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ABSTRACT. 'There has been rapid growth in the use of artificial intelligence (AI) analytics in medicine in recent years,
including in rheumatic and musculoskeletal diseases (RMDs). Such methods represent a challenge to
clinicians, patients, and researchers, given the “black box” nature of most algorithms, the unfamiliarity of

the terms, and the lack of awareness of potential issues around these analyses. Therefore, this review aims to

introduce this subject arca in a way that is relevant and meaningful to clinicians and researchers. We hope to

provide some insights into relevant strengths and limitations, reporting guidelines, as well as recent examples
of such analyses in key areas, with a focus on lessons learned and future directions in diagnosis, phenotyping,

prognosis, and precision medicine in RMDs.
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Artificial intelligence (AL Figure 1) and its subcategory machine
learning (ML) have rapidly gained traction as analytic methods
in a variety of conditions including rheumatic and musculoskel-
etal diseases (RMDs).! These terms have seemingly taken over
the medical literature in recent years, but often in a way that is
not readily accessible to most clinicians or researchers. Beam and
Kohane provided a very useful perspective on AI/ML in 2018 as
part of a spectrum from fully human-guided analysis and deci-
sion making to fully automated network-based algorithms.? They
sagely noted that AI/ML provides “...no guarantees of fairness,
equitability, or even veracity.”

In 2020, the European Alliance of Associations for
Rheumatology (EULAR) endorsed principles relating to the use
of big data (defined as large, complex, and/or multidimensional,
from heterogeneous sources) in RMDs.? These include an imper-
ative to consider ethical issues and an overarching goal to use big
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data to improve the lives of patients with RMDs. Key points
focused on the need for harmonized standards and the FAIR
principle (Findable, Accessible, Interoperable, and Reusable),
open data platforms with privacy considerations and interdis-
ciplinary collaboration, use of explicit reporting of methods,
benchmarking of computational methods, and independent
validation, along with interdisciplinary training in big data for
clinicians and scientists from various backgrounds.’?

A variety of recent reviews have focused on the use of ML
in RMDs, including an overview of definitions and performance
characteristics of ML, a set of representative clinical studies
through early 2021,* and a more technical overview of defini-
tions, methods, classification procedures, prediction models,
and algorithms’; these reviews noted that most datasets are not
purpose-built and thus lack necessary sample size (SS) as well as
novel features. Additionally, there are several reviews focused
specifically on the role of ML in imaging, including in RMDs,*"
so this large topic will not be reviewed here. Therefore, rather
than providing a systematic or technical review, we refer the
reader to these publications,*!* and instead provide a narrative
overview of recent work. The goal of this review is to serve as an
introduction to the area of AI/ML for clinicians and researchers
in RMDs who are new to this field (see also Hugle et al for a good
introduction to types of AI/ML in rheumatology''); to improve
understanding around how incorporating these methods might
benefit their work, which data types might be useful in AI/ML
analyses (Figure 2), and how they might work with collabora-
tors; and to provide examples of work in key areas. These key
areas include (1) diagnosis, (2) phenotyping, (3) prognosis,
(4) precision medicine, (5) limitations and biases, and (6) future
directions.
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RhK tic and Musculoskeletal Di

normally requiring human intelligence.

learn and make decisions based on data.

(RMDs): A diverse group of more than 200 diseases
that often affect joints but can affect any organ, often caused by problems in the immune system,
or from inflammation or infections of joints, and can result in significant disability.!

Avrtificial Intelligence (Al): The development of computer systems that can perform tasks

Machine Learning (ML): A discipline within Al where computer algorithms are developed to

Figure 1. Definitions and abbreviations of key terms in this review.
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Figure 2. Examples of data sources and types in
AI/ML approaches. Al artificial intelligence;
ML: machine learning.

AI/ML for diagnosis: Identifying the condition of interest in
a patient or cohort

AI/ML methods can assist with a variety of diagnostic chal-
lenges, including in the clinical setting based on available lab and
clinical data, identification of affected patients in the electronic
health record (EHR), or optimal selection of clinical study
participants.

One of the main interests for clinicians and their patients
is the definition of the disease state. As many RMDs are rare
diseases, by definition affecting fewer than 1 in 2000 individuals,
this can be particularly challenging; however, ML holds specific
promise to improve strategies and develop new drugs for the
treatment of rare diseases. Data from genomic and multiomic
approaches have provided new insights, as have other big data
like gait assessments and imaging."? In a recent scoping review,
most studies of rare diseases employing ML were focused on
diagnosis or prognosis, and many suffered from small sample

sizes and a lack of external validation.”® Registries can increase
sample sizes for even the rarest of conditions, although harmo-
nization is needed for these to be useful. Open data sources have
similar limitations and may have poorer reliability than carefully
curated data sources. Possible solutions include enhancing SS
with the incorporation of unlabeled non—case samples outside
the rare disease of interest, artificially built samples, and transfer
learning.!?

Systemic lupus erythematosus (SLE) is an example of a rare
disease and RMD that has been investigated using ML methods
given the challenges of making this diagnosis in clinical practice.
The SLE Risk Probability Index has been proposed to assist with
diagnosis in the clinical setting, improving time to diagnosis
and treatment in SLE."* Clinical guidance was used to create
20 feature panels, cach of which were submitted to random
forest (RF) and least absolute shrinkage and selection operator
(LASSO) penalized regression, resulting in 40 models trained
on data from 2 SLE registries. The model with highest accuracy
was evaluated in a validation cohort and converted into a scoring
system, using a threshold of 7 to separate SLE vs other RMD
in adults, and adjusted to 8 in a follow-up study in a pediatric
SLE cohort.” Although using a relatively small sample size and
retrospective design, this work exemplifies the importance of
internal and external validation in ML-based diagnostic algo-
rithms. Another study used both structured and narrative data to
identify patients with SLE in EHR data.' They selected definite
cases, probable cases, and definite noncases by chart review to
determine the positive predictive value (PPV) of the algorithms
and features in internal and external cohorts. The ML algorithm
had a 92% PPV for definite/probable SLE in the internal cohort,
and 94% in an external cohort, comparing favorably to the PPV
of using 1 or 2 International Classification of Discases, 9th/10th
revision codes, which was cited as around 50%. The EHR pheno-
typing protocol is published and available for use in clinical and
translational studies.'” The performance characteristics of previ-
ously published algorithms were also tested, demonstrating the
importance of adjusting for portability (ie, their application
in other systems); several challenges were identified, such as
different medical billing practices, medication prescribing and

reporting, and disease prevalence.'®

AI/ML for phenotyping: Defining important subtypes of
disease

Individuals with RMDs have variable courses, including rates
of progression, transition to other conditions, and response to
treatments.

Machine learning in RMDs
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Molecular phenotyping is an arca of growing interest,
given the substantial overlap in clinical features and the lack
of specific diagnostic studies for many RMDs. Myositis is a
good example, considering the multiple antibodies and clinical
phenotypes within inflammatory myositis and our growing
understanding of their effect on outcomes. Muscle biopsies
were collected from 119 patients enrolled in several key myositis
cohorts and 20 healthy controls. The myositis cohorts included
those with myositis-specific autoantibodies, anti-synthetase
syndrome, necrotizing myopathy, or inclusion body myositis."®
Ten different ML algorithms, including decision trees and RE,
among others, were trained using transcriptomic data to deter-
mine disease-specific gene expression patterns. This allowed for
accurate identification of subgroups in over 90% of muscle biop-
sies using the linear support vector machine model.'® Although
the sample size was small, the use of biopsy data was one of the
strong points of this study and demonstrated the usefulness of
objective transcriptomics in the interpretation of tissue biop-
sies. These markers may be useful to tailor therapies to a specific
molecular diagnosis in the future.

