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ABSTRACT. There has been rapid growth in the use of artificial intelligence (AI) analytics in medicine in recent years, 
including in rheumatic and musculoskeletal diseases (RMDs). Such methods represent a challenge to 
clinicians, patients, and researchers, given the “black box” nature of most algorithms, the unfamiliarity of 
the terms, and the lack of awareness of potential issues around these analyses. Therefore, this review aims to 
introduce this subject area in a way that is relevant and meaningful to clinicians and researchers. We hope to 
provide some insights into relevant strengths and limitations, reporting guidelines, as well as recent examples 
of such analyses in key areas, with a focus on lessons learned and future directions in diagnosis, phenotyping, 
prognosis, and precision medicine in RMDs. 
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Artificial intelligence (AI; Figure 1) and its subcategory machine 
learning (ML) have rapidly gained traction as analytic methods 
in a variety of conditions including rheumatic and musculoskel-
etal diseases (RMDs).1 These terms have seemingly taken over 
the medical literature in recent years, but often in a way that is 
not readily accessible to most clinicians or researchers. Beam and 
Kohane provided a very useful perspective on AI/ML in 2018 as 
part of a spectrum from fully human-guided analysis and deci-
sion making to fully automated network-based algorithms.2 They 
sagely noted that AI/ML provides “…no guarantees of fairness, 
equitability, or even veracity.”2

 In 2020, the European Alliance of Associations for 
Rheumatology (EULAR) endorsed principles relating to the use 
of big data (defined as large, complex, and/or multidimensional, 
from heterogeneous sources) in RMDs.3 These include an imper-
ative to consider ethical issues and an overarching goal to use big 

data to improve the lives of patients with RMDs. Key points 
focused on the need for harmonized standards and the FAIR 
principle (Findable, Accessible, Interoperable, and Reusable), 
open data platforms with privacy considerations and interdis-
ciplinary collaboration, use of explicit reporting of methods, 
benchmarking of computational methods, and independent 
validation, along with interdisciplinary training in big data for 
clinicians and scientists from various backgrounds.3 
 A variety of recent reviews have focused on the use of ML 
in RMDs, including an overview of definitions and performance 
characteristics of ML, a set of representative clinical studies 
through early 2021,4 and a more technical overview of defini-
tions, methods, classification procedures, prediction models, 
and algorithms5; these reviews noted that most datasets are not 
purpose-built and thus lack necessary sample size (SS) as well as 
novel features. Additionally, there are several reviews focused 
specifically on the role of ML in imaging, including in RMDs,6-10 
so this large topic will not be reviewed here. Therefore, rather 
than providing a systematic or technical review, we refer the 
reader to these publications,4-10 and instead provide a narrative 
overview of recent work. The goal of this review is to serve as an 
introduction to the area of AI/ML for clinicians and researchers 
in RMDs who are new to this field (see also Hugle et al for a good 
introduction to types of AI/ML in rheumatology11); to improve 
understanding around how incorporating these methods might 
benefit their work, which data types might be useful in AI/ML 
analyses (Figure 2), and how they might work with collabora-
tors; and to provide examples of work in key areas. These key 
areas include (1) diagnosis, (2) phenotyping, (3) prognosis, 
(4) precision medicine, (5) limitations and biases, and (6) future 
directions.
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2 Machine learning in RMDs

AI/ML for diagnosis: Identifying the condition of interest in 
a patient or cohort
AI/ML methods can assist with a variety of diagnostic chal-
lenges, including in the clinical setting based on available lab and 
clinical data, identification of affected patients in the electronic 
health record (EHR), or optimal selection of clinical study 
participants.
 One of the main interests for clinicians and their patients 
is the definition of the disease state. As many RMDs are rare 
diseases, by definition affecting fewer than 1 in 2000 individuals, 
this can be particularly challenging; however, ML holds specific 
promise to improve strategies and develop new drugs for the 
treatment of rare diseases. Data from genomic and multiomic 
approaches have provided new insights, as have other big data 
like gait assessments and imaging.12 In a recent scoping review, 
most studies of rare diseases employing ML were focused on 
diagnosis or prognosis, and many suffered from small sample 

