mammals: their regulation and roles in metabolism. Progr Lipids Res. 2009;45:237–49.

    Google Scholar 

  33. Naganuma T, Sato Y, Sassa T, Ohno Y, Kihara A. Biochemical characterization of the very long-chain fatty acid elongase ELOVL7. FEBS Lett. 2011;585:3337–41.

    CAS  PubMed  Google Scholar 

  34. Guillou H, Zadravec D, Martin PG, Jacobsson A. The key roles of elongases and desaturases in mammalian metabolism: insight from transgenic mice. Progr Lipids Res. 2010;49:186–99.

    CAS  Google Scholar 

  35. Cho HP, Nakamura M, Clarke SD. Cloning, expression, and fatty acid regulation of the human Δ-5 desaturase. J Biol Chem. 1999;274:37335–9.

    CAS  PubMed  Google Scholar 

  36. Cho HP, Nakamura M, Clarke SD. Cloning, expression, and fatty acid regulation of the human Δ-6 desaturase. J Biol Chem. 1999;274:471–7.

    CAS  PubMed  Google Scholar 

  37. Nakamura MT, Nara TY. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr. 2004;24:345–76.

    CAS  PubMed  Google Scholar 

  38. Schaeffer L, Gohlke H, Müller M, Heid IM, Palmer LJ, Kompauer I, Demmelmair H, Illig T, Koletzko B, Heinrich J. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum Mol Genet. 2006;15:1745–56.

    CAS  PubMed  Google Scholar 

  39. Malerba G, Schaeffer L, Xumerle L, Klopp N, Trabetti E, Biscuola M, et al. SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids. 2008;43:289–99.

    CAS  PubMed  Google Scholar 

  40. Zietemann V, Kröger J, Enzenbach C. Genetic variation of the FADS1 FADS2 gene cluster and n-6 PUFA composition in erythrocyte membranes in the European Prospective Investigation into Cancer and Nutrition-Potsdam study. Br J Nutr. 2010;104:1748–59.

    CAS  PubMed  Google Scholar 

  41. Merino DM, Johnston H, Clarke S. Polymorphisms in FADS1 and FADS2 alter desaturase activity in young Caucasian and Asian adults. Mol Genet Metab. 2011;103:171–8.

    CAS  PubMed  Google Scholar 

  42. Kwak JH, Paik JK, Kim OY. FADS gene polymorphisms in Koreans: association with ω6 polyunsaturated fatty acids in serum phospholipids, lipid peroxides, and coronary artery disease. Atherosclerosis. 2011;214:94–100.

    CAS  PubMed  Google Scholar 

  43. Mathias RA, Vergara C, Gao L. FADS genetic variants and omega-6 polyunsaturated fatty acid metabolism in a homogeneous island population. J Lipid Res. 2010;51:2766–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Mathias RA, Sergeant S, Ruczinski I. The impact of FADS genetic variants on ω6 polyunsaturated fatty acid metabolism in African Americans. BMC Genet. 2011;20:12–50.

    Google Scholar 

  45. Sergeant S, Hugenschmidt CE, Rudock ME, Ziegler JT, Ivester P, Ainsworth HC, et al. Differences in arachidonic acid levels and fatty acid desaturase (FADS) gene variants in African Americans and European Americans with diabetes/metabolic syndrome. Br J Nutr. 2012;107:547–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Lemaitre RN, Tanaka T, Tang W, Manichaikul A, Foy M, Kabagambe EK, et al. Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium. PLoS Genet. 2011;7:e1002193.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Lattka E, Eggers S, Moeller G, Heim K, Weber M, Mehta D, et al. A common FADS2 promoter polymorphism increases promoter activity and facilitates binding of transcription factor ELK1. J Lipid Res. 2010;5:182–91.

    Google Scholar 

  48. Gregory MK, Lester SE, Cook-Johnson RJ. Fatty acid desaturase 2 promoter mutation is not responsible for Δ6-desaturase deficiency. Eur J Hum Genet. 2011;19:1202–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Koletzko B, Cetin I, Brenna JT. Dietary fat intakes for pregnant and lactating women. Br J Nutr. 2007;98:873–7.