Juvenile-onset SLE is a rare RMD that is challenging to study
and often reliant on small cohorts, particularly for subgrouping.
The choice of ML algorithms that can potentially address diffi-
culties associated with rare diseases is particularly important.
Cross-validation is of value in settings without a readily avail-
able validation cohort. Robinson et al applied supervised ML
approaches for classification (ie, discrimination of 67 SLE
patients from 39 healthy controls) and selection of important
variables, including immune cell profiles.”” These variables were
further used in an unsupervised k-means clustering that iden-
tified 4 potentially important subgroups among patients with
SLE." Limitations of this study included the small sample size,
low number of Black patients, and imperfect outcome measures.
However, such immune-based phenotyping may improve
patient stratification for future clinical studies and may eventu-
ally inform clinical practice.

AI/ML for prognosis: Defining disease course for targeted
intervention

To better identify those at risk and take appropriate action, it is
important to know which individuals are most likely to worsen
rapidly and which may experience improvement or resolution of
their condition.

While clinical disease activity measures are available and
validated in most RMDs, their application and use in clinical
practice is inconsistent. ML can be used to estimate these values
from available clinical information to identify patients with
active disease in clinical datasets. An earlier study in this area
used only structured data (eg, laboratory values, existing Clinical
Disease Activity Index [CDAI] scores, and medications) from
the EHRs of 2 distinct clinical settings to build a deep learning
model to predict CDAI in patients with rheumatoid arthritis
(RA).* More than 20 variables were significantly important
for accuracy of the predictions. This paper demonstrates both
strong statistical design and a detailed discussion of limitations
associated with such data, including missing values, subsequent

biases, and the usefulness of these models in clinical practice.
Another approach is to use unstructured data, such as clinical
notes, to predict other quantifiable outcomes. Alves et al devel-
oped natural language processing algorithms followed by valida-
tion to estimate SLE Disease Activity Index categories in SLE
from unstructured notes.”! This approach was validated to esti-
mate CDAI scores in RA.** Both groups were able to estimate
disease activity with area under the curve (AUC) around 0.9 and
correlation with true clinical scores around 0.7. The ability to
estimate discase activity in the absence of clinician-entered scores
would dramatically increase the data available for research use,
providing large numbers of patients for outcomes research, or for
metaanalyses, and potentially reducing disparities by provider or
clinic. Such algorithms would still require sufhicient input for
estimation and may not be applicable to all settings (eg, hand-
written notes, international/low resource settings). A combina-
tion of structured and unstructured data is likely optimal for the
prediction of prognosis in clinical datasets.

Itis important to identify patients who are most likely to prog-
ress or even to develop disease. One such circumstance is patients
with undifferentiated arthritis, some of whom go on to develop
RA and some of whom do not. A small study assessed the DNA
methylome of patients with undifferentiated arthritis (n = 72),
where about half remained stable and half developed RA after
a year, and identified differential methylation between groups.”
Both supervised and unsupervised methods were used along with
internal and external validation. Distinct methylation patterns
were seen among those who did develop RA, those who did not
develop RA, as well as those in a separate group with RA at base-
line, demonstrating the potential of methylation markers to sense
carly disease determinants in these patients.”® Despite the small
sample size, this work highlights the possibility of incorporating
basic and clinical data for clinically relevant risk assessment.

Data from randomized clinical trials (RCTs) can be used
to identify predictors of prognosis, as such studies include
well-phenotyped individuals, balanced across treatment groups
at baseline, who are followed over time. Pooling individual data
across different trials, while appropriately addressing heteroge-
neity,?* can increase sample size, but this data source provides a
limited number of variables. One such study pooled data from
nearly 1900 patients with psoriatic arthritis enrolled in 4 RCTs
to determine subgroups of response trajectory to secukinumab
therapy over 52 wecks.”® They applied model-based clustering
methods to identify 7 clusters of participants, where patients
within a cluster had a common distribution of 206 baseline
measures; this procedure was repeated on 200 different subsets
to access cluster stability. The clusters, characterized according
to longitudinal responses, were clinically interpretable, with
features such as higher polyarticular disease burden, greater foot
symptoms, more dactylitis, or more nail and skin involvement.”
The overall population was skewed as a result of the RCT design,
with a high proportion of active polyarticular disease compared
to other subtypes (such as oligoarticular involvement). However,
this type of work could be used to inform trial selection for specific
therapeutics or dosing regimens in future RCTs. In another study,
data from several RCTs were examined and a remission prediction
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score for patients with RA treated with tocilizumab was developed
and validated.” Importantly, this prediction rule was subsequently
tested in registry real-world data with an extended set of variables
in a follow-up paper,” finding that the RCT model could simi-
larly predict discrimination in the registry data (with AUC ~0.7
to 0.8). Both studies are excellent examples of robust design and
rigorous statistical analysis.

There has been a great deal of interest in predicting progres-
sion in osteoarthritis (OA), one of the most common RMDs. An
objective endpoint of total joint replacement (TJR) can be used
to overcome some of the challenges of subjective pain outcomes
and discordance with imaging in OA, although this is compli-
cated by issues of preference, practice variability, and access to
care. Jamshidi et al used baseline data from the publicly avail-
able Osteoarthritis Initiative (OAI) dataset to predict TJR at 96
months.”® Usinga LASSO method to select features followed by
multiple ML models, they could predict time to TJR with high
accuracy (AUC 0.9). Given the nature of the OAI cohort, which
included only people with or at risk for OA, these results are not
generalizable to the general population, and only features known
to be associated with OA were included in the dataset, so there
was no opportunity to discover novel features, a challenge for
many existing cohorts.

The IMI-APPROACH (Applied Public-Private Research
enabling Osteoarthritis Clinical Headway) study used a
novel selection method to identify individuals most likely to
progress.”” This group developed algorithms in 2 large OA
cohort studies to best classify patients who could be consid-
ered “progressors” (and avoid selection of likely “nonprogres-
sors”), potentially improving efficiency for future clinical
studies. This procedure was subsequently used to preselect
likely progressors (those with a high likelihood of developing
joint space loss or pain) from existing OA cohorts,” resulting
in 297 participants to be followed for 2 years. Their inclusion
was decided using RF and other supervised ML models that
provided the probability of progression based on structure
and/or pain within the lifetime of the study.* To improve the
performance of RF, a single model was trained to assign pain
progression and structure progression labels independently
(multilabel classification), while a duo classifier was used for
2 independent models, each trained to predict a single label
(pain or structure progression).”’ As a purpose-built cohort
designed for the application of ML methods, this work is an
important step forward in OA.

AI/ML for precision medicine: Using data to guide therapy
and avoid adverse events
Several recent publications in RMDs reflect the goals of preci-
sion medicine, which can be understood as the provision of the
right treatment,* at the right dose,” to the right person, at the
right time,** while minimizing unnecessary testing, side effects
and overuse issues, including opioid use and abuse,”*" specifi-
cally opioid use around TJR,**’ and to explore issues of inequity
in classification.!

