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Abstract 

Objective

Specific risk alleles for childhood-onset SLE (cSLE) versus adult-onset SLE (aSLE) patients 

have not been identified. The aims of this study were to determine if: 1) There is an association 

between non-HLA-related genetic risk score (GRS) and age of SLE diagnosis; and if 2) There is 

an association between HLA-related genetic risk score and age of SLE diagnosis.

Methods

Genomic DNA was obtained from 2,001 multi-ethnic patients and genotyped using the 

Immunochip. Following quality control, genetic risk counting (GRCS), weighted (GRWS) and 

standardized counting (GRSCS) and standardized weighted (GRSWS) scores were calculated 

based on independent SNPs from validated SLE-loci. Scores were analyzed in a regression 

model and adjusted by sex and ancestral population. 

Results

The analysed cohort consisted of 1,540 patients: 1,351 females and 189 males (675 cSLE and 

865 aSLE). There were significant negative associations with age of SLE diagnosis p=0.011 

and r2=0.175 for GRWS, p=0.008 and r2=0.178 for GRSCS, p=0.002 and r2=0.176 for GRSWS 

for all non-HLA genetic risk scores (higher GRS the lower the age of diagnosis.) All HLA genetic 

risk scores showed significant positive associations with age of diagnosis p=0.049 and r2=0.176 

for GRCS, p=0.022 and r2=0.176 for GRWS, p=0.022 and r2=0.176 for GRSCS, p=0.011 and 

r2=0.177 for GRSWS: higher genetic scores correlated with higher age of diagnosis.

Conclusion

Our data suggested that there is a linear relationship between genetic risk and age of SLE 

diagnosis and that HLA and non-HLA genetic risk scores are associated with age of diagnosis in 

opposite directions.
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Introduction

Systemic Lupus Erythematosus (SLE) is a chronic multi-system autoimmune disease with a 

peak incidence in females during childbearing years. SLE tends to be more severe in: men, 

patients with younger age of onset, and specific genetic ancestries 1-4. Multiple genes have 

been implicated in its pathogenesis with >90 genes/loci associated with predisposition to SLE 5. 

Although the majority of SLE-susceptibility genes across ancestral populations are in the same 

gene, the associated single nucleotide polymorphisms (SNPs) may differ or convey different 

risks for the development of SLE 6-9. SLE-associated genetic risk variants are located in both 

HLA and non-HLA regions with alleles within the HLA region showing the strongest disease 

association 8,10-13.

For polygenic diseases such as SLE, it is accepted that a genetic risk score provides better 

information on the genetic contribution to the development of autoimmune diseases than 

investigating a single SNP 14-16. There are two popular models for the calculation of polygenic 

risk scores: 1) A counting score that is a simple sum of risk and protective alleles present in an 

individual and 2) A weighted score that takes into account the effect size of the SNP. Although 

there have been previous publications of polygenic risk scores in SLE, few examined if a risk 

score can be used as a predictor of age of disease onset and only one examined a non-HLA 

genetic risk score over a large multi-ethnic population 17-24.  This is the first study to examine the 

influence of HLA and non-HLA genes separately in a large combined pediatric and adult across 

a multi-ethnic population. 

The aims of this study were to determine if:

1) There is an association of genetic risk score and age of SLE diagnosis for HLA genes.

2) There is an association of genetic risk score and age of diagnosis of SLE for non-HLA 

genes. 

Methods

SLE Cohort
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This is a multi-centre, multi-national genetic study of patients with both childhood-onset SLE 

(cSLE) and adult-onset SLE (aSLE). cSLE was defined as SLE diagnosed at age <18 years and 

aSLE as age of diagnosis of > 18 years.  Genomic DNA was collected from 2,001 patients from 

17 centres within North America and one from Europe (Supplementary Table 1) who fulfilled > 4 

of 11 ACR classification criteria for SLE 25, with an age of disease diagnosis range of 1-82 

years. The following clinical variables were available in 1,979 of the 2001 patients: Date of 

diagnosis, date of birth, age at diagnosis, and sex. The study was approved by the Research 

Ethics Board at each centre and all participants signed an informed consent form prior to 

obtaining DNA and clinical information. 