    CAS  PubMed  Google Scholar 

  50. Muskiet FA, Kemperman RF. Folate and long-chain polyunsaturated fatty acids in psychiatric disease. J Nutr Biochem. 2006;17:717–27.

    CAS  PubMed  Google Scholar 

  51. Trak-Fellermeier MA, Brasche S, Winkler G, Koletzko B, Heinrich J. Food and fatty acid intake and atopic disease in adults. Eur Respir J. 2004;23:575–82.

    CAS  PubMed  Google Scholar 

  52. Merino DM, Ma DW, Mutch DM. Genetic variation in lipid desaturases and its impact on the development of human disease. Lipids Health Dis. 2010;9:63.

    PubMed Central  PubMed  Google Scholar 

  53. Narce M, Asdrubal P, Delachambre MC. Age-related changes in linoleic acid bioconversion by isolated hepatocytes from spontaneously hypertensive and normotensive rats. Mol Cell Biochem. 1999;141:9–13.

    Google Scholar 

  54. Kroger J, Schulze MB. Recent insights into the relation of D5 desaturase and D6 desaturase activity to the development of type 2 diabetes. Curr Opin Lipidol. 2012;23:4–10.

    PubMed  Google Scholar 

  55. Russo C, Olivieri O, Girelli D. Increased membrane ratios of metabolite to precursor fatty acid in essential hypertension. Hypertension. 1997;29:1058–63.

    CAS  PubMed  Google Scholar 

  56. Vessby B. Dietary fat, fatty acid composition in plasma and the metabolic syndrome. Curr Opin Lipidol. 2003;14:15–9.

    CAS  PubMed  Google Scholar 

  57. Warensjö E, Ohrvall M, Vessby B. Fatty acid composition and estimated desaturase activities are associated with obesity and lifestyle variables in men and women. Nutr Metab Cardiovasc Dis. 2006;6:128–36.

    Google Scholar 

  58. Wirfält E, Vessby B, Mattisson I, Gullberg B, Olsson H, Berglund G. No relations between breast cancer risk and fatty acids of erythrocyte membranes in postmenopausal women of the Malmö Diet Cancer cohort (Sweden). Eur J Clin Nutr. 2004;58:761–70.

    PubMed  Google Scholar 

  59. Hodge AM, English DR, O’Dea K, Sinclair AJ, Makrides M, Gibson RA, et al. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid. Am J Clin Nut. 2007;86:189–97.

    CAS  Google Scholar 

  60. Krachler B, Norberg M, Eriksson JW, Hallmans G, Johansson I, et al. Fatty acid profile of the erythrocyte membrane preceding development of type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis. 2008;18:503–10.

    CAS  PubMed  Google Scholar 

  61. Patel PS, Sharp SJ, Jansen E, Luben RN, Khaw KT, Wareham NJ, et al. Fatty acids measured in plasma and erythrocyte-membrane phospholipids and derived by food-frequency questionnaire and the risk of new-onset type 2 diabetes: a pilot study in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort. Am J Clin Nutr. 2010;92:1214–22.

    CAS  PubMed  Google Scholar 

  62. Kröger J, Zietemann V, Enzenbach C. Erythrocyte membrane phospholipid fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. Am J Clin Nutr. 2011;93:127–42.

    PubMed  Google Scholar 

  63. Saito E, Okada T, Abe Y, Odaka M, Kuromori Y, Iwata F, et al. Abdominal adiposity is associated with fatty acid desaturase activity in boys: implications for C-reactive protein and insulin resistance. Prostaglandins Leukot Essent Fatty Acids. 2013;88:307–11.

    CAS  PubMed  Google Scholar 

  64. Warensjö E, Risérus U, Vessby B. Fatty acid composition of serum lipids predicts the development of the metabolic syndrome in men. Diabetologia. 2005;48:1999–2005.

    PubMed  Google Scholar 

  65. Armutcu F, Akyol S, Ucar F. Markers in nonalcoholic steatohepatitis. Adv Clin Chem. 2013;61:67–125.

    CAS  PubMed  Google Scholar 

  66. Park H, Hasegawa G, Shima T, Fukui M, Nakamura N, Yamaguchi K, et al. The fatty acid composition of plasma cholesteryl esters and estimated desaturase activities in patients with nonalcoholic fatty liver disease and the effect of long-term ezetimibe therapy on these levels. Clin Chim Acta. 2010;411:1735–40.

