Longitudinal association between trabecular bone loss and disease activity in axial spondyloarthritis: a 4 year prospective study

Kwi Young Kang*, Ji Hyeon Ju, Sung-Hwan Park, Yeon Sik Hong

¹Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea

Short title: TBS and disease activity

*Corresponding Author

Kwi Young Kang, M.D., Ph.D.

Associate Professor, Division of Rheumatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #56, Dongsu-Ro, Bupyung-Gu, Incheon, South Korea.

Telephone: +82 32 280 5069; Fax: +82 32 280 5987; E-mail: kykang@catholic.ac.kr

Abstract

Accepted Article

Objective: To investigate whether the trabecular bone loss is longitudinally associated with disease activity measures in patients with axial spondyloarthritis (axSpA).

Methods: Data from patients enrolled in the Incheon Saint Mary's axSpA prospective observational cohort were evaluated. Trabecular bone loss was assessed using the trabecular bone score (TBS). The relationship between TBS and disease activity measures (Ankylosing Spondylitis Disease Activity Score [ASDAS], Bath Ankylosing Spondylitis Disease Activity Index [BASDAI], erythrocyte sedimentation rate [ESR], and c-reactive protein [CRP]) was investigated using generalized estimating equations (GEE) models.

Results: Four year follow-up data from 240 patients (80% males, mean age 37 ± 12 years) were evaluated. At baseline, higher disease activity according to ASDAS-ESR and ASDAS-CRP showed a trend towards lower TBS (p = 0.003 and p = 0.016, respectively). The univariate GEE analyses showed a significant association between TBS and disease activity measures over time, with the exception of BASDAI. Univariate analysis showed a longitudinal association between TBS and age, smoking, and spinal structural damage. In the multivariate GEE analysis, ASDAS-ESR, ASDAS-CRP, ESR, and CRP were longitudinally associated with TBS after adjusting for confounding factors. ASDAS scores and inflammatory markers were longitudinally associated with TBS in patients with ankylosing spondylitis (AS, 79%), but not in patients with non-radiographic axSpA (nr-axSpA). BASDAI showed no relationship with TBS in either the AS or nr-axSpA groups.

Conclusion: Trabecular bone loss in axSpA patients, as assessed using the TBS, shows a longitudinal association with ASDAS scores and inflammatory markers.

Keywords: Trabecular bone, Trabecular bone score, Axial spondyloarthritis, Ankylosing spondylitis, Ankylosing Spondylitis Disease Activity Score

Accepted Articl

Introduction

Axial spondyloarthritis (axSpA) is associated with inflammation of the sacroiliac joints and spine, with erosions, syndesmophytes, and ankylosis developing in patients with more advanced disease. AxSpA includes non-radiographic axSpA (nr-axSpA), which is characterized by the absence of sacroiliitis on conventional X-ray images, and radiographic axial spondyloarthritis, which is also referred to as ankylosing spondylitis (AS) and is characterized by sacroiliitis on X-ray images ¹. The chronic inflammation associated with axSpA leads to a wide range of bone changes, particularly remodeling. Abnormal bone metabolism results in pathological new bone formation in the cortical zone of the vertebrae and the loss of trabecular bone from the vertebral bodies, leading to low bone density ².

The mechanism of new bone formation in axSpA has not been fully established. One hypothesis is that inflammation is the first stage, followed by a repair mechanism that replaces the subchondral bone marrow with fibrotic/granulation tissue and stimulates new bone formation ³. The relative inaccessibility of the spine and the lack of established biomarkers related to bone homeostasis have limited the study of the pathophysiology of axSpA ⁴. Therefore, to date, studies of the association between new bone formation and inflammation in axSpA have been performed using imaging techniques such as MRI ^{5,6}. However, a substantial number of syndesmophytes are not preceded by lesions that are detected by MRI, such as osteitis or fatty lesions ⁵. Therefore, the relationship between inflammation and activation of these pathways remains the subject of some debate. Recently, another hypothesis for the mechanism of new bone formation in axSpA has been proposed, i.e. that initial inflammation leads to inflammation-induced bone loss and, therefore, instability, another type of biomechanical stress. Reactive attempts to increase spinal stability could therefore occur at sites away from the inflammation ⁷.

Cortical and trabecular compartments appear to have different reactions to inflammation; in SpA, the bone tissue directly exposed to inflammation (osteitis) is the trabecular bone of the vertebrae, but not the cortical bone surface ⁸. Inflammation-related trabecular bone loss can lead to microstructural changes, which affect the mechanical properties of the spine and can lead to spinal instability. Persistent inflammation may prevent an anabolic response from correcting any instability in the trabecular bone of the vertebral bodies, and relatively new bone formation in the cortical bone of the vertebrae may be increased ⁷. However, to date, there have been

no longitudinal studies of the association between inflammation and trabecular bone changes in patients with axSpA as there are no available tools that reliably reflect microstructural change in the vertebrae.