sizes and a lack of external validation.13 Registries can increase 
sample sizes for even the rarest of conditions, although harmo-
nization is needed for these to be useful. Open data sources have 
similar limitations and may have poorer reliability than carefully 
curated data sources. Possible solutions include enhancing SS 
with the incorporation of unlabeled non–case samples outside 
the rare disease of interest, artificially built samples, and transfer 
learning.12 
 Systemic lupus erythematosus (SLE) is an example of a rare 
disease and RMD that has been investigated using ML methods 
given the challenges of making this diagnosis in clinical practice. 
The SLE Risk Probability Index has been proposed to assist with 
diagnosis in the clinical setting, improving time to diagnosis 
and treatment in SLE.14 Clinical guidance was used to create 
20 feature panels, each of which were submitted to random 
forest (RF) and least absolute shrinkage and selection operator 
(LASSO) penalized regression, resulting in 40 models trained 
on data from 2 SLE registries. The model with highest accuracy 
was evaluated in a validation cohort and converted into a scoring 
system, using a threshold of 7 to separate SLE vs other RMD 
in adults, and adjusted to 8 in a follow-up study in a pediatric 
SLE cohort.15 Although using a relatively small sample size and 
retrospective design, this work exemplifies the importance of 
internal and external validation in ML-based diagnostic algo-
rithms. Another study used both structured and narrative data to 
identify patients with SLE in EHR data.16 They selected definite 
cases, probable cases, and definite noncases by chart review to 
determine the positive predictive value (PPV) of the algorithms 
and features in internal and external cohorts. The ML algorithm 
had a 92% PPV for definite/probable SLE in the internal cohort, 
and 94% in an external cohort, comparing favorably to the PPV 
of using 1 or 2 International Classification of Diseases, 9th/10th 
revision codes, which was cited as around 50%. The EHR pheno-
typing protocol is published and available for use in clinical and 
translational studies.17 The performance characteristics of previ-
ously published algorithms were also tested, demonstrating the 
importance of adjusting for portability (ie, their application 
in other systems); several challenges were identified, such as 
different medical billing practices, medication prescribing and 
reporting, and disease prevalence.16 

AI/ML for phenotyping: Defining important subtypes of 
disease
Individuals with RMDs have variable courses, including rates 
of progression, transition to other conditions, and response to 
treatments. 

Figure 1. Definitions and abbreviations of key terms in this review.

Figure 2. Examples of data sources and types in 
AI/ML approaches. AI: artificial intelligence; 
ML: machine learning. 
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 Molecular phenotyping is an area of growing interest, 
given the substantial overlap in clinical features and the lack 
of specific diagnostic studies for many RMDs. Myositis is a 
good example, considering the multiple antibodies and clinical 
phenotypes within inflammatory myositis and our growing 
understanding of their effect on outcomes. Muscle biopsies 
were collected from 119 patients enrolled in several key myositis 
cohorts and 20 healthy controls. The myositis cohorts included 
those with myositis-specific autoantibodies, anti-synthetase 
syndrome, necrotizing myopathy, or inclusion body myositis.18 
Ten different ML algorithms, including decision trees and RF, 
among others, were trained using transcriptomic data to deter-
mine disease-specific gene expression patterns. This allowed for 
accurate identification of subgroups in over 90% of muscle biop-
sies using the linear support vector machine model.18 Although 
the sample size was small, the use of biopsy data was one of the 
strong points of this study and demonstrated the usefulness of 
objective transcriptomics in the interpretation of tissue biop-
sies. These markers may be useful to tailor therapies to a specific 
molecular diagnosis in the future.
 Juvenile-onset SLE is a rare RMD that is challenging to study 
and often reliant on small cohorts, particularly for subgrouping. 
The choice of ML algorithms that can potentially address diffi-
culties associated with rare diseases is particularly important. 
Cross-validation is of value in settings without a readily avail-
able validation cohort. Robinson et al applied supervised ML 
approaches for classification (ie, discrimination of 67 SLE 
patients from 39 healthy controls) and selection of important 
variables, including immune cell profiles.19 These variables were 
further used in an unsupervised k-means clustering that iden-
tified 4 potentially important subgroups among patients with 
SLE.19 Limitations of this study included the small sample size, 
low number of Black patients, and imperfect outcome measures. 
However, such immune-based phenotyping may improve 
patient stratification for future clinical studies and may eventu-
ally inform clinical practice.