    CAS  PubMed  Google Scholar 

  67. López-Vicario C, González-Périz A, Rius B, Morán-Salvador E, García-Alonso V, Lozano JJ, et al. Molecular interplay between Δ5/Δ6 desaturases and long-chain fatty acids in the pathogenesis of non-alcoholic steatohepatitis. Gut. 2014;63:344–55.

    PubMed  Google Scholar 

  68. Kang JX, Wang J, Wu L, Kang ZB. Transgenic mice: fat-1 mice convert n-6 to n-3 fatty acids. Nature. 2004;427:504.

    CAS  PubMed  Google Scholar 

  69. Warensjö E, Sundström J, Vessby B, Cederholm T, Risérus U. Markers of dietary fat quality and fatty acid desaturation as predictors of total and cardiovascular mortality: a population-based prospective study. Am J Clin Nutr. 2008;88:203–9.

    PubMed  Google Scholar 

  70. Steffen LM, Vessby B, Jacobs Jr DR, Cederholm T, Risérus U. Serum phospholipid and cholesteryl ester fatty acids and estimated desaturase activities are related to overweight and cardiovascular risk factors in adolescents. Int J Obes (Lond). 2008;32:1297–304.

    CAS  Google Scholar 

  71. Martinelli N, Girelli D, Malerba G, Guarini P, Illig T, Trabetti E, et al. FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. Am J Clin Nutr. 2008;88:941–9.

    CAS  PubMed  Google Scholar 

  72. Dwyer JH, Allayee H, Dwyer KM, Fan J, Wu H, Mar R, et al. Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N Engl J Med. 2004;350:29–37.

    CAS  PubMed  Google Scholar 

  73. Helgadottir A, Manolescu A, Thorleifsson G, Gretarsdottir S, Jonsdottir H, Thorsteinsdottir U, et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet. 2004;36:233–9.

    CAS  PubMed  Google Scholar 

  74. Harris WS, Mozaffarian D, Rimm E, Kris-Etherton P, Rudel LL, Appel LJ, et al. Omega-6 fatty acids and risk for cardiovascular disease: a science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. Circulation. 2009;19:902–7.

    Google Scholar 

  75. Li SW, Lin K, Ma P, Zhang ZL, Zhou YD, Lu SY, et al. FADS gene polymorphisms confer the risk of coronary artery disease in a Chinese Han population through the altered desaturase activities: based on high-resolution melting analysis. PLoS One. 2013;8:e55869.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Lu Y, Vaarhorst A, Merry AH, Dollé ME, Hovenier R, Imholz S, et al. Markers of endogenous desaturase activity and risk of coronary heart disease in the CAREMA cohort study. PLoS One. 2012;7:e41681.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology. 1994;107:1183–8.

    CAS  PubMed  Google Scholar 

  78. Mazhar D, Ang R, Waxman J. COX inhibitors and breast cancer. Br J Cancer. 2006;94:346–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Hansen Petrik MB, McEntee MF, Johnson BT, Obukowicz MG, Masferrer J, Zweifel B, et al. Selective inhibition of delta-6 desaturase impedes intestinal tumorigenesis. Cancer Lett. 2002;175:157–63.

    CAS  PubMed  Google Scholar 

  80. He C, Qu X, Wan J, Rong R, Huang L, Cai C, et al. Inhibiting delta-6 desaturase activity suppresses tumor growth in mice. PLoS One. 2012;7:e47567.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Agatha G, Häfer R, Zintl F. Fatty acid composition of lymphocyte membrane phospholipids in children with acute leukemia. Cancer Lett. 2001;173:139–44.

    CAS  PubMed  Google Scholar 

  82. Agatha G, Voigt A, Kauf E, Zintl F. Conjugated linoleic acid modulation of cell membrane in leukemia cells. Cancer Lett. 2004;209:87–103.

    CAS  PubMed  Google Scholar 

  83. Hoffmann K, Blaudszun J, Brunken C, Höpker WW, Tauber R, Steinhart H. Distribution of polyunsaturated fatty acids including conjugated linoleic acids in total and subcellular fractions from healthy and cancerous parts of human kidneys. Lipids. 2005;40:309–15.

