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Cellular and Humoral Immune Responses During
Tuberculosis Infection: Useful Knowledge in the 
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ABSTRACT. In this review, recent insights into innate and adaptive cellular and humoral immune response to
Mycobacterium tuberculosis (Mtb) are discussed and the role of specific cytokines such as tumor
necrosis factor-a (TNF-a) is highlighted. According to recent findings, the immune system plays a
key role in avoiding mycobacteria dissemination. The importance of different cell types
(macrophages, dendritic cells, interferon-g–producing T cells) as well as the production of pro-
inflammatory cytokines such as interleukin 6 (IL-6), IL-12, and IL-23/IL-17 have been demon-
strated. Alveolar macrophages are considered the first cells infected by Mtb during respiratory
infection. Mtb proliferates within alveolar macrophages and dendritic cells and induces the release
of cytokines such as TNF-a, IL-1, IL-6, and IL-12. Toll-like receptors-stimulated dendritic cells link
innate and adaptive immunity by promoting polarization of effector T cells. The efficient induction
of Th1 immunity is decisive in defense against Mtb. In fact, host effector immune response against
Mtb is related to the presence of a Th1 response. The definition of the cellular and molecular 
mechanisms involved in the immune response to Mtb can be helpful in developing new preventive
strategies to avoid infection relapse, particularly in patients treated with biological agents. 
(J Rheumatol Suppl. 2014 May; 91:17–23; doi:10.3899/jrheum.140098)
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Mycobacterium tuberculosis (Mtb) infection is a major
public health problem. A large body of evidence indicates
that the immune system plays a key role in avoiding
mycobacteria dissemination as well as in the patho-
genesis of the full-blown disease. Inhaled bacteria are
intercepted by macrophages in the lung, wherein they can
replicate resisting innate defense mechanisms1,2. As
confirmed in experimental models, selective T cell
depletion and reconstitution suggest the involvement of
different immune pathways3,4,5. The importance of
different cell types such as macrophages, dendritic cells
(DC), interferon-g (IFN-g)-producing T cells in the early
phase of Mtb infection, as well as the production of
regulatory and proinflammatory cytokines such as inter-
leukin 6 (IL-6), IL-10, IL-12, and IL-23/IL-17, has been
demonstrated6,7,8,9. Infection with mycobacteria results in

the formation of granuloma, a complex cellular structure
that requires the presence of tumor necrosis factor-a
(TNF-a)10.

We discuss the mechanisms linking the innate and
adaptive (cellular and humoral) immune response involved
in the pathogenesis of latent and active tuberculosis (TB),
including practical clinical applications related to the use of
biological agents such as anti-TNF-a blockers.

Innate Immune Response
Role of Toll-like receptors (TLR) as key receptors in the
innate response to Mycobacterium. Among the pattern
recognition receptors (PRR), TLR are expressed by many
types of cells and represent crucial triggers for adaptive
immune response11. The activation of innate immunity is
dependent on recognition of Mtb structural components of
the wall such as mycolic acid, peptidoglycans, mannan,
through TLR11,12. Among them TLR2, TLR4, and TLR9
seem to play key roles13,14,15, even if studies performed in
mouse models displayed conflicting results13,16,17,18,19,20,21.
In fact, the secondary immune response to Mtb has been
shown to be efficient in TLR2–/– mice18, and similarly,
macrophages obtained from triple knockout mice (TLR2,
TLR4, TLR9), display a normal capacity to control 
Mtb infection as wild type mice13. On the other hand,
TLR4–/– mice (C3H/HeJ) are more susceptible to lethal
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infection in comparison to wild type mice, thus demon-
strating a critical role of TLR4 in the development of
efficient innate host response to Mtb21. 