AI/ML for prognosis: Defining disease course for targeted 
intervention
To better identify those at risk and take appropriate action, it is 
important to know which individuals are most likely to worsen 
rapidly and which may experience improvement or resolution of 
their condition.
 While clinical disease activity measures are available and 
validated in most RMDs, their application and use in clinical 
practice is inconsistent. ML can be used to estimate these values 
from available clinical information to identify patients with 
active disease in clinical datasets. An earlier study in this area 
used only structured data (eg, laboratory values, existing Clinical 
Disease Activity Index [CDAI] scores, and medications) from 
the EHRs of 2 distinct clinical settings to build a deep learning 
model to predict CDAI in patients with rheumatoid arthritis 
(RA).20 More than 20 variables were significantly important 
for accuracy of the predictions. This paper demonstrates both 
strong statistical design and a detailed discussion of limitations 
associated with such data, including missing values, subsequent 

biases, and the usefulness of these models in clinical practice. 
Another approach is to use unstructured data, such as clinical 
notes, to predict other quantifiable outcomes. Alves et al devel-
oped natural language processing algorithms followed by valida-
tion to estimate SLE Disease Activity Index categories in SLE 
from unstructured notes.21 This approach was validated to esti-
mate CDAI scores in RA.22 Both groups were able to estimate 
disease activity with area under the curve (AUC) around 0.9 and 
correlation with true clinical scores around 0.7. The ability to 
estimate disease activity in the absence of clinician-entered scores 
would dramatically increase the data available for research use, 
providing large numbers of patients for outcomes research, or for 
metaanalyses, and potentially reducing disparities by provider or 
clinic. Such algorithms would still require sufficient input for 
estimation and may not be applicable to all settings (eg, hand-
written notes, international/low resource settings). A combina-
tion of structured and unstructured data is likely optimal for the 
prediction of prognosis in clinical datasets.
 It is important to identify patients who are most likely to prog-
ress or even to develop disease. One such circumstance is patients 
with undifferentiated arthritis, some of whom go on to develop 
RA and some of whom do not. A small study assessed the DNA 
methylome of patients with undifferentiated arthritis (n = 72), 
where about half remained stable and half developed RA after 
a year, and identified differential methylation between groups.23 
Both supervised and unsupervised methods were used along with 
internal and external validation. Distinct methylation patterns 
were seen among those who did develop RA, those who did not 
develop RA, as well as those in a separate group with RA at base-
line, demonstrating the potential of methylation markers to sense 
early disease determinants in these patients.23 Despite the small 
sample size, this work highlights the possibility of incorporating 
basic and clinical data for clinically relevant risk assessment. 
 Data from randomized clinical trials (RCTs) can be used 
to identify predictors of prognosis, as such studies include 
well-phenotyped individuals, balanced across treatment groups 
at baseline, who are followed over time. Pooling individual data 
across different trials, while appropriately addressing heteroge-
neity,24 can increase sample size, but this data source provides a 
limited number of variables. One such study pooled data from 
nearly 1900 patients with psoriatic arthritis enrolled in 4 RCTs 
to determine subgroups of response trajectory to secukinumab 
therapy over 52 weeks.25 They applied model-based clustering 
methods to identify 7 clusters of participants, where patients 
within a cluster had a common distribution of 206 baseline 
measures; this procedure was repeated on 200 different subsets 
to access cluster stability. The clusters, characterized according 
to longitudinal responses, were clinically interpretable, with 
features such as higher polyarticular disease burden, greater foot 
symptoms, more dactylitis, or more nail and skin involvement.25 
The overall population was skewed as a result of the RCT design, 
with a high proportion of active polyarticular disease compared 
to other subtypes (such as oligoarticular involvement). However, 
this type of work could be used to inform trial selection for specific 
therapeutics or dosing regimens in future RCTs. In another study, 
data from several RCTs were examined and a remission prediction 
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score for patients with RA treated with tocilizumab was developed 
and validated.26 Importantly, this prediction rule was subsequently 
tested in registry real-world data with an extended set of variables 
in a follow-up paper,27 finding that the RCT model could simi-
larly predict discrimination in the registry data (with AUC ~0.7 
to 0.8). Both studies are excellent examples of robust design and 
rigorous statistical analysis.
 There has been a great deal of interest in predicting progres-
sion in osteoarthritis (OA), one of the most common RMDs. An 
objective endpoint of total joint replacement (TJR) can be used 
to overcome some of the challenges of subjective pain outcomes 
and discordance with imaging in OA, although this is compli-
cated by issues of preference, practice variability, and access to 
care. Jamshidi et al used baseline data from the publicly avail-
able Osteoarthritis Initiative (OAI) dataset to predict TJR at 96 
months.28 Using a LASSO method to select features followed by 
multiple ML models, they could predict time to TJR with high 
accuracy (AUC 0.9). Given the nature of the OAI cohort, which 
included only people with or at risk for OA, these results are not 
generalizable to the general population, and only features known 
to be associated with OA were included in the dataset, so there 
was no opportunity to discover novel features, a challenge for 
many existing cohorts.
 The IMI-APPROACH (Applied Public-Private Research 
enabling Osteoarthritis Clinical Headway) study used a 
novel selection method to identify individuals most likely to 
progress.29 This group developed algorithms in 2 large OA 
cohort studies to best classify patients who could be consid-
ered “progressors” (and avoid selection of likely “nonprogres-
sors”), potentially improving efficiency for future clinical 
studies. This procedure was subsequently used to preselect 
likely progressors (those with a high likelihood of developing 
joint space loss or pain) from existing OA cohorts,30 resulting 
in 297 participants to be followed for 2 years. Their inclusion 
was decided using RF and other supervised ML models that 
provided the probability of progression based on structure 
and/or pain within the lifetime of the study.31 To improve the 
performance of RF, a single model was trained to assign pain 
progression and structure progression labels independently 
(multilabel classification), while a duo classifier was used for 
2 independent models, each trained to predict a single label 
(pain or structure progression).31 As a purpose-built cohort 
designed for the application of ML methods, this work is an 
important step forward in OA.

