Skip to main content

Alarmins Initiate Host Defense

  • Conference paper
Book cover Immune-Mediated Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 601))

Abstract

In response to infection and/or tissue injury, cells of the host innate immune system rapidly produce a variety of structurally distinct mediators (we elect to call alarmins) that not only function as potent effectors of innate defense but also act to alarm the immune system by promoting the recruitment and activation of host leukocytes through interaction with distinct receptors. Alarmins are capable of activating antigen-presenting cells (APCs) and enhancing the development of antigen-specific immune responses. Here, we discuss the characteristics of several alarmins, a variety of potential alarmin candidates and potential implications of alarmins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bals, R. and Wilson, J.M. (2003) Cathelicidins-a family of multifunctional antimicrobial peptides. Cell Mol. Life Sci. 60, 711–720.

    Article  PubMed  CAS  Google Scholar 

  • Bianchi, M.E. (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Biragyn, A., Ruffini, P.A., Coscia, M., Harvey, L.K., Neelapu, S.S., Baskar, S., Wang, J.M. and Kwak, L.W. (2004) Chemokine receptor-mediated delivery directs self-tumor antigen efficiently into the class II processing pathway in vitro and induces protective immunity in vivo. Blood 104, 1961–1969.

    Article  PubMed  CAS  Google Scholar 

  • Biragyn, A., Ruffini, P.A., Leifer, C.A., Klyushnenkova, E., Shakhov, A., Chertov, O., Shirakawa, A.K., Farber, J.M., Segal, D.M., Oppenheim, J.J. and Kwak, L.W. (2002) Toll-like receptor 4-dependent activation of dendritic cells by β -defensin 2. Science 298, 1025–1029.

    Article  PubMed  CAS  Google Scholar 

  • Biragyn, A., Surenhu, M., Yang, D., Ruffini, P.A., Haines, B.A., Klyushnenkova, E., Oppenheim, J.J. and Kwak, L.W. (2001) Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J. Immunol. 167, 6644–6653.

    PubMed  CAS  Google Scholar 

  • Buck, C.B., Day, P.M., Thompson, C.D., Lubkowski, J., Lu, W., Lowy, D.R. and Schiller, J.T. (2006) Human alpha-defensins block papillomavirus infection. Proc. Natl. Acad. Sci. U.S.A. 103, 1516–21.

    Article  PubMed  CAS  Google Scholar 

  • Chertov, O., Michiel, D.F., Xu, L., Wang, J.M., Tani, K., Murphy, W.J., Longo, D.L., Taub, D.D. and Oppenheim, J.J. (1996) Identification of defensin-1, defensin-2, and CAP37/azurocidin as T cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J. Biol. Chem. 271, 2935–2940.

    Article  PubMed  CAS  Google Scholar 

  • Deng, A., Chen, S., Li, Q., Lyu, S.C., Clayberger, C. and Krensky, A.M. (2005) Granulysin, a cytolytic molecule, is also a chemoattractant and proinflammatory activator. J. Immunol. 174, 5243–8.

    PubMed  CAS  Google Scholar 

  • Garcia, J.R., Jaumann, F., Schulz, S., Krause, A., Rodriguez-Jimenez, J., Forssmann, U., Adermann, K., E, E.K., Vogelmeier, C., Becker, D., Hedrich, R., Forssmann, W.G. and Bals, R. (2001a) Identification of a novel, multifunctional β -defensin (human β -defensin 3) with specific antimicrobial activity: its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res. 306, 257–264.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, J.R., Krause, A., Schulz, S., Rodriguez-Jimenez, F.J., Kluver, E., Adermann, K., Forssmann, U., Frimpong-Boateng, A., Bals, R. and Forssmann, W.G. (2001b) Human β -defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J. 15, 1819–1821.

    PubMed  CAS  Google Scholar 

  • Hori, O., Brett, J., Slattery, T., Cao, R., Zhang, J., Chen, J.X., Nagashima, M., Lundh, E.R., Vijay, S., Nitecki, D. Morser, J., Stern, D. and Schmidt, A.M. (1995) The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J. Biol. Chem. 270, 25752–25761.

    Article  PubMed  CAS  Google Scholar 

  • Idzko, M., Dichmann, S., Ferrari, D., Di Virgilio, F., la Sala, A., Girolomoni, G., Panther, E. and Norgauer, J. (2002) Nucleotides induce chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin-sensitive P2y receptors. Blood 100, 925–32.

    Article  PubMed  CAS  Google Scholar 

  • Klotman, M.E. and Chang, T.L. (2006) Defensins in innate antiviral immunity. Nat. Rev. Immunol. 6, 447–456.