The complexity of the innate response to Mtb is evident
from the results on MyD88 (myeloid differentiation factor
88), an adaptor molecule bound to the cytoplasmic portion
of all TLR22,23. In experimental models the lack of MyD88
is associated with a high susceptibility to infections
including TB24,25,26,27, probably because of defective
signaling in response to IL-1a and IL-1b28. MyD88 is also
involved in the differentiation of effector Th17 cells, a key
protective T cell subset against Mtb29,30,31. Structural com-
ponents of Mtb are also recognized by specific family
members of C-type lectin receptor (CLR)32. Single deletion
of CLR members such as DC-SIGN, dectin1, or mannose
receptor has been associated with no significant effects
during Mtb infection. On the other hand, in experimental
models the deletion of the gene encoding the CLR adaptor
molecule CARD9, shared among the different members of
the CLR family, is associated with lethal Mtb infection33,34.
Recently, gene polymorphisms of these innate receptors
have been demonstrated and associated with susceptibility
to TB35. 

Macrophages and Dendritic Cells in the Early Phase of
Tuberculosis Infection
Alveolar macrophages are considered the first cells infected
by inhaled Mtb. They actively produce antimicrobial factors
and they initiate the immune response against Mtb
itself36,37. 

The early phase of infection is characterized by a
progressive recruitment and accumulation of cells, all of
which are progressively infected by the expanding
population of Mtb38. DC are likely to become infected
during Mtb aerosol exposure and seem to play a key role in
triggering T cell responses39,40. Mtb impairs DC migration
to lymph nodes and their antigen presentation capacity
through the downregulation of MHC class II molecules,
thus limiting an efficient adaptive immune response41. 

It is generally agreed that Mtb proliferates within
alveolar macrophages and DC and induces release of
cytokines such as TNF-a, IL-1, IL-6, and IL-12, which in
turn activate macrophages to induce Mtb killing42. IL-12
and IL-18 produced by macrophages and DC induce the
production of IFN-g by many T cell subsets37,43,44,45. The
activation of macrophages induced by IFN-g produced by T
cells appears to be the central event in the elimination of
Mtb46. 

Recruitment and Activation of Natural Killer Cells
During TB Infection
Natural killer (NK) cells, through the production of IFN-g,
activate macrophages, which produce IL-12, IL-15, and
IL-18 and expand CD8+ T and NK T cells (NKT)47,48,49.

NK cells recognize Mtb-infected macrophages through
NKp44, NKp46, and NKG2D molecules, which are the
principal receptors involved in the lysis Mtb-infected
cells50,51,52. 

NKT cells recognizing lipid antigens presented in the
context of CD1a molecules, have been distinguished into
invariant (iNKT) and noninvariant NKT cells53. iNKT cells
play a major role in the recognition of glycolipids of the Mtb
wall and may be activated by microenvironmental cyto-
kines. There is growing evidence that NKT cell deficiency
might be crucial for the development of active TB in
patients infected with Mtb54. In fact, NKT cell levels were
significantly lower in the peripheral blood of patients with
pulmonary TB and extrapulmonary TB55. TNF-a-blockers
are able to downregulate the NK- and NKT-driven mechan-
isms leading to an efficient Mtb killing.

New Insight into the Role of Cytokines and Chemokines
in Tuberculosis Infection
Cytokines have regulatory effects and participate in the host
defense against infectious agents. Actual participation of a
number of cytokines has already been identified in TB. In
the last few years, the existence of functionally polarized
CD4+ T cell subsets based on their profile of cytokine
secretion has accumulated. Type 1 T helper (Th1) cells
produce IFN-g, IL-2, and TNF-a, which activate macro-
phages and are responsible for cell-mediated immunity to
intracellular pathogens. By contrast, Th2 cells produce IL-4,
IL-5, IL-10, and IL-13, which are responsible for promoting
antibody responses and inhibiting macrophage functions56.
Th17 cells represent the third arm of CD4 T cell effectors
and complement the function of the Th1 and Th2 cell
lineages. They selectively produce IL-17A and F and play a
critical role for host defense to extracellular pathogens and
fungi and are associated to autoimmunity57. The classic
pattern is represented by IL-1a and IL-1β; IL-2; IL-6;
TNF-a; and IL-1243,44,58,59,60,61,62. TNF-a induces the
production of other cytokines, such as IL-1, IL-6, and
indirectly, of IFN-a and IL-2, which in turn can amplify
TNF-a production63. Although Mtb infection in the lungs is
largely characterized by the presence of inflammatory
cytokines, there is some evidence of regulatory activity as
shown by the production of IL-10. These data are crucial,
considering that IL-10 is able to downregulate the
transcription of TNF-a mRNA63. There has been accumu-
lating evidence that anti-TNF-a therapy increases the risk of
reactivating infections that are normally maintained in a
latent state such as TB, and in which TNF-a plays a central
role.