    CAS  PubMed  Google Scholar 

  84. Pender Cudlip MC, Krag KJ, Martini D, Yu J, Guidi A, Skinner SS, et al. Delta-6-desaturase activity and arachidonic acid synthesis are increased in human breast cancer tissue. Cancer Sci. 2013;104:760–4.

    CAS  PubMed  Google Scholar 

  85. Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, et al. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest. 2005;115:2774–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Calon F, Lim GP, Yang F, Morihara T, Teter B, Ubeda O, et al. Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron. 2004;43:633–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Liu Y, Jandacek R, Rider T, Tso P, McNamara RK. Elevated delta-6 desaturase (FADS2) expression in the postmortem prefrontal cortex of schizophrenic patients: relationship with fatty acid composition. Schizophr Res. 2009;109:113–20.

    PubMed  Google Scholar 

  88. McNamara RK, Jandacek R, Rider T, Tso P, Dwivedi Y, Pandey GN. Adult medication-free schizophrenic patients exhibit long-chain omega-3 fatty acid deficiency: implications for cardiovascular disease risk. Cardiovasc Psychiatry Neurol. 2013;2013:796462.

    PubMed Central  PubMed  Google Scholar 

  89. Liu Y, McNamara RK. Elevated delta-6 desaturase (FADS2) gene expression in the prefrontal cortex of patients with bipolar disorder. J Psychiatr Res. 2011;45:269–72.

    PubMed Central  PubMed  Google Scholar 

  90. Mocking RJ, Assies J, Bot M, Jansen EH, Schene AH, Pouwer F. Biological effects of add-on eicosapentaenoic acid supplementation in diabetes mellitus and co-morbid depression: a randomized controlled trial. PLoS One. 2012;7:e49431.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Risé P, Volpi S, Colombo C, Padoan RF, D’Orazio C, Ghezzi S, et al. Whole blood fatty acid analysis with micromethod in cystic fibrosis and pulmonary disease. J Cyst Fibros. 2010;9:228–33.

    PubMed  Google Scholar 

  92. Thomsen KF, Laposata M, Njoroge SW, Umunakwe OC, Katrangi W, Seegmiller AC. Increased elongase 6 and Δ9-desaturase activity are associated with n-7 and n-9 fatty acid changes in cystic fibrosis. Lipids. 2011;46:669–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Njoroge SW, Seegmiller AC, Katrangi W, Laposata M. Increased Δ5- and Δ6-desaturase, cyclooxygenase-2, and lipoxygenase-5 expression and activity are associated with fatty acid and eicosanoid changes in cystic fibrosis. Biochim Biophys Acta. 2011;1811:431–40.

    CAS  PubMed  Google Scholar 

  94. Marquarrdt A, Stohr H, White K. cDNA cloning, genomic structure, and chromosomal localization of the three members of the human desaturase family. Genomics. 2000;66:175–83.

    Google Scholar 

  95. Pédrono F, Blanchard H, Kloareg M, D’andréa S, Daval S, Rioux V, et al. The fatty acid desaturase 3 gene encodes for different FADS3 protein isoforms in mammalian tissues. J Lipid Res. 2010;51:472–9.

    PubMed Central  PubMed  Google Scholar 

  96. Tanaka T, Shen J, Abecasis GR, Kisialiou A, Ordovas JM, Guralnik JM, et al. Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI study. PLoS Genet. 2009;5:e1000338.

    PubMed Central  PubMed  Google Scholar 

  97. Daniels SE, Bhattacharrya S, James A, Leaves NI, Young A, Hill MR, et al. A genome-wide search for quantitative trait loci underlying asthma. Nature. 1996;383:247–50.

    CAS  PubMed  Google Scholar 

  98. Standl M, Sausenthaler S, Lattka E, Koletzko S, Bauer CP, Wichmann HE, et al. FADS gene variants modulate the effect of dietary fatty acid intake on allergic diseases in children. Clin Exp Allergy. 2011;41:1757–66.