AI/ML for precision medicine: Using data to guide therapy 
and avoid adverse events 
Several recent publications in RMDs reflect the goals of preci-
sion medicine, which can be understood as the provision of the 
right treatment,32 at the right dose,33 to the right person, at the 
right time,34 while minimizing unnecessary testing, side effects 
and overuse issues, including opioid use and abuse,35-37 specifi-
cally opioid use around TJR,38-40 and to explore issues of inequity 
in classification.41

 Prediction of clinical response among patients with RMD, 
and thus the ability to make an informed decision about optimal 

treatment recommendations, has long been a goal of clinicians 
and researchers. Using 275 baseline variables from Pournara et 
al,25 a separate analysis employed Bayesian elastic net, which 
is useful for a large number of potentially correlated patient 
characteristics, to determine predictors of 16-week outcome 
based on starting dose of secukinumab in psoriatic arthritis.33 
While still limited by RCT data and the need for validation, 
this work provides insight relevant to precision medicine in 
RMDs. Another study, in a small cohort of 39 women with 
RA starting anti-TNF therapy, researchers assessed differ-
ences in multiomics from peripheral blood mononuclear cells 
(PBMCs) among EULAR responders and nonresponders at 3 
months,42 although ML methods were not fully integrated into 
this analysis. 
 A preliminary study aiming to predict the 6-month clin-
ical response to adalimumab and etanercept was undertaken in 
80 patients with RA enrolled in an observational cohort in the 
Netherlands as they started biologic treatment.32 The investiga-
tors obtained PBMCs prior to biologic therapy and performed 
genome-wide expression and DNA methylation assays, which 
demonstrated different signatures in those who eventually 
responded to therapy. RF models using these multiomics data 
had > 80% accuracy for prediction of response.32 Several internal 
cross-validation techniques were used, although the validation 
and training sets were from the same sample.43 The key strength 
of this study is the incorporation of true multiomics data and 
integrated data analysis in the prediction models. Future work 
will benefit from larger samples with robust outcomes and truly 
independent external validation sets to avoid overfitting and to 
mitigate feature instability, which is often challenging in rare 
diseases. Another example is a study that used consortium data 
to develop an algorithm to predict methotrexate response in 
patients with early RA (n = 643).34 An RF model was trained 
on UK patients (n = 336) and externally validated on indepen-
dent, non-UK patients from Sweden and the Netherlands (n = 
307). Overfitting and class imbalance were directly addressed; 
however, the sample included only White Europeans, so general-
izability remains limited. The incorporation of genetic data in the 
prediction algorithm substantially improved prediction accuracy, 
supporting the feasibility of pharmacogenomic markers for preci-
sion medicine, although the overall response rate remained low.34