    Article  PubMed  CAS  Google Scholar 

  • Kokkola, R., Andersson, A., Mullins, G., Ostberg, T., Treutiger, C.J., Arnold, B., Nawroth, P., Andersson, U., Harris, R.A. and Harris, H.E. (2005) RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scand. J. Immunol. 61, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Kornbluth, R.S. and Stone, G.W. (2006) Immunostimulatory combinations: designing the next generation of vaccine adjuvants. J. Leukoc. Biol. 80, 1084–102.

    Article  PubMed  CAS  Google Scholar 

  • Kurosaka, K., Chen, Q., Yarovinsky, F., Oppenheim, J.J. and Yang, D. (2005) Mouse cathelin-related antimicrobial peptide chemoattracts leukocytes using formyl peptide receptor-like 1/mouse formyl peptide receptor-like 2 as the receptor and acts as an immune adjuvant. J. Immunol. 174, 6257–6265.

    PubMed  CAS  Google Scholar 

  • Lillard Jr., J.W., Boyaka, P.N., Chertov, O., Oppenheim, J.J. and McGhee, J.R. (1999) Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proc. Natl. Acad. Sci. U.S.A. 96, 651–656.

    Article  PubMed  CAS  Google Scholar 

  • Ma, X.T., Xu, B., An, L.L., Dong, C.Y., Lin, Y.M., Shi, Y. and Wu, K.F. (2006) Vaccine with beta-defensin 2-transduced leukemic cells activates innate and adaptive immunity to elicit potent antileukemia responses. Cancer Res. 66, 1169–1176.

    Article  PubMed  CAS  Google Scholar 

  • Manjili, M.H., Wang, X.Y., MacDonald, I.J., Arnouk, H., Yang, G.Y., Pritchard, M.T. and Subjeck, J.R. (2004) Cancer immunotherapy and heat-shock proteins: promises and challenges. Expert Opin. Biol. Ther. 4, 363–373.

    Article  PubMed  CAS  Google Scholar 

  • Marsland, B.J., Battig, P., Bauer, M., Ruedl, C., Lassing, U., Beerli, R.R., Dietmeier, K., Ivanova, L., Pfister, T., Vogt, L., Nakano, H., Nembrini, C., Saudan, P., Kopf, M. and Bachmann, M.F. (2005) CCL19 and CCL21 induce a potent proinflammatory differentiation program in licensed dendritic cells. Immunity 22, 493–505.

    Article  PubMed  CAS  Google Scholar 

  • Molon, B., Gri, G., Bettella, M., Gomez-Mouton, C., Lanzavecchia, A., Martinez, A.C., Manes, S. and Viola, A. (2005) T cell costimulation by chemokine receptors. Nat. Immunol. 6, 465–471.

    Article  PubMed  CAS  Google Scholar 

  • Moser, C., Weiner, D.J., Lysenko, E., Bals, R., Weiser, J.N. and Wilson, J.M. (2002) β -Defensin 1 contributes to pulmonary innate immunity in mice. Infect. Immun. 70, 3068–3072.

    Article  PubMed  CAS  Google Scholar 

  • Nizet, V., Ohtake, T., Lauth, X., Trowbridge, J., Rudisill, J., Dorschner, R.A., Pestonjamasp, V., Piraino, J., Huttner, K. and Gallo, R.L. (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414, 454–457.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim, J.J. and Yang, D. (2005) Alarmins: chemotactic activators of immune responses. Curr. Opin. Immunol. 17, 359–365.

    Article  PubMed  CAS  Google Scholar 

  • Park, J.S., Gamboni-Robertson, F., He, Q., Svetkauskaite, D., Kim, J.Y., Strassheim, D., Sohn, J.W., Yamada, S., Maruyama, I., Banerjee, A., Ishizaka, A. and Abraham, E. (2006) High mobility group box 1 protein interacts with multiple Toll-like receptors. Am. J. Physiol. Cell. Physiol. 290, C917–C924.

    Google Scholar 

  • Rosenberger, C.M., Gallo, R.L. and Finlay, B.B. (2004) Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc. Natl. Acad. Sci. U.S.A. 101, 2422–2427.

    Article  PubMed  CAS  Google Scholar 

  • Rouhiainen, A., Kuja-Panula, J., Wilkman, E., Pakkanen, J., Stenfors, J., Tuominen, R.K., Lepantalo, M., Carpen, O., Parkkinen, J. and Rauvala, H. (2004) Regulation of monocyte migration by amphoterin (HMGB1). Blood 104, 1174–1182.

    Article  PubMed  CAS  Google Scholar 

  • Rovere-Querini, P., Capobianco, A., Scaffidi, P., Valentinis, B., Catalanotti, F., Giazzon, M., Dumitriu, I.E., Muller, S., Iannacone, M., Traversari, C., Bianchi, M.E. and Manfredi, A.A. (2004) HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep. 5, 825–830.