Prediction of clinical response among patients with RMD,
and thus the ability to make an informed decision about optimal

treatment recommendations, has long been a goal of clinicians
and researchers. Using 275 baseline variables from Pournara et
al,” a separate analysis employed Bayesian elastic net, which
is useful for a large number of potentially correlated patient
characteristics, to determine predictors of 16-week outcome
based on starting dose of secukinumab in psoriatic arthritis.*
While still limited by RCT data and the need for validation,
this work provides insight relevant to precision medicine in
RMDs. Another study, in a small cohort of 39 women with
RA starting anti-TNF therapy, researchers assessed differ-
ences in multiomics from peripheral blood mononuclear cells
(PBMCs) among EULAR responders and nonresponders at 3
months,” although ML methods were not fully integrated into
this analysis.

A preliminary study aiming to predict the 6-month clin-
ical response to adalimumab and etanercept was undertaken in
80 patients with RA enrolled in an observational cohort in the
Netherlands as they started biologic treatment.?* The investiga-
tors obtained PBMCs prior to biologic therapy and performed
genome-wide expression and DNA methylation assays, which
demonstrated different signatures in those who eventually
responded to therapy. RF models using these multiomics data
had > 80% accuracy for prediction of response.’ Several internal
cross-validation techniques were used, although the validation
and training sets were from the same sample.”® The key strength
of this study is the incorporation of true multiomics data and
integrated data analysis in the prediction models. Future work
will benefit from larger samples with robust outcomes and truly
independent external validation sets to avoid overfitting and to
mitigate feature instability, which is often challenging in rare
diseases. Another example is a study that used consortium data
to develop an algorithm to predict methotrexate response in
patients with early RA (n = 643).>* An RF model was trained
on UK patients (n = 336) and externally validated on indepen-
dent, non-UK patients from Sweden and the Netherlands (n =
307). Overfitting and class imbalance were directly addressed;
however, the sample included only White Europeans, so general-
izability remains limited. The incorporation of genetic data in the
prediction algorithm substantially improved prediction accuracy,
supporting the feasibility of pharmacogenomic markers for preci-
sion medicine, although the overall response rate remained low.**

We used 24 ML algorithms to select the optimal model
and to develop individualized treatment rules based on RCT
data from the Intensive Diet and Exercise for Arthritis (IDEA)
trial.* IDEA randomized overweight or obese individuals with
symptomatic knee OA to 3 groups: exercise alone, diet alone,
or a combination of diet plus exercise. Using data from 343
participants and multiple outcome RF and list-based models,
subgroups of participants were identified who would have
improved outcomes for weight loss and for IL-6 (an inflamma-
tory cytokine) if they had been assigned according to the deci-
sion rule rather than to the diet plus exercise intervention using
value functions.* This work highlights the use of RCT data
from a nonpharmacologic trial, exploration of multiple features
and outcomes, and multiple model evaluation, all of which could
improve the design of future studies.

Machine learning in RMDs
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Limitations and biases in AI/ML
Here we discuss several key issues including (1) bioethics,
(2) missing data, (3) model bias, and (4) translation.

Bioethics. A recent excellent piece on bioethics in big data and
RMD research identified 4 main areas of potential concern:
privacy, informed consent, impact on the medical profession,
and justice.* First, privacy and confidentiality are a challenge
when large datasets are linked, as the detailed information that
results could increase the risk of reidentification even when the
datasets themselves are deidentified or even fully public. These
may not even be considered human subjects data, but they
can still be used to extract sensitive information. The authors
astutely recommend the use of an honest broker to maintain and
distribute data, thus avoiding providing full access to any poten-
tially interested entity (eg, private funders, industry). Second,
the nature of these big data analytics means that future devel-
opments, potential uses, and consequences are not known at the
time of data collection, making fully informed consent a chal-
lenge to participants?” and investigators, as well as institutional
review boards and ethics committees. Third is the potential
effect on the medical profession; that is, if an algorithm makes a
mistake that causes harm, who is responsible? Thus, ML analytics
carry the potential to undermine the physician-patient relation-
ship. This leads to the fourth area of concern, justice, reflected in
the potential for these technologies to worsen the existing digital
divide as well as local and global health disparities. The risk of
security breaches and hacking are higher in areas with lower
health literacy, greater corruption, or rapid technology expan-
sion without appropriate oversight, further placing underserved
populations at risk.%

Missing data. Considerations around health equity in rela-
tion to ML and big data have recently gained more attention,
including in the study of RMDs. It is essential to consider who
is in the dataset, who is not, and why not, as well as the effect
these missing data may have on results from an ML analysis. For
example, missing data could represent inconsistent care, an issue
that more often affects individuals of low socioeconomic status,
those with mental health issues, or immigrant populations. The
existence of multiple care instances in a single EHR is often
required for diagnostic algorithms and thus may exclude these
individuals. Such missing data are not random, leading to poten-
tially erroneous inferences from models that assume random
missingness.”® Individuals of lower socioeconomic status may
already receive suboptimal care; failure to recognize this could
result in an algorithm that preferentially directs these patients to
inadequate care.®® A lack of health care is not equivalent to lower
disease burden but could be interpreted as such by an ML algo-
rithm lacking appropriate context. Use of proxies for health, such
as mortality, readmission, or cost can introduce biases owing
to unequal access to care, resulting in underestimated illness
burden and, potentially, in further inequities in access to care.”’
Over-the-counter medications are often missing or incompletely
reported in EHRs and national reimbursement databases,
and more accurate prescription dispensation data may require
linkage to pharmacy or other databases to get a more complete
picture of what patients are taking.*® EHRs often lack data on

social determinants that might improve the ability of the ML
algorithm to identify such equity issues. Similarly, race/ethnicity
and preferred language may be missing or incorrect, leading to
misclassification.®® Specific analyses focused on addressing these
issues, including subgroup analysis, stratification, and validation
in a representative cohort, should be considered.*® Importantly, in
addition to avoiding potential harm, attention to fairness can also
help identify areas of greatest need and lead to improved equity.>*

Model bias. Given the subjectivity of the model selection process,
there is an obvious need for both clinical/provider and patient
input in making these decisions.® The inclusion of patient
collaborators in RMD research, including when using big data/
ML applications, is important and may help address some of
these issues.’> In the authors’ experience, most papers using big
data or ML methods state, without evidence, that it is somehow
not possible or not reasonable to involve patient collaborators
because of the nature of the work.

There are of course many other potential sources of bias in
ML models.>® A systematic review of prediction models using
supervised ML methods found that the vast majority of the
approximately 150 studies reviewed were at high risk of bias for
a few key reasons, including an inadequate number of events
per predictor and overfitting—issues that have not improved
in the literature over time.>* Another study focused on biases in
observational clinical studies in secondary databases, identified
confounding, selection bias, and measurement bias as the most
reported, and provided a detailed summary table> as well as
guidance regarding potential ways to address these issues. That
ML algorithms can pick up on noninformative features and
incorrectly interpret them is well described, such as prioritizing
studies marked as urgent or “stat,” or recognizing features indic-
ative of portable vs departmental imaging.”® Investigators may
be concerned by sample size, resulting in lack of consideration
of potentially important subgroups in the data that are smaller
in number, thus affecting prediction for underrepresented or
minority groups.>

Temporal data drift is an uncommonly discussed limitation
to the generalizability of ML algorithms that can have substan-
tial implications.>**® A systematic review focused on approaches
to mitigate the effects of temporal shift found only 15 papers
explicitly covering this topic in clinical areas,” although this
phenomenon is better studied and appreciated in nonclinical
work.”® Temporal shifts can occur at the patient (demographics,
referrals, new diseases), practice (trial or guideline results, prac-
tice patterns, drug/test availability, reimbursement policies), or
administration (EHR modification, vendor, coding system and
practices) level and can affect performance and reproducibility.
Strategies to address this issue, as well as those to be developed
in the future, would benefit from a rigorous benchmarking
procedure to best characterize impact and solutions.’”