    CAS  PubMed  Google Scholar 

  99. Standl M, Sausenthaler S, Lattka E, Koletzko S, Bauer CP, Wichmann HE, et al. FADS gene cluster modulates the effect of breastfeeding on asthma. Results from the GINIplus and LISAplus studies. Allergy. 2012;67:83–90.

    CAS  PubMed  Google Scholar 

  100. Roke K, Ralston JC, Abdelmagid S, Nielsen DE, Badawi A, El-Sohemy A, et al. Variation in the FADS1/2 gene cluster alters plasma n-6 PUFA and is weakly associated with hsCRP levels in healthy young adults. Prostaglandins Leukot Essent Fatty Acids. 2013;89:257–63.

    CAS  PubMed  Google Scholar 

  101. Baylin A, Ruiz-Narvaez E, Kraft P, Campos H. Alpha-Linolenic acid, delta6-desaturase gene polymorphism, and the risk of nonfatal myocardial infarction. Am J Clin Nutr. 2007;85:554–60.

    CAS  PubMed  Google Scholar 

  102. CARDIoGRAMplusC4D Consortium, Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45:25–33.

    CAS  PubMed  Google Scholar 

  103. Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 2009;41:56–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Dumitrescu L, Carty CL, Taylor K, Schumacher FR, Hindorff LA, Ambite JL, et al. Genetic determinants of lipid traits in diverse populations from the population architecture using genomics and epidemiology (PAGE) study. PLoS Genet. 2011;7:e1002138.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Nakayama K, Bayasgalan T, Tazoe F, Yanagisawa Y, Gotoh T, Yamanaka K, et al. A single nucleotide polymorphism in the FADS1/FADS2 gene is associated with plasma lipid profiles in two genetically similar Asian ethnic groups with distinctive differences in lifestyle. Hum Genet. 2010;127:685–90.

    CAS  PubMed  Google Scholar 

  107. Global Lipids Genetics Consortium, Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–83.

    CAS  PubMed  Google Scholar 

  108. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42:105–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Ingelsson E, Langenberg C, Hivert MF, Prokopenko I, Lyssenko V, Dupuis J, et al. Detailed physiologic characterization reveals diverse mechanisms for novel genetic loci regulating glucose and insulin metabolism in humans. Diabetes. 2010;59:1266–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Boesgaard TW, Grarup N, Jørgensen T, Borch-Johnsen K, Meta-Analysis of Glucose and Insulin-Related Trait Consortium (MAGIC), Hansen T, et al. Variants at DGKB/TMEM195, ADRA2A, GLIS3 and C2CD4B loci are associated with reduced glucose-stimulated beta cell function in middle-aged Danish people. Diabetologia. 2010;53:1647–55.

    Google Scholar 

  111. Hu C, Hoene M, Zhao X, Häring HU, Schleicher E, Lehmann R, et al. Lipidomics analysis reveals efficient storage of hepatic triacylglycerides enriched in unsaturated fatty acids after one bout of exercise in mice. PLoS One. 2010;5:e13318.

    PubMed Central  PubMed  Google Scholar 

  112. Kim OY, Lim HH, Yang LI, Chae JS, Lee JH. Fatty acid desaturase (FADS) gene polymorphisms and insulin resistance in association with serum phospholipid polyunsaturated fatty acid composition in healthy Korean men: cross-sectional study. Nutr Metab (Lond). 2011;8:24.

    CAS  Google Scholar 

  113. Park MH, Kim N, Lee JY, Park HY. Genetic loci associated with lipid concentrations and cardiovascular risk factors in the Korean population. J Med Genet. 2011;48:10–5.

    CAS  PubMed  Google Scholar 

  114. Liu C, Li H, Qi L, Loos RJ, Qi Q, Lu L, Gan W, Lin X. Variants in GLIS3 and CRY2 are associated with type 2 diabetes and impaired fasting glucose in Chinese Hans. PLoS One. 2011;6:e21464.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, Wägele B, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature. 2011;477:54–60.

    CAS  PubMed  Google Scholar 

  116. Caspi A, Williams B, Kim-Cohen J, Craig IW, Milne BJ, Poulton R, et al. Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism. Proc Natl Acad Sci U S A. 2007;104:18860–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Steer CD, Davey Smith G, Emmett PM, Hibbeln JR, Golding J. FADS2 polymorphisms modify the effect of breastfeeding on child IQ. PLoS One. 2010;5:e11570.