 We used 24 ML algorithms to select the optimal model 
and to develop individualized treatment rules based on RCT 
data from the Intensive Diet and Exercise for Arthritis (IDEA) 
trial.44 IDEA randomized overweight or obese individuals with 
symptomatic knee OA to 3 groups: exercise alone, diet alone, 
or a combination of diet plus exercise.45 Using data from 343 
participants and multiple outcome RF and list-based models, 
subgroups of participants were identified who would have 
improved outcomes for weight loss and for IL-6 (an inflamma-
tory cytokine) if they had been assigned according to the deci-
sion rule rather than to the diet plus exercise intervention using 
value functions.44 This work highlights the use of RCT data 
from a nonpharmacologic trial, exploration of multiple features 
and outcomes, and multiple model evaluation, all of which could 
improve the design of future studies. 
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Limitations and biases in AI/ML
Here we discuss several key issues including (1) bioethics, 
(2) missing data, (3) model bias, and (4) translation.
Bioethics. A recent excellent piece on bioethics in big data and 
RMD research identified 4 main areas of potential concern: 
privacy, informed consent, impact on the medical profession, 
and justice.46 First, privacy and confidentiality are a challenge 
when large datasets are linked, as the detailed information that 
results could increase the risk of reidentification even when the 
datasets themselves are deidentified or even fully public. These 
may not even be considered human subjects data, but they 
can still be used to extract sensitive information. The authors 
astutely recommend the use of an honest broker to maintain and 
distribute data, thus avoiding providing full access to any poten-
tially interested entity (eg, private funders, industry). Second, 
the nature of these big data analytics means that future devel-
opments, potential uses, and consequences are not known at the 
time of data collection, making fully informed consent a chal-
lenge to participants47 and investigators, as well as institutional 
review boards and ethics committees. Third is the potential 
effect on the medical profession; that is, if an algorithm makes a 
mistake that causes harm, who is responsible? Thus, ML analytics 
carry the potential to undermine the physician-patient relation-
ship. This leads to the fourth area of concern, justice, reflected in 
the potential for these technologies to worsen the existing digital 
divide as well as local and global health disparities. The risk of 
security breaches and hacking are higher in areas with lower 
health literacy, greater corruption, or rapid technology expan-
sion without appropriate oversight, further placing underserved 
populations at risk.46

Missing data. Considerations around health equity in rela-
tion to ML and big data have recently gained more attention, 
including in the study of RMDs. It is essential to consider who 
is in the dataset, who is not, and why not, as well as the effect 
these missing data may have on results from an ML analysis. For 
example, missing data could represent inconsistent care, an issue 
that more often affects individuals of low socioeconomic status, 
those with mental health issues, or immigrant populations. The 
existence of multiple care instances in a single EHR is often 
required for diagnostic algorithms and thus may exclude these 
individuals. Such missing data are not random, leading to poten-
tially erroneous inferences from models that assume random 
missingness.48 Individuals of lower socioeconomic status may 
already receive suboptimal care; failure to recognize this could 
result in an algorithm that preferentially directs these patients to 
inadequate care.48 A lack of health care is not equivalent to lower 
disease burden but could be interpreted as such by an ML algo-
rithm lacking appropriate context. Use of proxies for health, such 
as mortality, readmission, or cost can introduce biases owing 
to unequal access to care, resulting in underestimated illness 
burden and, potentially, in further inequities in access to care.49 
Over-the-counter medications are often missing or incompletely 
reported in EHRs and national reimbursement databases, 
and more accurate prescription dispensation data may require 
linkage to pharmacy or other databases to get a more complete 
picture of what patients are taking.50 EHRs often lack data on 

social determinants that might improve the ability of the ML 
algorithm to identify such equity issues. Similarly, race/ethnicity 
and preferred language may be missing or incorrect, leading to 
misclassification.48 Specific analyses focused on addressing these 
issues, including subgroup analysis, stratification, and validation 
in a representative cohort, should be considered.50 Importantly, in 
addition to avoiding potential harm, attention to fairness can also 
help identify areas of greatest need and lead to improved equity.51