“All models are wrong, but some are useful.” This aphorism
is often used to emphasize the importance of acknowledgment
of limitations, assumptions, and potential biases relevant to the
analyses being used, whether in ML or more traditional statistical
methods. For the researcher new to the area, awareness of poten-
tial bias and limitations is important. Use of reporting guidelines
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such as TRIPOD (Transparent Reporting of a multivariable
prediction model for Individual Prognosis or Diagnosis),”* or
critical appraisal tools like PROBAST (Prediction model Risk of
Bias Assessment Tool)! may be useful to avoid, address, and iden-
tify such potential biases, and are required by many peer-reviewed
journals. In recognition of the specific issues around prediction
models using Aland ML, extensions of these tools, TRIPOD-ML,
TRIPOD-AI (reporting guideline), and PROBAST-AI (critical
appraisal tool), are currently under development.®” Other tools
developed for fields such as carcliologyé2 and orthopedics,” or for

64,65

clinical trials®*® are also available.

Translation. There are a variety of challenges with the translation
of AI/ML to clinical practice, many of which are directly related
to the challenges mentioned above.”® Selection of reliable
outcomes is essential but can be challenging. In addition, the
frequent (and understandable) use of retrospective studies to
develop algorithms will result in better performance metrics
compared to application to prospective, real-world data,
making their implementation difficult and potentially unre-
liable.> It is essential that studies with the goal of eventual
clinical adoption be rigorously performed, appropriately
reported, and peer-reviewed; many such studies are published
only as pre-prints.’® The development of understandable
and clinically relevant assessments of model performance,
reflecting its practical importance is a key in the clinical
realm. As noted above and throughout this review, it is diffi-
cult to compare algorithms because of methodologies, popu-
lations, sample distributions and characteristics, and differing
performance metrics, again highlighting the need for inde-
pendent test sets and large open datasets for validation and
benchmarking.®

Future directions for AI/ML in RMDs. A variety of other clinical
uses for AI/ML are also in various stages of development, but
space precludes extensive discussion, including digital health,
smart technology, wearables, care algorithms, and monitoring
of adherence.®® Wearables are of particular interest given the
potential for continuous monitoring.” These types of data could
allow for automated alerts to patients or their physicians, direct
patient feedback, and/or algorithm-based automatic interven-
tions,” while providing an opportunity to increase access to
care and potentially improve monitoring and outcomes.* An
obvious limitation, in addition to cost and use of the technology
itself, is the need for enhanced health and digital literacy of
both patients and their care providers to allow for optimal use
of such tools. So-called explainable ML has been another hot
topic of late,®® implying that ML algorithms, not always straight-
forwardly interpretable to humans as regression coefficients or
heatmaps, undermine the creditability of these ML algorithms.®
Therefore, explanation techniques are needed to make these
black box approaches explainable and trustworthy,” partic-
ularly in the healthcare setting. Unfortunately, the currently
available methods (eg, regression with understandable cocfhi-
cients, heatmaps for imaging applications) do not imply accu-
rate performance and may give false assurances, and thus, are
better understood as tools for developers.”” Any tool to be used
in clinical care must undergo “robust assessments of the efficacy,

affordability, and scalability of Al in the context of digital health
for rare connective tissue diseases...to avoid the detrimental
waste of scarce resources.”®

AI/ML techniques can inform all stages of drug develop-
ment and repurposing, including identification of potential
targets, validation of those targets, identification of biomarkers,
and optimization of clinical trial endpoints. These methods can
harness a variety of datatypes, incorporating information from
images, text, wearables, assays, and complex omics data, which
can be used in concert to objectively inform some of the previ-
ously trial-and-error steps in this complex process.”

Additional AI/ML applications have been developed in
other fields that will likely appear soon in RMD research. For
example, epigenetic biomarkers of aging have been studied in
cardiovascular disease, Alzheimer’s disease, and various cancers,”
but not yet in RMDs. Epigenetic clocks, reflecting one’s biolog-
ical age, were developed to study age-related diseases and excess
mortality. Clocks based on age-related inflammation have been
created using ML but have not yet been studied in RMDs.”
Other such clocks have been developed using a variety of omics
data, although frequently in isolation.”*”® In contrast, the simul-
tancous incorporation of multimodal data (eg, genetic, omics,
images, psychosocial, and/or clinical data), which hold substantial
promise, is challenging because of the need to integrate multiple
data types, potentially from different studies and cohorts. To
date, most studies with such data are relatively small and primarily
focused on the multiomics aspect rather than integration across all
data types.** It will be important in the future to collect these types
of multiomics data on larger and more representative samples and
fully integrate the different data types into ML models. A few
studies have incorporated such multimodal data,* and others
are collecting it,**”” but additional rigorously designed longitu-
dinal studies will be needed to establish this knowledge base and
allow for discovery and validation using existing and newly devel-
oped methodologies capable of handling this type of multimodal

information.

Summary

The promise of ML for advances in RMD research and clinical
care is enormous, although not yet fully realized. As exemplified
by papers discussed in this review (Table), development and
implementation of ML algorithms requires collaborative efforts
from a variety of experts including those with analytic, program-
ming, and subject area expertise working together to achieve
robust results. Examples discussed in this review include a range
of RMDs, data types, data sources, approaches, and outcomes,
reflecting the breadth of AIs potential while also considering its
limitations. We mention examples of future directions, although
these are nearly limitless as technologies evolve. RMD research
stands to benefit greatly from such technologies given the chal-
lenge of studying these rare diseases with traditional method-
ologies, but care must be taken to mitigate rather than amplify
potential disparities and other potential biases.

ACKNOWLEDGMENT
We would like to thank Dr. Yvonne Golightly for her insightful comments
on the draft manuscript.

Machine learning in RMDs

Downloaded on April 17, 2024 from www.jrheum.org


http://www.jrheum.org/

Ppa319pIsuod 30U
seM £I1ATIO® 95BISIP MO]
spapaau st (Y Sutsn
UOHEPI[EA {S[E11] U22MI2q
SO[QETIEA UT £5U21STSUOdU]

uonendod 1y

SOIEES

Aquo saomoerd gn) 01
Ppa3TWI] sem sTOUINE dYT,

$32IN0S €ILP IUIYIP

10J payrpour 9q 01 paau

[IA [opOW 912 {POPN]IXD dTOM
1X21 JUDIDIPNS INOYIIM SIION

Tea]0 30U st 2d1de1d
[ESTUT]D UT SPpOW 2591
JO ssoupnjasn ‘eaep SuIssI

soInseaw
swoono 32951odwr syuarred

e[ JO IPqUNU MO (SS [[ews

SSIESS

Laiqearod 1o asnlpe
][y 01 papaau ST y10M 21MINg
e oziseydwo sxoyane Ay,

papasu sarpnis aandadsord
UT UOLIEPI[EA IOYIINJ

stsA[eue [eonsneas snoroSur pue uSisap 1snqox

£21095 UONIIPaId UOISSIWDI € PIALIIP

£(SS paseatour) ST DY F Wwoig pajood d1om e3e(]

odsjo
asop 19y3ry Sutsn J1 syuswosoxdwr 1018018

P2MOYS JWOS £SI2ISTD IDUNSIP /, PIYIUIPI
£(SS pasearour) s,y  woy pajood a1om ere(]