Genotyping 

All of the 1979 DNA samples with clinical information were sent for genotyping using the 

Immunochip Illumina Infinium genotyping chip [Illumina, Inc San Diego CA, USA], at one of two 

centres: HudsonAlpha Genomics Services Laboratory and Cincinnati Children’s Hospital 

Medical Center (CCHMC)-Harley Laboratory. Quality control (QC) of the genotype data was 

conducted using SNP & Variation Suite v8 software [Golden Helix, Inc., Bozeman, MT, 

www.goldenhelix.com] for each of the 4 different genotyping runs. Poor quality samples with low 

call rates (<95%), sample contamination, mixed samples or duplication and close relatedness to 

another sample in the study were excluded. Relatedness between subjects was estimated by 

identity by descent analysis (IBDA). The total number of samples after QC was 1773/1979 

samples genotyped.

SNP Selection

By literature review of genome wide association studies (GWAS), meta-GWAS 9,26,27 and 

candidate gene and replication studies 28-31
, we found 106 SLE-associated SNPs of which 93 

SNPs were present on the Immunochip (Supplementary Table 2). These 93 SNPs represented 

39 different SLE-associated loci. All SNPs with a call rate <0.99, minor allele frequency (MAF) 

<0.05 and Hardy-Weinberg Equilibrium p-value <0.001 were excluded. After QC there were 68 

SNPs in 33 different loci; 58 in non-HLA areas and 10 in the HLA complex (Supplemental Table 

3). Of the 13 SNPs that were not present on the Immunochip we identified 4 proxies (all in HLA 

region) using SNP Annotation and Proxy Search (SNAP) online tool version 2.2 from the Broad 

Institute (Harvard University which result in a total of 72 SNPs (58 non-HLA and 14 HLA). SNPs 

that were located in the same gene were tested for pairwise high linkage disequilibrium (LD) 

using the SNAP online tool. In the case of pairs of SNPs that met the threshold criteria (r2>0.8) 
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in a specific gene for LD, the one with the lower odds ratio (OR) reported in the literature was 

excluded. A further 14 SNPS were eliminated leaving 58 independent SNPs (48 non-HLA and 

10 HLA) from 33 SLE-susceptibility loci (Supplemental Table 3).

Genetic Score Risk Calculation

Odds Ratios (OR) for all SNPs were classified as protective (OR <1) or risk (OR >1) by 

ancestral population (Supplementary Table 3). 

Four types of genetic risk scores were calculated for the statistical analysis: 1) genetic risk 

counting scores (GRCS), 2) genetic risk weighted scores (GRWS) and 3) genetic risk 

standardized counting score (GRSCS) and 4) genetic risk standardized weighted score 

(GRSWS).  All scores were calculated separately for HLA and non-HLA SNPs and analyzed in 

the total population. 

1) The GRCS was an additive genetic model based on the presence of the risk or protective 

allele and was determined as the sum of those alleles present in each individual 

(Supplementary Table 3): simple count of the risk alleles minus the protective alleles.

2) The GRWS accounts for the relative effect of each risk/protective allele by using the OR. The 

GRWS was calculated as the sum of the natural logarithm of the OR of each risk/protective 

allele present. The OR of a risk allele was positive and OR of a protective allele was negative 

(Supplementary Table 3).

3) Considering the large variation in the number of HLA and non-HLA SNPs identified in each 

individual ancestral population, we standardized the maximum GRCS and GRWS to 10 for each 

population to produce standardized GRCS (GRSCS) and GRWS (GRSWS) using only the 

SNPs available for the individual ancestral population. This allowed for comparisons across 

ancestral populations, to weigh each population equally (Figure 1). 

Determination of ancestral population

Principal component analysis (PCA) was used to determine the ancestral identity of each 

patient. We first ran the analysis in the whole population comparing the first two principal 

components against reference samples of known ethnicities from HapMap3.  Samples that were 

outliers from the calculated clusters were dropped from the study. Multidimensional Outlier 
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Detection (MOD) analysis was performed for each ancestral population individually until we did 

not detect any outliers. PCA/MOD analysis eliminated 131 patients and a further 102 patients 

were eliminated as they were identified as South Asian ancestry (an ancestry without any 

applicable  gene studies). Therefore, the population analyzed was 1,540.

Statistical Analysis

Since sex and ancestral population are suggested to influence genetic susceptibility to SLE, we 

first determined the distribution of both across all age groups. We also determined the 

association of these factors with genetic risk scores and age of SLE diagnosis in each model. 

We used linear regression analysis to determine if genetic risk scores varied by age of SLE 

diagnosis for the whole cohort. As the age of diagnosis distribution did not follow a normal 

distribution, the natural logarithm (ln) of the age of diagnosis was used for statistical analysis as 

it followed a normal distribution. 