Model bias. Given the subjectivity of the model selection process, 
there is an obvious need for both clinical/provider and patient 
input in making these decisions.52 The inclusion of patient 
collaborators in RMD research, including when using big data/
ML applications, is important and may help address some of 
these issues.52 In the authors’ experience, most papers using big 
data or ML methods state, without evidence, that it is somehow 
not possible or not reasonable to involve patient collaborators 
because of the nature of the work. 
 There are of course many other potential sources of bias in 
ML models.53 A systematic review of prediction models using 
supervised ML methods found that the vast majority of the 
approximately 150 studies reviewed were at high risk of bias for 
a few key reasons, including an inadequate number of events 
per predictor and overfitting—issues that have not improved 
in the literature over time.54 Another study focused on biases in 
observational clinical studies in secondary databases, identified 
confounding, selection bias, and measurement bias as the most 
reported, and provided a detailed summary table55 as well as 
guidance regarding potential ways to address these issues. That 
ML algorithms can pick up on noninformative features and 
incorrectly interpret them is well described, such as prioritizing 
studies marked as urgent or “stat,” or recognizing features indic-
ative of portable vs departmental imaging.50 Investigators may 
be concerned by sample size, resulting in lack of consideration 
of potentially important subgroups in the data that are smaller 
in number, thus affecting prediction for underrepresented or 
minority groups.50

 Temporal data drift is an uncommonly discussed limitation 
to the generalizability of ML algorithms that can have substan-
tial implications.50,56 A systematic review focused on approaches 
to mitigate the effects of temporal shift found only 15 papers 
explicitly covering this topic in clinical areas,57 although this 
phenomenon is better studied and appreciated in nonclinical 
work.58 Temporal shifts can occur at the patient (demographics, 
referrals, new diseases), practice (trial or guideline results, prac-
tice patterns, drug/test availability, reimbursement policies), or 
administration (EHR modification, vendor, coding system and 
practices) level and can affect performance and reproducibility. 
Strategies to address this issue, as well as those to be developed 
in the future, would benefit from a rigorous benchmarking 
procedure to best characterize impact and solutions.57

  “All models are wrong, but some are useful.” This aphorism 
is often used to emphasize the importance of acknowledgment 
of limitations, assumptions, and potential biases relevant to the 
analyses being used, whether in ML or more traditional statistical 
methods. For the researcher new to the area, awareness of poten-
tial bias and limitations is important. Use of reporting guidelines 
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such as TRIPOD (Transparent Reporting of a multivariable 
prediction model for Individual Prognosis or Diagnosis),59,60 or 
critical appraisal tools like PROBAST (Prediction model Risk of 
Bias Assessment Tool)61 may be useful to avoid, address, and iden-
tify such potential biases, and are required by many peer-reviewed 
journals. In recognition of the specific issues around prediction 
models using AI and ML, extensions of these tools, TRIPOD-ML, 
TRIPOD-AI (reporting guideline), and PROBAST-AI (critical 
appraisal tool), are currently under development.60 Other tools 
developed for fields such as cardiology62 and orthopedics,63 or for 
clinical trials64,65 are also available.
Translation. There are a variety of challenges with the translation 
of AI/ML to clinical practice, many of which are directly related 
to the challenges mentioned above.50 Selection of reliable 
outcomes is essential but can be challenging. In addition, the 
frequent (and understandable) use of retrospective studies to 
develop algorithms will result in better performance metrics 
compared to application to prospective, real-world data, 
making their implementation difficult and potentially unre-
liable.50 It is essential that studies with the goal of eventual 
clinical adoption be rigorously performed, appropriately 
reported, and peer-reviewed; many such studies are published 
only as pre-prints.50 The development of understandable 
and clinically relevant assessments of model performance, 
reflecting its practical importance is a key in the clinical 
realm. As noted above and throughout this review, it is diffi-
cult to compare algorithms because of methodologies, popu-
lations, sample distributions and characteristics, and differing 
performance metrics, again highlighting the need for inde-
pendent test sets and large open datasets for validation and 
benchmarking.50