SIUBUTUIINOP 9SBISTP %—kmu Se sIoyIewr

uonedyiaw jo [eriuaiod oy parensuowd ([

wyaoge

padopaasp £[snorasid yo uoneprpea [euroixy

sajou

ﬁuuSuU‘D.ﬁmES EO.@ mofow“uudu IV TS 23ewniss

03 uoneEpIeA £q pamoy[o ‘swyarrodye
Surssasoxd afenSue [emaeu padofasag

a[qissod st sy Sursn

$9WodINo Umde«—u KU—&EOU I5€39104 O3 S[opowr

sremooe Surprng ey 15983ns surpury ayy,

SOTpTIS [edTUI pue
sondexd [esturp wrojur A[enausas
Kew 7S Y sauanred Suowre

sdno13qns auearodur A[[eniuazod ¥ payruapy

ukﬂuﬁm QLu ur wmeﬁwm:u ud—ﬁuuﬁoe

oy12ds ® 03 sorderays Jo7res 03 sorwoadiosuen

0>Uuw.~£0m0 mmuﬁ—ﬂmumz MLu ﬂvuuﬁ.ﬂmﬁosug

,(SPTPNIS [EUOTIL[SUEII PUE [EIIUI[D UT 95T 10§
s[qereae pue paysiiqnd st [od0101d Surdfiouayd

MHF 2y ‘SwyatioS[e paseq-o[ni Sunsixa
01 paredwod pue pareprfea A[jeuiaixs pue
A[TeuIaiur 219M SWYILIOZ[E PareIoudw)

Sowod1no u:UU.mm U>Oun—5« 03 3uswIeL1] pue

sisouderp S A[1ed 10J $21N183J 95EISIP

[E21S5E[> UO paseq WyILIoS[e A[pudLyj-uenIUTd

AT

mmuOﬁ—qu wcﬁuuumﬂ—u ﬁummn_n—oﬁoz

NAS “Id T

Surssasoxd afenSuey [ermaeN

Surssasoxd oFenSuey [emaeN

(ppowr Burues] daap [eurpmarSuor)
SIIOMIU [EINIU JUILINDIY
sisouSoxg

Surasnpo suesw-y pasiasadnsun

£q pamo[[0] ‘UONII[as 2INIEIJ pueE
(VA-STdS 1Y paoUe[eq) UOLIEIYISSE]d
10 saypeoxdde A pasiazadng

mELu_HOW~m Co_umum«ﬁwwd—u 12730

‘[Ppouw N AS TeaUl] £ 13 S9911 UOISII(
Surdfiousyg

T pazijeuad
¢Burssaooid oFenue] ernaeN

eaep £I103EI0qR] ¢AITATIOR OSEISIP

oryderSowap /pearuryn

srydesSowop,/[esrur)

swopdyaw YN
oryderdowap /earuryn

$910U [EITUID

$910U [e21UID)

eaep L1oae1oqe] orydeiSowap /resrurp
$£31ATIO® ISLISTP {SUOLIEITPIIA!

e1ep L103€I0qE]

eaep sorwoadrsuery,

(eaep 2AnEIIRU pUE PAIMIdNIS) SYHT

52105 UOISSTWDI PIILIOSSE
pue [ppows uondrpaid e Sunepryea

pue Surdojassp £q Aderaypouowr

7D Y31 UOISSIWDI JAITYIE O3

Aoy 3sowr Yy yaras sauanred Kgnuopr oy,
suoneorduwr snnaderayy

pue [esrur)d a1o7dxo pue soxnaeay
2UIasEq JI9Y1 UO PIseq YsJ YIrm
syuoned jo s121sn[2 10UNSIp AJrIUap]
sadKaqns

9SLISIP UIIMI2q dILUTWILIDSIP UL S[[2D
sunurwr jo saygord vonekyiow YN
Y1 UT SUOTILIN[E I9YIIYM 21€F1ISIAUT OF
590U

Jedturd Sulsn Y UI $9108 TV (D
91BWNSI 03 | [9POW TIA] UE IEPI[EA O,
(5211082183 21005

parewnIsd 21e19Ud3 01 195LILP PIIOM-[EAI
93re[ ¢ 03 [opowr o3 A[dde 031 pue sa10u
[e21UI[> WoIj 531108913 91098 TV (TS
21BWIISI 01 [9POW TJA] UE IEPIEA OF,
oAISIA [BOTUID XU

1oy 18 Y Yaim sauoned jo Karanoe
aseastp 101pa1d 01 waisAs duadiaur
[ePYnIe ue jo AI[Iqe 93 ssasse O],

(PWI 1040 £10123[e11 95EISIP Y3 03 SYUT|
arednsaaut pue TS qam sauaned jo
s[goid [[25 sunurwr oy 9z1IIEIEYd O,
grSRIsoLw yo sad£a yusrogp Yaim syusped
wo3y sarsdorq appsnw ur soygoid
uorssardxa auaf anbrun suyap of,

orS IHH WO HTS
i sauoned jnuapr Apaemooe

[ex} wELufow—w Tuwmﬂk.:\/ﬂ are1ouag o1,

yis1souderp gs pre

suSisop 2andadsonar ¢gg [[ewg o1eImdde ue pasepi[eA pue pado[aad(] NTOSSYT Y srydexSowap /fearury) ued Jey) wipoS[e ue doppasp o,
sisouSer(q
SyoEqmEI] {PPY Apnag siyy. s20(T 18y A\ Pas) SPOYP sodA1 eae(y UOTISINY) YDILISNY /WY

"yoea jo suonearwi| pue s3y3iySry pue pasn spoyaow pue sd£1 eIEp MITADI SIYI UT PIPN[OUI SAAPMIS JO ATewrwing 2jgz[

Nelson and Arbeeva

Downloaded on April 17, 2024 from www.jrheum.org


http://www.jrheum.org/

"1039EJ SISOIDOU Jown ;N[ T, 13Udwadedor 0ouy [£303 1Y I, {qeWnzI[1003 170 ], {Sourydewr 103004 310ddns s A S o715 ojdwres :Gg
sstsATeue aueuTWLIDSIP sa1enbs 1sea] [enred asreds 1y (q-§T s XopuT £A31a10Y aseasi(T snsorewayadrg sndn orwsAS (T TS fsnsorewayif1o sndny orwa1sAs TS qRWNULNO9S 1 D)FS BIEP PHOM-TEdT 1 (I MY (PO
J1O[NUOLI 1 YNY $15910] WOPUE .y [EL1 [ETUI[D PIZIWOPUEI : T )Y {SILIYAIE PIOIBWNIYI :yy ‘STLIyaIe dneriosd s towooino partodarauaned : Oy *S[[22 Teappnuouow poolq [erdydirad : g 2anentuy
SILIYIIE02ISQ) (VO SHLIYITL021S0 1Y/ () $9IEXITIOYIAW : X T JA] SUTUIES] dUTydRW :TJA] ‘UOIssa13a1 o13siS0] 1y ‘Joerado uondaas pue sFexuLIys 23n[osqe 1sea] : OSS YT S10qUSIau 1s21eaU-3 NN ¢Snsorewayif1d
sndny orwaas£s 39su0-a[1udAN( TSI {PI0221 YaeaY drUoNI[d YHF 3nip snewndymue Sulkipow-oseasip (Y YA SI0MIAU [eIdu premiol-padj doop :amgdoa(y xopuy £11anoy aseasi( [edrur) ([yaD