Both in of age of SLE diagnosis (dependent variable) and genetic risk score (predictor variable) 

were analyzed as continuous variables. A p-value of <0.05 was considered statistically 

significant. The percent variation in the dependent variable explained by the predictor is 

quantified using the adjusted R squared statistic in each model. The effects of sex and ancestral 

population were tested for interactions in the final model. SNP & Variation Suite v8 software 

[Golden Helix, Inc., Bozeman, MT, www.goldenhelix.com], R version 3.1.2 statistical package [R 

Foundation for Statistical Computing, Vienna, Austria, www.R-project.org] and StatPlus:Mac 

[AnalystSoft, USA, www.analystsoft.com] were used for the statistical analyses.
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Results

Descriptive statistics

The analysed cohort consisted of 1,540 patients: 1,351 females and 189 males; 1,094 were 

Caucasian (71.0%), 196 Black (12.7%), 129 Hispanic (8.4%) and 121 of Asian (7.9%) ancestry. 

Mean age of diagnosis in the total population of 25.3 years (SD=14.2) and median age of 21.0 

years (Table 1). The mean age at diagnosis of females at 25.8 (SD=14.3) years was statistically 

significantly higher than that of males at 21.5 (SD=13.1) (p=4.16x10-5). The percentage of cSLE 

patients in the total male population (59.3%) was higher than the percentage of cSLE patients in 

the total female population (41.7%) with lower absolute number (112 males vs. 563 females). 

Non-HLA genetic risk scores

We initially determined the association of sex and ancestral population with genetic risk scores 

and age of SLE diagnosis. We found that for all non-HLA genetic risk scores there were 

statistically significant associations between sex and age of SLE diagnosis. As a result, sex was 

included in our statistical model. There was a statistically significant association between sex 

and GRSWS (p=0.013, regression coefficient= 0.180), but not between sex and the other non-

HLA genetic risk scores. Significant associations were seen with age of diagnosis and specific 

ancestries for GRCS (p<2x10-16 for Caucasian and p=0.033 for Hispanic ancestry) and GRSCS 

(p<2x10-16 for Caucasian and p=0.001 for Black ancestry) while for GRWS and GRSWS the 

only statistically significant association with age of diagnosis was in Caucasian ancestry 

(p<2x10-16 for GRWS and GRSWS). Therefore, the final statistical model for GRCS and GRSCS 

included sex and all 4 ancestral populations while the final model for GRWS and GRSWS 

included sex and Caucasian vs. non-Caucasian (C/NC) ancestry as covariates.

The final linear regression models for all non-HLA genetic risk scores, except the GRCS, 

showed a statistically significant negative association with age (Table 2). These models 

explained similar percentages of the variance of the genetic contribution (17.8%, 17.5% and 

17.6% respectively) (Supplementary Figures 1-3).

HLA genetic risk scores

There were statistically significant associations between sex and age of SLE diagnosis for all 4 

HLA genetic risk scores. Therefore, sex was included in our statistical model. However, there 

were no statistically significant associations between sex and any of the 4 HLA genetic risk 
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scores. All the ancestral populations showed statistically significant associations with age of 

SLE diagnosis for all 4 risk scores. However, in contrast to the results for non-HLA genetic risk 

scores, the final linear regression models of all 4 HLA genetic risk scores with age of SLE 

diagnosis, which included sex and all 4 ancestral populations as covariates, showed statistically 

significant positive associations with age (Table 3). All 4 models explained almost identical 

percentages of the variance of the genetic contribution (17.6% or 17.7%) (Supplementary 

Figures 4-7).

Discussion

It has been suggested that the genetic contribution to the development of SLE likely differs 

between cSLE and aSLE. However, candidate gene studies have not identified any genes that 

were specific or unique to cSLE, no GWAS has been performed in cSLE although a study has 

suggested that unique SNPs were found in a Korean cSLE population 21,24,32. For these reasons, 

it was necessary to apply a different genetic approach to better understand the genetics of SLE 

across all ages. In this study we used polygenic risk scores to better understand the genetic 

association with age of SLE diagnosis. Our data has suggested that there is a linear relationship 

between genetic risk and age of SLE diagnosis and that HLA and non-HLA genetic risk scores 

influence age of diagnosis of SLE differently.

