PT - JOURNAL ARTICLE AU - M Quintero AU - G Colantuoni AU - A M Khatib AU - A Panasyuk AU - A Lomri AU - D R Mitrovic TI - Granulocyte-macrophage colony stimulating factor activates proteoglycan, type II collagen, and cAMP production by rat articular chondrocytes through specific binding sites. DP - 2001 Sep 01 TA - The Journal of Rheumatology PG - 2075--2084 VI - 28 IP - 9 4099 - http://www.jrheum.org/content/28/9/2075.short 4100 - http://www.jrheum.org/content/28/9/2075.full SO - J Rheumatol2001 Sep 01; 28 AB - OBJECTIVE: To evaluate the effects of granulocyte-macrophage colony stimulating factor (GM-CSF) on rat articular chondrocyte (AC) with respect to DNA synthesis, collagen type II and proteoglycan (PG) synthesis and expression, and cAMP production; to examine these cells for the presence of GM-CSF-specific binding sites; and to study their regulation by growth factors and cytokines. METHODS: First passage monolayers of rat AC were incubated with various concentrations of recombinant human GM-CSF, and then [3H]-thymidine, [3H]-proline, and [35S]SO4 incorporation and cAMP production were measured. The density of GM-CSF-specific binding sites, the effects of growth factors and cytokines on receptor density, and the activation of certain post-receptor signaling pathways were also examined by labeling the cell monolayers with [125I]-GM-CSF. RESULTS: GM-CSF (6-100 U/ml) inhibited (30%) [3H]-thymidine incorporation into DNA, and, in contrast, stimulated up to 3.6- and 2-fold [35S]SO4 and [3H]-proline incorporation into glycosaminoglycan side chains and collagen molecules, respectively. GM-CSF also increased aggrecan and type II collagen (Coll II) transcripts by 2- to 3-fold, respectively. These effects were associated with a concentration-dependent increase in cAMP production. A single class of high affinity (Kd = 98 pM; Bmax = 7.08 pM/microg DNA) binding sites of about 220 kDa were found. The [125I]-GM-CSF binding to the cells was slightly increased with phorbol 12-myristate 13-acetate (PMA), insulin-like growth factor-I, platelet derived growth factor, basic fibroblast growth factor, and tumor necrosis factor-alpha, and decreased with pertussis toxin, cholera toxin, and interleukin-1beta. CONCLUSION: These results suggest that GM-CSF may play a role in the regulation of chondrocyte metabolism as an anabolic agent and may stimulate cartilage healing under pathological conditions.