    PubMed Central  PubMed  Google Scholar 

  118. Xie L, Innis SM. Genetic variants of the FADS1 FADS2 gene cluster are associated with altered (n-6) and (n-3) essential fatty acids in plasma and erythrocyte phospholipids in women during pregnancy and in breast milk during lactation. J Nutr. 2008;138:2222–8.

    CAS  PubMed  Google Scholar 

  119. Rizzi TS, van der Sluis S, Derom C, Thiery E, van Kesteren RE, Jacobs N, et al. FADS2 genetic variance in combination with fatty acid intake might alter composition of the fatty acids in brain. PLoS One. 2013;8:e68000.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Steer CD, Lattka E, Koletzko B, Golding J, Hibbeln JR. Maternal fatty acids in pregnancy, FADS polymorphisms, and child intelligence quotient at 8 y of age. Am J Clin Nutr. 2013;98:1575–82.

    CAS  PubMed  Google Scholar 

  121. Stoffel W, Holz B, Jenke B, Binczek E, Günter RH, Kiss C. Delta6-desaturase (FADS2) deficiency unveils the role of omega3- and omega6-polyunsaturated fatty acids. EMBO J. 2008;27:2281–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Fan YY, Monk JM, Hou TY, Callway E, Vincent L, Weeks B, et al. Characterization of an arachidonic acid-deficient (Fads1 knockout) mouse model. J Lipid Res. 2012;53:1287–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Obukowicz MG, Raz A, Pyla PD, Rico JG, Wendling JM, Needleman P. Identification and characterization of a novel delta6/delta5 fatty acid desaturase inhibitor as a potential anti-inflammatory agent. Biochem Pharmacol. 1998;55:1045–58.

    CAS  PubMed  Google Scholar 

  124. Holmgren G, Jagell SF, Johnson SB, Holman RT. Suspected faulty essential fatty acid metabolism in Sjögren-Larsson syndrome. Pediatr Res. 1982;16:45–9.

    PubMed  Google Scholar 

  125. Taube B, Billeaud C, Labrèze C, Entressangles B, Fontan D, Taïeb A. Sjögren-Larsson syndrome: early diagnosis, dietary management and biochemical studies in two cases. Dermatology. 1999;198:340–5.

    CAS  PubMed  Google Scholar 

  126. Nwankwo JO, Spector AA, Domann FE. A nucleotide insertion in the transcriptional regulatory region of FADS2 gives rise to human fatty acid delta-6-desaturase deficiency. J Lipid Res. 2003;44:2311–9.

    CAS  PubMed  Google Scholar 

  127. Yao JK, Cannon KP, Holman RT, Dyck PJ. Effects of polyunsaturated fatty acid diets on plasma lipids of patients with adrenomultineuronal degeneration, hepatosplenomegaly and fatty acid derangement. J Neurol Sci. 1983;62:67–75.

    CAS  PubMed  Google Scholar 

  128. Simopoulos AP. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother. 2006;60:502–7.

    CAS  PubMed  Google Scholar 

  129. Simopoulos AP. Commentary. Genetic variants and omega-6, omega-3 fatty acids: their role in the determination of nutritional requirements and chronic disease risk. J Nutrigenet Nutrigenomics. 2009;2:117–8.

    PubMed  Google Scholar 

  130. Ameur A, Enroth S, Johansson A, Zaboli G, Igl W, et al. Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids. Am J Hum Genet. 2012;90:809–20.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Martinelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tosi, F., Sartori, F., Guarini, P., Olivieri, O., Martinelli, N. (2014). Delta-5 and Delta-6 Desaturases: Crucial Enzymes in Polyunsaturated Fatty Acid-Related Pathways with Pleiotropic Influences in Health and Disease. In: Camps, J. (eds) Oxidative Stress and Inflammation in Non-communicable Diseases - Molecular Mechanisms and Perspectives in Therapeutics. Advances in Experimental Medicine and Biology, vol 824. Springer, Cham. https://doi.org/10.1007/978-3-319-07320-0_7

Download citation

Publish with us

Policies and ethics