HLA and non-HLA genes could play different roles in disease susceptibility due to their different 

degrees of relative risk for the development of SLE 10,12 and therefore could have different 

effects in predicting the age of onset of SLE. We found that for non-HLA SNPs there was a 

negative association of genetic risk score with age of SLE diagnosis, i.e. the higher genetic risk 

score the younger the patient and 18% of the variation in age of onset of SLE was explained by 

our model. However, when HLA genetic risk scores were determined, there was a positive 

association of HLA SNPs with age of SLE diagnosis, i.e. the higher the risk score the older the 

patient. Therefore, we have for the first time shown that HLA and non-HLA SNPs may contribute 

differently to the age of SLE diagnosis. This may explain why our findings appear to be different 

from previous studies that combined both HLA and non-HLA SNPs in determining the 

association of genetic risk score and age of onset of SLE 17,18,21,24. We suggest that the 

contribution of non-HLA SNPs maybe more important in the development of SLE in the younger 

patient while the contribution of HLA SNPs maybe more important in the development of the 

disease in later years. 

Page 10 of 21

A
cc

ep
te

d 
A

rt
ic

le

Th
is

 a
cc

ep
te

d 
ar

tic
le

 is
 p

ro
te

ct
ed

 b
y 

co
py

rig
ht

. A
ll 

rig
ht

s r
es

er
ve

d.

 www.jrheum.orgDownloaded on April 16, 2024 from 

http://www.jrheum.org/


Previous publications have used different genetic risk scores (counting, weighted or both) to 

predict the risk of multiple autoimmune diseases 33-35. In SLE, there have been 7 publications 

that used polygenic risk scores to determine risk of SLE but only 4 examined them as a 

predictor of age of disease onset 17-22,24,36. These 4 studies used either a counting score, and/or 

weighted score 17,18,21,24. We therefore took the approach to examine multiple different genetic 

risk scores in order to determine which gave the most robust results. We found that genetic risk 

weighted scores were optimal. These scores were more robust than additive scores as they are 

not affected by sample size, strength of marker interactions and account for differences in effect 

size 15.

Previous studies in SLE have shown conflicting results regarding sex and genetic risk scores.  

An initial study using a weighted score showed that men had a higher genetic risk than women 

(largely the result of HLA SNPs) 19. However, a second study, using a weighted score but 

smaller cohort and different HLA SNPs (only 13 SNPs were shared), did not replicate the finding 
22. Since the main difference between the 2 previous studies was the different HLA SNPs 

included, we covered all of the HLA SNPs used in both investigations (either with the same SNP 

or with a SNP in high LD). A small study of only 75 cSLE patients, using only 7 SNPs, none in 

the HLA region, did not find a significant difference in the genetic risk counting score between 

the sexes 21. We found a significant association between sex and age of SLE diagnosis in the 

analysis of all the genetic risk scores (HLA and non-HLA) for all ages; therefore, we used sex as 

a covariant as it was a potential confounder. When we controlled for the variation in sex 

between ages, only the non-HLA GRSWS showed a statistically significant association with sex: 

male patients showed an increase of their non-HLA GRSWS compared to female patients. 

Although this difference was low (regression coefficient= 0.180), it was statistically significant 

and replicated what was found in the largest study19. More investigations are needed to confirm 

these conclusions.

It is well-recognized that SNPs associated with susceptibility differ across ancestral 

populations6,7,37. In both cSLE and aSLE populations SLE is more prevalent in non-Caucasian 

populations (Hispanic, Black, Native Americans and Asians)36. Thus, in the calculation of the 

weighted score, each SNP was weighted according to its effect in the population studied. 

Moreover, when we analyzed the associations between age of SLE diagnosis and ancestral 

populations we found statistically significant associations for all the genetic risk scores. 

Therefore, in the final linear regression models of all genetic risk scores with age of SLE 
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diagnosis, we included ancestral populations as covariates. This is the first time that effects of 

genetic ancestry on genetic risk scores have been addressed.

One limitation of our study maybe that all genotyping was performed on the Immunochip 

platform. This platform was designed for use in European populations and therefore is less 

informative in other ethnic populations with poorer coverage of SNPs associated with the 

development of SLE in non-Caucasian populations. In addition, there is increasing evidence that 

rare variants may be important in the development of SLE38,39, but only a few of these rare 

variants are present on the Immunochip. Although, we were able to examine only 10/21 (47.6%) 

HLA SNPs validated in SLE GWAS, this is much greater coverage than in previous studies that 

used polygenic risk scores.  Regarding the SNP coverage in each ancestral population, most of 

the non-HLA and HLA SNPs validated by GWAS and meta-GWAS for Caucasian and Asian 

populations were analyzed 7,12,37,40-47.  However, for Black and Hispanic populations there were 

no published GWAS and therefore candidate gene studies were used7,12,28,29,37,40-47. The 

resulting differences in the number of SNPs covered in each population were overcome by the 

process of genetic risk score standardization but it is still likely that some relevant SNPs in Black 

and Hispanic groups were missed. However, by standardizing the genetic score, the impact of 

any single locus will differ between ethnicities. Finally, there were no publications in South Asian 

populations and therefore we could not include this population. However, our coverage of both 