1D 2[3uts & woxy
210 EIEP {PIPN[IXD 210M EIEP

Sursstus jo uonsodod oSrey e
(1A SIBLIEAOD PUE $IWIODINO
Sursstw yum syuedoneg

Anpqeziperousd

parru] ssueadomny

211y A\ AJuo papnpur opdureg
UOTIEPI[eA [EUINXD
Juspuadopur pue ‘sawodIno
1snqos ‘g§ 1981e] woy
1JOUS [[IA JI0M TN

S e

sstsAeue siya oaur parerdaiur
]y 30U o10M SpoIAW TIA

UONIEPI[EA J0J PI2U {eIEP T DY

sonoeid [esturp

ur auawodur 01 3noyyIp
¢A3a1em31s Surssadoxdoxd yeap
EEN A1

SY3 Ul Papnppul 219M YO YIIm
P23BID0SSE 9q 03 UMOUS] $TNIEI]
£Juo tuonendod Jerousd

a3 03 9[qezI[e1auaf 10N
VMHOB uhﬂuﬂyw ugu ur ﬁuQHU—UMmEOU
2q 01 paau S(TYVIN( 1220
¢A[uo eoLIdUIY YIION Woiy
a10m syuared teaep Surssijy

$a1pN1s 211Ny Jo uSsap o
aaoxdwr pinos yorym jo [[e ‘uonen[eAd [ppows
srdnnw pue ‘sowosino pue sornaedy ofdnnw

Jj0 uoneropdxs ‘ern s1dojosewreyduou

e woxy e1ep Y Jo asn oy s1yrySrp
£oemdoe uonorpard

pasoxdur A[jenueisqns urgariodfe uondrpaid
a1 ur eaep onauaf jo uonerodrosur o
tasuodsax Jo uondrpaid pazipenprarpur 105
eaep orwousd pue [esrurpd Jo uoneidsiuy

m—uﬁOE
uonodrpaid oy ut sisd[eue eaep parerdaur
pue vaep sorwon[nw an1 jo uoneiodioouy

VI s suaned ur jusunyean JN J-1UE

Jo spopour 2andIpard mou passaddng

supIpaw uorspa1d 01 1ueadpar 1ySisur papraoid
£ysd ut DS Jo asop Juneas uo paseq

SWO02IN0 YIIM-9T JO s10301pa1d pauTwIId
PM-9T ¥ 1paid paut a

51894 7 10 pamOo[[0]

aq 01 ssuedonaed /67 ur Sunynsar s110yod

VO Sunsixa woiy (£pnis a1 Jo SwndyI oy
uryaim) s1ossa1301d Aoy 3997as21d 03 pasn
Apuanbasqns pue padofaaap seam ampasoxd ayr,

LI 21mbax prnoa sauy

uaAI3 © uayMm pue J1 £5emdde ySry yam 1d1pard
01310403 Ty 2y Sutsn [ppowr & padofaadg
MY uo sppow Sururenar 4q pasordurr
IOYLINJ SeM UOIBUTWILIISIP ST DY UI SE

[[oM se anoqe (A Ut sauaned pareurwtidsp
ST.OY UT PIALIOP 521025 UondIpaid uorsstuay

$I[NI IUdUIEIT
pazienpiarput do[aasp 01 paidafes
sea [opowr fewndo ssurnaoS[e TN H¢

4

B
[PuIy

uonduNy SISEq [BIpeT YIIm JNAS ‘Y
$UOIIEZIIE[NSAT (1M S[OPOUIT TeaUT

19U J1se]d ueIsakegq
SUIIPIJ VOIS

I ‘1o11sse[d 101524 110ddns
SI2yIsse[> NN YT [eriuounnu £y

S[Ppow YT Yseannw
[EINAU/TLIUT] SIATA S [PUIDY /TeaUT]
7Y ‘amgdaa(q ‘uorssarSor xon)

29T

SUOIIEITPIW ‘EIEP LI0IBIOqE]

$sOYd oryderSowap /fesrury

sonauad orydeiowap /[earurn)

SOTwonMIA

SOINGJ WOIj SOTWOn[NIA!

srydesSowop,/[esrur)

suonedrpaw ¢Surdewr QY J

ryderdowap /restury)

suonesrpaw ¢gurdewr
¢s9wo21no pazrodar yuaned
rydesSowap,/[esrurD

eaep K1038I0qR] L31ATOR OSELISIP
orydesSowap /rearur)n

1€-6T

#LOY VO 20

® UT $9W02IN0 Pa102dxa dzrurxew 03

yoroxdde sunipawr vorsoaid e A[dde of,

eV A[7e yaia syuaned

ur asuodsax yusunean X I JA 121pa1d 01
SIOYIEWOIq JTWOUdT pue [Ed1ur]d Yaim
sayoeordde Ty jo Lariqe oy 3531 o,

£25U0dSaI JO SWSTUEYDIW puLISIOPUN
pue vy yaa sauaned ur audswnean o1
Joud N T -1ue 01 asuodsax 1o1paxd of,
UOBIQIYUL ANLT,

01 asuodsar usunean jo sornaeuss
uoIssa1dXa pUE SINILWOI] 15919p O,
«VSI U OIS

Jo 9s0op Junress uo paseq w020
J}22M-9T JO s10101pa1d duTUIIAP O,

uorssaroxd v dopasp 01 Aoy 3sowr
S[eNPIATPUT AJIIUSPT 03 poyIow
UOnd2[3s [2A0U & asn pue do[aAdp o,

¢SPBIY1IE02150 UT Y] ], 03 dWn pue
st 301paid 03 opowr & pring of,

Lz Sursn 21005 uondrpard
U3 JO UOTIEPI[EA [EUINXY

mvﬂumﬁ_kﬂmua

¢PPV Apnag siyL s20( ey A\

P2S() SPOYIRIN

sadAy ere(y

UONISINY) YdILAsSY /Wy

‘panunuon) NN%NN\

Machine learning in RMDs

Downloaded on April 17, 2024 from www.jrheum.org


http://www.jrheum.org/

REFERENCES

1.

van der Heijde D, Daikh DI, Betteridge N, et al. Common language
description of the term rheumatic and musculoskeletal diseases
(RMDs) for use in communication with the lay public, healthcare
providers and other stakeholders endorsed by the European League
Against Rheumatism (EULAR) and the American College of

20.

lupus erythematosus: patient stratification using a machine-learning
approach. Lancet Rheumatol 2020;2:e485-96.

Norgeot B, Glicksberg BS, Trupin L, et al. Assessment of a deep
learning model based on electronic health record data to forecast
clinical outcomes in patients with rheumatoid arthritis. JAMA Netw
Open 2019;2:¢190606.