The synthesis of IFN-g is another crucial event during
Mtb infection. Such a cytokine, produced by activated T,
NK, and NKT cells, promotes cellular proliferation,
activation of the respiratory burst, and expression of
adhesion molecules and PRR by macrophages and DC64,65.
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The role of IFN-g in Mtb infection has been confirmed in
models of IFN-g transgenic mice. These animals showed an
increased ability to hold out against high-dose challenge
with Mtb66. Accordingly, IFN-g- of IFN-gR KO mice are
susceptible to Mtb dissemination and death67. In agreement
with such data, subjects with a deficiency of IFN-gR gene
displayed an increased clinical severity of the infection,
poor formation of granuloma, and microorganism dissemi-
nation68,69. The role of IFN-g was also confirmed by the
results obtained in subjects with active or latent form of TB.
In the latent form the production of IFN-g and IL-2 is higher
than in the active form70. Recent data have also demon-
strated that the IL-23/IL-17 pathway may play a role in the
immune response against Mtb, particularly in maintaining
the response to the microorganism and in improving the
development of Th1 cells71,72,73. IL-12 is the key molecule
that reduces the expression of Th17 cells, favoring their shift
to a more aggressive Th1 phenotype74. The balance between
the release of IL-23/IL-17 and of IL-12/IFN-g appears to be
crucial for the regulation of inflammatory response during
Mtb infection75. Since both Th1 and Th17 cells produce
TNF-a, it is very likely that TNF-a blockers impair the
activity of these effector cells. 

Granulocyte-macrophage colony-stimulating factor
(GM-CSF), produced by different cell types including
airway epithelial cells, macrophages, and type II alveolar
epithelial cells, is another cytokine that contributes to the
control of Mtb infection by enhancing antimycobacterial T
cell responses as the consequence of expansion and
activation of DC70.

An effective immune response at the site of Mtb infection
is dependent on the ongoing recruitment of effector cells as
occurring in granuloma structure33. Chemokines are a
family of structurally related proteins that regulate cell
trafficking and differentiation through their interaction with
specific receptors. The relevance of chemokines in Mtb
infection has also been reported in humans76,77. In fact, in
addition to cytokines, Mtb-activated macrophages produce
different chemokines with important activity on a number of
circulating and tissue cell types78. Recent data in humans
and mice have shown that CXCL13 plays a key role in the
immune response to Mtb by attracting specific CXCR5+ T
cells in the lungs79. In addition to adhesion molecules
(mucosal addressing cell adhesion molecule-1), TNF-a also
induces the expression of CC-chemokines such as CCL19
and CCL21, as well as CXCL12 and CXCL13, which
regulate lymphocyte homing80. The inhibition of
TNF-a-induced chemokine expression exerted by
biological agents suggests that this cytokine may influence
the ongoing cellular recruitment in lymph nodes and
granuloma structure. Experimental models have demon-
strated that the deficiency of CCR7, the receptor shared by
CCL19 and CCL21, is associated with alterations in the
formation of granuloma81. In humans, several gene

polymorphisms of chemokines and chemokine receptors
such as CCL2, CCL3L1, and CCR5 have been associated
with active TB infection82,83. The role of CCL2 has been
confirmed in Mtb-infected CCR2-KO mice in which the
monocyte recruitment is strongly impaired84. In fact,
through its receptor CCR2, CCL2 exerts functional activity
in the recruitment of monocytes as well as T effector cells
and seems to preferentially drive the polarization of naive T
cells to Th2 cells. Accordingly, an overexpression of CCL2
has been reported in subjects with severe TB85.

Adaptive Immune Response
Specific CD4+ T cell response to Mycobacterium. The
immune response against Mtb is related to the presence of
Th1 cells, leading to the production of mediators such as
IFN-g, which activate infected macrophages86. 