    Article  PubMed  CAS  Google Scholar 

  • Rugeles, M.T., Trubey, C.M., Bedoya, V.I., Pinto, L.A., Oppenheim, J.J., Rybak, S.M. and Shearer, G.M. (2003) Ribonuclease is partly responsible for the HIV-1 inhibitory effect activated by HLA alloantigen recognition. AIDS 17, 481–486.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y., Evans, J.E. and Rock, K.L. (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521.

    Article  PubMed  CAS  Google Scholar 

  • Uesugi, H., Ozaki, S., Sobajima, J., Osakada, F., Shirakawa, H., Yoshida, M. and Nakao, K. (1998) Prevalence and characterization of novel pANCA, antibodies to the high mobility group non-histone chromosomal proteins HMG1 and HMG2, in systemic rheumatic diseases. J. Rheumatol. 25, 703–709.

    PubMed  CAS  Google Scholar 

  • Wang, H., Bloom, O., Zhang, M., Vishnubhakat, J.M., Ombrellino, M., Che, J., Frazier, A., Yang, H., Ivanova, S., Borovikova, L., Manogue, K.R., Faist, E., Abraham, E., Andersson, J., Andersson, U., Molina, P.E., Abumrad, N.N., Sama, A. and Tracey, K.J. (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285, 248–251.

    Article  PubMed  CAS  Google Scholar 

  • Wehkamp, J. and Stange, E.F. (2006) A new look at Crohn’s disease: breakdown of the mucosal antibacterial defense. Ann. N. Y. Acad. Sci. 1072, 321–331.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Z., Hoover, D.M., Yang, D., Boulegue, C., Santamaria, F., Oppenheim, J.J., Lubkowski, J. and Lu, W. (2003) Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human β -defensin 3. Proc. Natl. Acad. Sci. U.S.A. 100, 8880–8885.

    Article  PubMed  CAS  Google Scholar 

  • Yang, D., Biragyn, A., Hoover, D.M., Lubkowski, J. and Oppenheim, J.J. (2004a) Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu. Rev. Immunol. 22, 181–315.

    Article  PubMed  CAS  Google Scholar 

  • Yang, D., Chen, Q., Rosenberg, H.F., Rybak, S.M., Newton, D.L., Wang, Z.Y., Fu, Q., Tchernev, V.T., Wang, M., Schweitzer, B., Kingsmore, S.F., Patel, D.D., Oppenheim, J.J. and Howard, O.M. (2004b) Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J. Immunol. 173, 6134–6142.

    PubMed  CAS  Google Scholar 

  • Yang, D., Chen, Q., Chertov, O. and Oppenheim, J.J. (2000) Human neutrophil defensins selectively chemoattract naïve T and immature dendritic cells. J. Leukoc. Biol. 68, 9–14.

    PubMed  CAS  Google Scholar 

  • Yang, D., Chen, Q., Schmidt, A.P., Anderson, G.M., Wang, J.M., Wooters, J., Oppenheim, J.J. and Chertov, O. (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 192, 1069–1074.

    Article  PubMed  CAS  Google Scholar 

  • Yang, D., Chen, Q., Su, S.B., Zhang, P., Kurosaka, K., Caspi, R.R., Michalek, S.M., Rosenberg, H.F. and Oppenheim, J.J. (submitted) Eosinophil-derived neurotoxin acts as an alarmin to enhance Th2 immune responses by activating TLR2-MyD88 signal pathway in dendritic cells. (submitted).

    Google Scholar 

  • Yang, D., Chen, Q., Yang, H., Tracey, K.J., Bustin, M. and Oppenheim, J.J. (2007b) High mobility group box-1 (HMGB1) protein induces the migration and activation of human dendritic cells and acts as an alarmin. J. Leukoc. Biol. 81, 59–66.

    Article  PubMed  CAS  Google Scholar 

  • Yang, D., Rosenberg, H.F., Chen, Q., Dyer, K.D., Kurosaka, K. and Oppenheim, J.J. (2003) Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood 102, 3396–3403.

    Article  PubMed  CAS  Google Scholar 

  • Zedler, S. and Faist, E. (2006) The impact of endogenous triggers on trauma-associated inflammation. Curr. Opin. Crit. Care 12, 595–601.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost J. Oppenheim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Oppenheim, J.J., Tewary, P., de la Rosa, G., Yang, D. (2007). Alarmins Initiate Host Defense. In: Shurin, M.R., Smolkin, Y.S. (eds) Immune-Mediated Diseases. Advances in Experimental Medicine and Biology, vol 601. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72005-0_19

Download citation

Publish with us

Policies and ethics