Rheumatology (ACR). Ann Rheum Dis 2018;77:829-32. 21.  Alves P, Bandaria J, Leavy MB, ct al. Validation of a machine learning
2. Beam AL, Kohane IS. Big data and machine learning in health care. approach to estimate Systemic Lupus Erythematosus Disease
JAMA 2018;319:1317-8. Activity Index score categories and application in a real-world
3. Gossec L, KedraJ, Servy H, et al. EULAR points to consider for dataset. RMD Open 2021;7¢001586.
the use of big data in rheumatic and musculoskeletal diseases. Ann 22. Spencer AK, Bandaria J, Leavy MB, et al. Validation of a machine
Rheum Dis 2020;79:69-76. learning approach to estimate Clinical Disease Activity Index Scores
4. JiangM, LiY, Jiang C, Zhao L, Zhang X, Lipsky PE. Machine for rheumatoid arthritis. RMD Open 2021;7:¢001781.
learning in rheumatic diseases. Clin Rev Allergy Immunol 23. dela Calle-Fabregat C, Niemantsverdriet E, Canete JD, et al.
2021;60:96-110. Prediction of the progression of undifferentiated arthritis to
S. Kingsmore KM, Puglisi CE, Grammer AC, Lipsky PE. An rheumatoid arthritis using DNA methylation profiling. Arthritis
introduction to machine learning and analysis of its use in rheumatic Rheumatol 2021;73:2229-39.
diseases. Nat Rev Rheumatol 2021;17:710-30. 24. Cahan A, Cimino JJ. Improving precision medicine using individual
6. Pedoia V, Majumdar S, Link TM. Segmentation of joint and patient data from trials. CMAJ 2017;189:E204-7.
musculoskeletal tissue in the study of arthritis. MAGMA 25. Pournara E, Kormaksson M, Nash P, et al. Clinically relevant
2016;29:207-21. patient clusters identified by machine learning from the clinical
7. Stoel B. Use of artificial intelligence in imaging in rheumatology — development programme of secukinumab in psoriatic arthritis.
current status and future perspectives. RMD Open 2020;6:¢001063. RMD Open 2021;7:¢001845.
8. Gutiérrez-Martinez J, Pineda C, Sandoval H, Bernal-Gonzilez A. 26. Collins JE, Johansson FD, Gale S, et al. Predicting remission
Computer-aided diagnosis in rheumatic diseases using ultrasound: among patients with rheumatoid arthritis starting tocilizumab
an overview. Clin Rheumatol 2020;39:993-1005. monotherapy: model derivation and remission score development.
9. Joseph GB, McCulloch CE, Sohn JH, Pedoia V, Majumdar S, Link ACR Open Rheumatol 2020;2:65-73.
TM. ATMSK clinical applications: cartilage and osteoarthritis. 27. Johansson FD, Collins JE, Yau V; et al. Predicting response to
Skeletal Radiol 2022;51:331-43. tocilizumab monotherapy in rheumatoid arthritis: a real-world data

10. Nelson AE. How feasible is the stratification of osteoarthritis analysis using machine learning. ] Rheumatol 2021;48:1364-70.
phenotypes by means of artificial intelligence? Expert Rev Precis 28.  Jamshidi A, Pelletier JP, Labbe A, Abram F, Martel-Pelletier J,

Med Drug Dev 2021;6:83-5. Droit A. Machine learning-based individualized survival prediction

11. Hiigle M, Omoumi P, van Laar JM, Boedecker J, Hiigle T. Applied model for total knee replacement in osteoarthritis: data from the
machine learning and artificial intelligence in rheumatology. Osteoarthritis Initiative. Arthritis Care Res 2021;73:1518-27.
Rheumarol Ady Pract 2020:4:rkaa005. 29. Widera P, Welsing PM], Ladel C, et al. Multi-classifier prediction

12. Decherchi S, Pedrini E, Mordenti M, Cavalli A, Sangiorgi L. of knee osteoarthritis progression from incomplete imbalanced
Opportunities and challenges for machine learning in rare diseases. longitdinal data. Sci Rep 2020;10:8427.

Front Med 2021:8:747612. 30. van Helvoort EM, van Spil WE, Jansen MP, et al. Cohort profile: The
13 Schacfer J, Lehne M, Schepers J, Prasser E, Thun S. The use of Applied Public-Private Research enabling OsteoArthritis Clinical
’ T " ’ v o Headway (IMI-APPROACH) study: a 2-year, European, cohort study to
machine learning in rare diseases: a scoping review. Orphanet J Rare describe, validate and predict phenotypes of osteoarthritis using clinical,
Dis 2020;15:145. imaging and biochemical markers. BMJ Open 2020;10:¢035101.

14.  Adamichou C, Genitsaridi I, Nikolopoulos D, et al. Lupus or not? 31. van Helvoort EM, Ladel C, Mastbergen S, et al. Baseline clinical
SLE Risk Probability Index (SLERPI): a simple, clinician-friendly characteristics of predicted structural and pain progressors in the
machine learning-based model to assist the diagnosis of systemic IMI-APPROACH knee OA cohort. RMD Open 2021;7:¢001759.
lupus erythematosus. Ann Rheum Dis 2021;80:758-66. 32. Tao W, Concepcion AN, Vianen M, et al. Multiomics and machine

15. Batu ED, Kaya Akca U, Basaran O, Bilginer Y, Ozen S. learning accurately predict clinical response to adalimumab and
Correspondence on ‘Lupus or not? SLE Risk Probability Index etanercept therapy in patients with rheumatoid arthritis. Arthritis
(SLERPI): a simple, clinician-friendly machine-learning-based Rheumatol 2021;73:212-22.
model to assist the diagnosis of systemic lupus erythematosus. Ann 33. Gottlieb AB, Mease PJ, Kirkham B, et al. Secukinumab efficacy in
Rheum Dis 2021 Apr 2 (Epub ahead of print). psoTiatic athritis: machine learning and meta-analysis of four phase

16. Jorge A, Castro VM, Barnado A, et al. Identifying lupus patients in 3 wrials. ] Clin Rheumatol 2021;27:239-47.

1 ic health records: Development and validation of machine 34. Myasoedova E, Athreya AP, Crowson CS, et al. Toward
electronic p RRAOR e ;
learnine aleorithms and application of rule-based aleorithms. Semin individualized prediction of response to methotrexate in early
carming  go PP 8 h id arthritis: a pharmacogenomics-driven machine learnin;
,, rheumatoi p g g
Arthritis Rheum 2019;49:84-90. approach. Arthritis Care Res 2022;74:879-88.

17. ZhangY, Cai T, Yu S, et al. High-throughput phenotyping with 35. Mullin S, ZolaJ, Lee R, et al. Longitudinal K-means approaches to
clectronic medical record data using a common semi-supervised clustering and analyzing EHR opioid use trajectories for clinical
approach (PheCAP). Nat Protoc 2019;14:3426-44. subtypes. ] Biomed Inform 2021;122:103889.

18. Pinal-Fernandez I, Casal-Dominguez M, Derfoul A, et al. Machine 36. DongX, Deng], Rashidian S, et al. Identifying risk of opioid use
learning algorithms reveal unique gene expression profiles in muscle disorder for patients taking opioid medications with deep learning.
biopsies from patients with different types of myositis. Ann Rheum J Am Med Inform Assoc 2021;28:1683-93.

Dis 2020;79:1234-42. 37. Badger], LaRose E, Mayer J, Bashiri F, Page D, Peissig P. Machine

19. Robinson GA, PengJ, Dénnes P, et al. Disease-associated and learning for phenotyping opioid overdose events. ] Biomed Inform
patient-specific immune cell signatures in juvenile-onset systemic 2019;94:103185.

Nelson and Arbeeva 9

Downloaded on April 17, 2024 from www.jrheum.org


http://www.jrheum.org/

38. Klemt C, Harvey MJ, Robinson MG, Esposito JG, Yeo I, Kwon YM. 58. LuJ,Liu A, DongF, GuF, Gama ], Zhang G. Learning under
Machine learning algorithms predict extended postoperative opioid concept drift: a review. IEEE Transactions on Knowledge and Data
use in primary total knee arthroplasty. Knee Surg Sports Traumatol Engineering 2019;31:2346-63.