In recent years, the trabecular bone score (TBS) has been introduced as a non-invasive method of estimating trabecular microarchitecture. The TBS is a texture index derived from standard lumbar spine dual-energy absorptiometry (DXA) images and has been shown to be related to bone microarchitecture and fracture risk ⁹. Evaluation of TBS has been proposed as a surrogate marker for vertebral body microarchitecture ¹⁰. In addition, a recent cross-sectional study showed that TBS values were lower in patients with axSpA than in matched controls. Also, a negative correlation was seen between TBS and systemic inflammatory markers ¹¹. However, the association between TBS and inflammation has not yet been addressed in longitudinal studies of axSpA. Therefore, the current study aims to evaluate the association between TBS values and clinical disease activity measures in patients with axSpA, and to investigate whether TBS values are related to disease activity measures over time.

Methods

Study patients

All patients that visited the rheumatology outpatient clinic in Incheon Saint Mary's hospital since January 2014 (enrollment is ongoing), resided in a defined geographical area of Incheon, and fulfilled the Assessment of SpondyloArthritis International Society (ASAS) criteria¹², were included in this prospective observational cohort study (ISAXSPA; Incheon Saint Mary's AXial SPondyloArthritis study). The ISAXSPA focused on identifying predictors for new bone formation in the spine and bone loss, including osteoporosis and vertebral fracture, in patients with axSpA. Patients recruited into this cohort were required to fulfill the imaging arm of the ASAS axSpA criteria ¹², including patients with established AS ¹³. The study was performed in accordance with the Helsinki Declaration. Written informed consent was obtained from all study participants prior to inclusion into the observational cohort and the study protocol was approved by the ethics committee of the Incheon Saint Mary's Hospital (study number OC160ISI0138).

Enrolled patients were recruited in academic outpatient facilities, irrespective of the treatment they had received.

Patients were evaluated annually according to a standardized protocol, which included clinical and laboratory variables. Imaging variables included radiographs of the cervical, thoracic, and lumbar spine, and DXA assessment at baseline and annually for all patients. Patient questionnaires (including information regarding classification, comorbidity, disease activity, and physical function) were evaluated annually.

TBS data from patients enrolled in the ISAXSPA cohort were assessed. Enrolment in the ISAXSPA study started in January 2014 and is ongoing. The present study represents an interim analysis of the first 240 patients. Patients with DXA images and disease activity measures available for at least two consecutive visits were included in the analysis. Those with and without follow-up DXA data were evaluated to identify selection bias according to baseline characteristics and radiographic progression.

Clinical data

Disease-related data and disease activity measures were collected annually. Clinical data included the time after symptom onset, presence of HLA B27, smoking status (never, ex-smoker, current), use of medications such as anti-inflammatory drugs, sulfasalazine, and tumor necrosis factor (TNF) inhibitors. The patients included in the study were not treated with glucocorticoids during the study period. The Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) ¹⁴ and measures of disease activity using the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) ¹⁵ were collected and patient global assessment scores were also recorded. All scores were measured on a visual analog scale from 0–10. The Ankylosing Spondylitis Disease Activity Score (ASDAS) was calculated as described previously ¹⁶. Disease activity state was defined as one of four groups according to the ASDAS ¹⁷. Erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) were also measured.

DXA assessment

BMD at the lumbar spine and left hip was assessed using DXA (Lunar Prodigy densitometer, Madison, WI, USA). All measurements were taken by experienced operators using the same machine and standardized procedures with resect to participant positioning. BMD was measured at the lumbar spine using an

anteroposterior projection at L1–L4 and at the left hip from the femoral neck and total proximal femur. BMD was expressed as the number of grams of bone mineral per square centimeter (g/cm²).

TBS assessment

The TBS was calculated from DXA images of the lumbar spine (L1–L4). Lumbar spine DXA images were reanalyzed in an operator-independent automated manner using TBS iNight® software version 2.1 (Med-Imaps, Merignac, France). The software uses posterior-anterior images, including the BMD region of interest and edge detection; thus, the TBS is calculated over exactly the same region as the lumbar BMD. Patients were divided into three TBS groups according to the risk of fracture, as identified in a recent meta-analysis: high risk (TBS < 1.23); intermediate risk (TBS 1.23 to 1.31); low risk, (TBS < 1.31) ¹⁸. Low TBS was defined as \leq 1.31. Reproducibility of the TBS (based on the coefficient of variation (CV)) was assessed using replicate scans . Average short-term reproducibility was 1.04 %.

Radiographic scoring

The presence of radiographic sacroiliitis at baseline was assessed by viewing images of the sacroiliac joint according to the New York criteria¹³. The reader was blinded to the clinical characteristics of the patients.