HLA and non-HLA SNPs is the largest published to date in each ancestral population.  Another 

limitation to our study is the possibility of unmeasured confounders that can affect genetic 

scores and age of diagnosis of SLE. This could be the case in our models because our 

dependent variable is  “age of diagnosis” and not “age of onset” of SLE, there may be 

differential bias (e.g., time to diagnose in cSLE vs aSLE patients, males vs females; access to 

care, socioeconomical factors among others).

However, we strongly believe that our results are still valid as start point for futures 

investigations.  

The present study is the first to show that there are different effects of non-HLA and HLA 

genetic risk scores on age of SLE diagnosis in a multiethnic population. Specifically, non-HLA 

genetic risk scores showed that the higher the number of SLE associated non-HLA SNPs, the 

younger age of SLE diagnosis. Conversely, the higher the HLA genetic risk score the older the 

age of SLE diagnosis. These results were consistent across all methods of estimating their 

effect. We suggest that the non-HLA GRSWS may be the most robust score to use as it has 

showed the highest degree of statistical significance. However, for HLA risk, all the risk scores 
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performed well. Overall genetic risk scores explained 18% of the variance of age of onset of 

SLE.  We suggest that future studies use standardized genetic risk scores which account for the 

variability in the distribution of the scores across populations, examine the effect of sex on risk 

scores and determine the effect HLA and non-HLA risk scores separately.  These findings 

emphasize the complexity of the influence of genetic risk on the age of onset of SLE.
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Table 1. Demographic Features of Patients

Femal
e

Male Caucasian Black Hispanic Asian Total Population

Total 1,351 189 1094 196 129 121 1,540

Mean of Age 
of Diagnosis

25.81
(SD=1
4.3)

21.48 
(SD=
13.1)

28.65 
(SD=14.360

17.58 
(SD=9.84
)

18.48 
(SD=11.025)

14.50 (SD=7.49) 25.28 (SD=14.2)

Median of 
Age of 
Diagnosis

21.81 16 26.46 14.58 14.90 13.23 20.95

Minimum of 
Age of 
Diagnosis

1 5 2 4 1 4.3 1

Maximum of 
Age of 
Diagnosis

82.14 64.55 82.14 54.98 56.76 54.40 82.14

Number of 
cSLE <18 
years old)

563 

(41.67

%)

112 

(59.2

5%)

329 144 90 112 675 (43.83%)

Number of 
aSLE (>18 
years old)

788 

(58.32

%)

77 

(40.7

4%)

765 52 39 9 865 (56.16%)
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Table 2. Linear regression analyses of the non-HLA genetic risk scores

Genetic risk counting scores Genetic risk weighted scores

GRCS GRSCS GRWS GRSWS

Final model p-value* 0.103 0.007 0.011 0.001

Slope& -0.066 -0.044 -0.023 -0.048

Adjusted r2 0.175 0.178 0.175 0.176

GRCS= Genetic risk counting score, GRSCS= Genetic risk standardized counting score, GRWS= Genetic risk weighted score, 
GRSWS= Genetic risk standardized weighted score. *Final statistical model of the genetic risk weighted scores included sex and 
Caucasian vs. non-Caucasian (C/NC) ancestry as covariates, final model of the genetic risk counting scores, included sex and all 4 
ancestral populations as covariates. &: Slope represents the rate of change in y (age of diagnosis) as x (non-HLA genetic risk 
scores) changes.
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Table 3. Linear regression analyses of the HLA genetic risk scores

Genetic risk counting scores Genetic risk weighted scores

GRCS GRSCS GRWS GRSWS

Final model p-value* 0.049 0.022 0.022 0.011

Slope& 0.014 0.013 0.026 0.014

Adjusted r2 0.176 0.176 0.176 0.177

GRCS= Genetic risk counting score, GRSCS= Genetic risk standardized counting score, GRWS= Genetic risk weighted score, 
GRSWS= Genetic risk standardized weighted score. *Final model of all HLA genetic risk scores included sex and all 4 ancestral 
populations as covariates. &Slope represents the rate of change in y (age of diagnosis) as x (HLA genetic risk scores) changes.

274

55

87 25

122 22 80 10
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