Arthrosc 2022;30:2573-81. 59. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent

39. Grazal CF, Anderson AB, Booth GJ, Geiger PG, Forsberg JA, reporting of a multivariable prediction model for individual
Balazs GC. A machine-learning algorithm to predict the likelihood prognosis or diagnosis (TRIPOD): the TRIPOD statement. BM]J
of prolonged opioid use following arthroscopic hip surgery. 2015;350:87594.

Arthroscopy 2022;38:839-47. 60. Collins GS, Dhiman P, Andaur Navarro CL, et al. Protocol

40. LeeS, Wei S, White V, Bain PA, Baker C, Li J. Classification of for development of a reporting guideline (TRIPOD-AI) and
opioid usage through semi-supervised learning for total joint risk of bias tool (PROBAST-AI) for diagnostic and prognostic
replacement patients. IEEE ] Biomed Health Inform 2021; prediction model studies based on artificial intelligence. BMJ Open
25:189-200. 2021;11:¢048008.

41. Thompson HM, Sharma B, Bhalla S, et al. Bias and fairness 61. Wolff RE, Moons KGM, Riley RD, et al. PROBAST: a tool to assess
assessment of a natural language processing opioid misuse the risk of bias and applicability of prediction model studies. Ann
classifier: detection and mitigation of electronic health record data Intern Med 2019;170:51-8.
disadvantages across racial subgroups. ] Am Med Inform Assoc 62. Stevens LM, Mortazavi BJ, Deo RC, Curtis L, Kao DP.
2021;28:2393-403. Recommendations for reporting machine learning analyses

42. Yoosuf N, Maciejewski M, Ziemek D, et al. Early prediction in clinical research. Circ Cardiovasc Qual Outcomes
of clinical response to anti-TNF treatment using multi-omics 2020;13:¢006556.
and machine learning in rheumatoid arthritis. Rheumatology 63. Olczak J, Pavlopoulos J, Prijs J, et al. Presenting artificial intelligence,
2022;61:1680-9. deep learning, and machine learning studies to clinicians and

43. Plant D, Barton A. Machine learning in precision medicine: lessons healthcare stakeholders: an introductory reference with a guideline
to learn. Nat Rev Rheumatol 2021;17:5-6. and a Clinical Al Research (CAIR) checklist proposal. Acta Orthop

44.  Jiang X, Nelson AE, Cleveland R], et al. Precision medicine 2021;92:513-25.
approach to develop and internally validate optimal exercise and 64. LiuX, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK;
weight-loss treatments for overweight and obese adults with knee SPIRIT-AI and CONSORT-AI Working Gorup. Reporting
osteoarthritis: data from a single-center randomized trial. Arthritis guidelines for clinical trial reports for interventions involving
Care Res 2021;73:693-701. artificial intelligence: the CONSORT-AI extension. Nat Med

45. Messier SP, Mihalko SL, Legault C, et al. Effects of intensive 2020;26:1364-74.
diet and exercise on knee joint loads, inflammation, and 65. Cruz Rivera S, Liu X, Chan AW, et al. Guidelines for clinical trial
clinical outcomes among overweight and obese adults with protocols for interventions involving artificial intelligence: the
knee osteoarthritis: the IDEA randomized clinical trial. JAMA SPIRIT-AI extension. Nat Med 2020;26:1351-63.
2013;310:1263-73. 66. Bergier H, Duron L, Sordet C, et al. Digital health, big data

46. Manrique de Lara A, Pelacz-Ballestas I. Big data and data processing and smart technologies for the care of patients with systemic
in rheumatology: bioethical perspectives. Clin Rheumatol autoimmune diseases: where do we stand? Autoimmun Rev
2020;39:1007-14. 2021;20:102864.

47. Ghassemi M, Oakden-Rayner L, Beam AL. The false hope of current 67. Gossec L, Guyard F, Leroy D, et al. Detection of flares by decrease
approaches to explainable artificial intelligence in health care. Lancet in physical activity, collected using wearable activity trackers in
Digit Health 2021;3:¢745-50. rheumatoid arthritis or axial spondyloarthritis: an application of

48. Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential machine learning analyses in rheumatology. Arthritis Care Res
biases in machine learning algorithms using electronic health record 2019;71:1336-43.
data. JAMA Intern Med 2018;178:1544-7. 68. Belle V, Papantonis I. Principles and practice of explainable machine

49. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial learning. Front Big Data 2021;4:688969.
bias in an algorithm used to manage the health of populations. 69. Babic B, Gerke S, Evgeniou T, Cohen IG. Beware explanations from
Science 2019;366:447-53. Al in health care. Science 2021;373:284-6.

50. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King 70. Herzog C. On the risk of confusing interpretability with
D. Key challenges for delivering clinical impact with artificial explicability. Al and Ethics 2022;2:219-25.
intelligence. BMC Med 2019;17:195. 71. Vamathevan J, Clark D, Czodrowski P, et al. Applications of

51. Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. machine learning in drug discovery and development. Nat Rev Drug
Ensuring fairness in machine learning to advance health equity. Ann Discov 2019;18:463-77.

Intern Med 2018;169:866-72. 72. Levine ME, Lu AT, %ach A, et al. An epigenetic biomarker of aging

52. Shoop-Worrall SJW, Cresswell K, Bolger I, et al. Nothing about us for lifespan and healthspan. Aging 2018;10:573-91.
without us: involving patient collaborators for machine learning 73. Sayed N, Huang Y, Nguyen K, et al. An inflammatory aging
applications in rheumatology. Ann Rheum Dis 2021;80:1505-10. clock (iAge) based on deep learning tracks multimorbidity,

53. Martinez-Garcia M, Herndndez-Lemus E. Data integration immunosenescence, frailty and cardiovascular aging. Nat Aging
challenges for machine learning in precision medicine. Front Med 2021;1:598-615.

2021;8:784455. 74. Holly AC, Melzer D, Pilling LC, et al. Towards a gene expression

54. Andaur Navarro CL, Damen JAA, Takada T, et al. Risk of bias in biomarker set for human biological age. Aging Cell 2013;12:324-6.
studies on prediction models developed using supervised machine 75. YuZ,Zhai G, Singmann P, et al. Human serum metabolic profiles
learning techniques: systematic review. BMJ 2021;375:n2281. are age dependent. Aging Cell 2012;11:960-7.

55. Prada-Ramallal G, Takkouche B, Figueiras A. Bias in 76. Hertel ], Friedrich N, Wittfeld K, et al. Measuring biological
pharmacoepidemiologic studies using secondary health care age via metabonomics: the metabolic age score. ] Proteome Res
databases: a scoping review. BMC Med Res Methodol 2019;19:53. 2016;15:400-10.

56. Finlayson SG, Subbaswamy A, Singh K, et al. The clinician and 77.  All of Us Research Program I, Denny JC, Rutter JL, et al. The “all of
dataset shift in artificial intelligence. N Engl ] Med 2021;385:283-6. us” research program. N Engl ] Med 2019;381:668-76.

57. Guo LL, Pfohl SR, Fries J, et al. Systematic review of approaches to
preserve machine learning performance in the presence of temporal
dataset shift in clinical medicine. Appl Clin Inform 2021;12:808-15.

10 Machine learning in RMDs

Downloaded on April 17, 2024 from www.jrheum.org


http://www.jrheum.org/