The proliferation of naive Mtb-specific T cells first
occurs in the draining lymph nodes after the activation
induced by the DC. Mtb-specific T cells migrate to the
blood and then to the primary areas of infection in the lung
(driven by tissue chemokines) and actively participate in
controlling the infection41,87. 

The role of T cells in the protection of Mtb is indirectly
demonstrated by the effects of TNF-a blockers. These
biological agents are able to interfere with the Mtb-specific
induced proliferation and cytokine production by T cells,
thus increasing the risk of infection or Mtb reacti-
vation88,89,90. The critical role of CD4+ T cells in Mtb
infection is also shown by results obtained in human
immunodeficiency virus-positive patients with CD4+ T cell
depletion who showed an increased susceptibility to primary
infection as well as reactivation of latent infection91. A
persistent Th cell function during an acute and chronic Mtb
infection is crucial for an efficient protective immune
response to the microorganism92.
CD8+ T cells and Mycobacterium infection. CD8+ T
lymphocytes are another subset involved in the immune
response to intracellular pathogens36. The role of
Mtb-specific CD8+ T cells was confirmed by their
appearance in the airway lumen at the beginning of the
infection25. The effector functions of CD8+ T cells during
Mtb infection are represented by the ability (1) to lyse
infected cells as macrophages and DC; (2) to produce IFN-g,
although to a lesser extent than CD4+ T cells; and (3) to
directly kill intracellular bacteria through the production of
granzymes and perforins93. It is important to note that the
longterm development and function of CD8+ T cell
response, in Mtb as well as in other agents infecting
individuals, is closely dependent on the amounts and profile
(Th1) of memory CD4+ T cells93,94,95,96.
Other lymphocytes in Mtb infection. While the role of CD4+
T cells is well known, the importance of other lymphocytes
in Mtb infection has to be better defined. Among them, gdT
cells are primarily involved and are capable of lysing

19Matucci, et al: Immune response in TB infection

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2014. All rights reserved.

 www.jrheum.orgDownloaded on April 17, 2024 from 

http://www.jrheum.org/


infected macrophages79. When stimulated, gdT cells
develop cytolytic activity and produce cytokines such as
IFN-g, TNF-a, and IL-1097,98. IFN-g–producing and
TNF-a–producing cells have been observed in high
frequency in CD4–CD8–gdT cells, particularly in patients
presenting the non-severe form of the disease, while the
modulatory part of the cells producing IL-10 is evident in
severe TB99. Through Fas ligand-dependent and indepen-
dent mechanisms100, gdT cells also release granzymes and
perforins that exert a direct effect on Mtb and infected cells.
Experimental models of Mtb infection have also demon-
strated that gdT cells are the main source of IL-17, particu-
larly during the early immune response at the mucosal
level101. It is very likely that TNF-a blockers also impair
these cells, which actively produce TNF-a.
New insights into the role of humoral immune response to
Mtb. A reappraisal of humoral immune response to Mtb in
humans in addition to experimental models has been done.
In fact, Mtb-specific antibodies neutralize pathogen toxins
and promote opsonization and complement activation102.
The antibody-mediated protective mechanisms also include
the ability to interfere with the adhesion of Mtb to cells103.
A correlation between humoral immune response and
protection against Mtb infection is confirmed by results
reported in children: the disseminated form of TB was
associated with low levels of Mtb-specific IgG antibodies
compared to children with localized infection who showed
high titer of antibodies104. In vitro studies have also demon-
strated that the levels of anti-PPD IgG antibodies correlate
with the reduction of proliferative response to tuberculin105. 

An efficient cross-talk between innate and adaptive
immune responses is crucial in the control of Mtb infection.
The specific contributions of IFN-g CD4+ Th1 cells is well
documented during Mtb infection. However, the role of
other cell populations has been extensively described
including Th17, NKT cells, NK cells, and B cells. Among
cytokines, TNF-a is fundamental in the control of Mtb
infection. The relevance of this cytokine during Mtb
infection has generated new interest because of the risk of
Mtb reactivation during therapy with TNF-a blockers. The
definition of the cellular and molecular mechanisms
involved in the immune response to Mtb in patients treated
with these biologic agents can further aid in the devel-
opment of new preventive strategies to avoid infection
relapse.
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