Future directions for AI/ML in RMDs. A variety of other clinical 
uses for AI/ML are also in various stages of development, but 
space precludes extensive discussion, including digital health, 
smart technology, wearables, care algorithms, and monitoring 
of adherence.66 Wearables are of particular interest given the 
potential for continuous monitoring.67 These types of data could 
allow for automated alerts to patients or their physicians, direct 
patient feedback, and/or algorithm-based automatic interven-
tions,67 while providing an opportunity to increase access to 
care and potentially improve monitoring and outcomes.66 An 
obvious limitation, in addition to cost and use of the technology 
itself, is the need for enhanced health and digital literacy of 
both patients and their care providers to allow for optimal use 
of such tools. So-called explainable ML has been another hot 
topic of late,68 implying that ML algorithms, not always straight-
forwardly interpretable to humans as regression coefficients or 
heatmaps, undermine the creditability of these ML algorithms.69 
Therefore, explanation techniques are needed to make these 
black box approaches explainable and trustworthy,70 partic-
ularly in the healthcare setting. Unfortunately, the currently 
available methods (eg, regression with understandable coeffi-
cients, heatmaps for imaging applications) do not imply accu-
rate performance and may give false assurances, and thus, are 
better understood as tools for developers.47 Any tool to be used 
in clinical care must undergo “robust assessments of the efficacy, 

affordability, and scalability of AI in the context of digital health 
for rare connective tissue diseases…to avoid the detrimental 
waste of scarce resources.”66

 AI/ML techniques can inform all stages of drug develop-
ment and repurposing, including identification of potential 
targets, validation of those targets, identification of biomarkers, 
and optimization of clinical trial endpoints. These methods can 
harness a variety of datatypes, incorporating information from 
images, text, wearables, assays, and complex omics data, which 
can be used in concert to objectively inform some of the previ-
ously trial-and-error steps in this complex process.71

 Additional AI/ML applications have been developed in 
other fields that will likely appear soon in RMD research. For 
example, epigenetic biomarkers of aging have been studied in 
cardiovascular disease, Alzheimer’s disease, and various cancers,72 
but not yet in RMDs. Epigenetic clocks, reflecting one’s biolog-
ical age, were developed to study age-related diseases and excess 
mortality. Clocks based on age-related inflammation have been 
created using ML but have not yet been studied in RMDs.73 
Other such clocks have been developed using a variety of omics 
data, although frequently in isolation.74-76 In contrast, the simul-
taneous incorporation of multimodal data (eg, genetic, omics, 
images, psychosocial, and/or clinical data), which hold substantial 
promise, is challenging because of the need to integrate multiple 
data types, potentially from different studies and cohorts. To 
date, most studies with such data are relatively small and primarily 
focused on the multiomics aspect rather than integration across all 
data types.42 It will be important in the future to collect these types 
of multiomics data on larger and more representative samples and 
fully integrate the different data types into ML models. A few 
studies have incorporated such multimodal data,34 and others 
are collecting it,30,77 but additional rigorously designed longitu-
dinal studies will be needed to establish this knowledge base and 
allow for discovery and validation using existing and newly devel-
oped methodologies capable of handling this type of multimodal 
information.

Summary
The promise of ML for advances in RMD research and clinical 
care is enormous, although not yet fully realized. As exemplified 
by papers discussed in this review (Table), development and 
implementation of ML algorithms requires collaborative efforts 
from a variety of experts including those with analytic, program-
ming, and subject area expertise working together to achieve 
robust results. Examples discussed in this review include a range 
of RMDs, data types, data sources, approaches, and outcomes, 
reflecting the breadth of AI’s potential while also considering its 
limitations. We mention examples of future directions, although 
these are nearly limitless as technologies evolve. RMD research 
stands to benefit greatly from such technologies given the chal-
lenge of studying these rare diseases with traditional method-
ologies, but care must be taken to mitigate rather than amplify 
potential disparities and other potential biases.
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