For all patients, radiographs of the cervical, thoracic, and lumbar spine were obtained at baseline and every year thereafter. Lateral views of the cervical and lumbar spine were scored according to the modified Stoke AS Spinal Score (mSASSS)¹⁹. Total scores ranged from 0 to 72. The number of syndesmophytes was assessed using the mSASSS. The mSASSS were scored by a single trained expert who was blinded to the patient characteristics.

Statistical analysis

Continuous data were expressed as mean \pm SD, and categorical data were expressed as percentages. Clinical variables were compared using an independent t-test, and the chi-squared test was used to compare categorical

This accepted article is protected by copyright. All rights reserved.

variables between axSpA patients with and without follow-up DXA data. The proportion of TBS subgroups by fracture risk was compared across ASDAS groups using chi-squared tests. Spearman's correlation coefficient was used to analyze correlations between variables.

The longitudinal relationship between TBS values and disease activity measures were analyzed using generalized estimating equations (GEE) models, with TBS value as a dependent variable and the separate clinical measures as independent variables. GEE is a technique for longitudinal analysis that makes use of all available longitudinal data, allows unequal numbers of repeated measurements, and has some robustness against deviation from normality ²⁰. Variables with a p-value ≤ 0.10 using univariate GEE were included in multivariable GEE models. Five separate models were built for TBS, and each one of them included one of the disease activity measures. All models were adjusted for age, HLA-B27, smoking status, radiographic sacroiliitis, and syndesmophytes number. Model fit was estimated with the quasi-likelihood under the independence model criterion (QIC): the lower the QIC, the better the data fit the model. p-values ≤ 0.05 were considered to be statistically significant. Statistical analyses were performed using SPSS Statistics (version 21.0; IBM Corp., Armonk, NY, USA).

Results

A total of 330 patients were enrolled in the ISAXSPA cohort; of these, 240 patients had available baseline and follow-up DXA data and were included in the analysis. Four year follow-up data were analyzed. All patients were aged 20–67 years. No significant differences were seen between the baseline data of the patients included in the analysis and those of all enrolled patients (Table 1). In the 240 patients included in the analysis, 193 (80%) were male. Four patients among 47 women were post-menopausal. Nine patients (4%) had psoriasis and two (1%) had inflammatory bowel disease. One hundred-and-ninety (79%) patients fulfilled the modified New York criteria for the classification of AS ¹³. Mean ASDAS-ESR and ASDAS-CRP were 2.7 ± 1.1 and 2.4 ± 1.3 , respectively, and 97 patients (41%) had syndesmophytes at baseline. The mean TBS value was 1.385 ± 0.123 .

Figure 1 shows the proportion of patients with low TBS (≤ 1.31) according to disease activity at baseline. The proportion with a low TBS score were 7%, 17%, 18%, and 32% in the inactive, low, high, and very high ASDAS-ESR activity groups, respectively (p = 0.003). In the ASDAS-CRP activity groups, higher disease

activity also showed a trend towards lower TBS (p = 0.016).

Table 2 shows the correlation between disease activity measures, mSASSS, number of syndesmophytes, and TBS at each timepoint. Significant negative correlations were seen between TBS and ESR, CRP, mSASSS, and syndesmophyte number at baseline. ASDAS-ESR was negatively correlated with TBS at 1 year and 2 years, and ASDAS-CRP was negatively correlated at 2 years only; mSASSS and syndesmophyte number showed significant negative correlations with TBS at all times. ESR was negatively correlated with TBS at baseline, 1, and 2 years follow up. CRP showed a negative correlation at baseline and 2 years follow up. Bone mineral density (BMD) at the lumbar spine also showed a negative correlated with BMD only at 2 years. In contrast with TBS, BMD at the lumbar spine was positively correlated with mSASSS and syndesmophytes number at all follow-up time points. The proportion of nr-axSpA at 1 year, 2 years, 3 years, and 4 years was 16%, 28%, 23%, and 11%, respectively.

Univariate GEE analyses showed that statistically significant associations for all disease activity measures were longitudinally associated with TBS, with the exception of BASDAI (Table 3). Age, smoking, radiographic sacroiliitis, and spinal structural damage were also longitudinally associated with TBS in the univariate analysis. Five separate models were built for the multivariate GEE analyses, each including the disease activity measures (Table 4). All models were adjusted for age, HLA-B27, smoking status, presence of radiographic sacroiliitis, and syndesmophytes number. With the exception of BASDAI, a significant relationship between all disease activity measures activity measures and TBS was observed, with the lower QIC values seen in the models with ESR.

In patients fulfilling AS criteria, ASDAS-ESR, ASDAS-CRP, ESR, and CRP were longitudinally associated with TBS. TBS values decreased by 0.001 and 0.015 per one unit increase in the ASDAS-ESR and ASDAS-CRP (β [95% CI] = -0.001 [-0.029, -0.005] and -0.015 [-0.025, -0.004]), respectively. Also, for each one unit increase in ESR and CRP, the TBS values decreased by 0.001 (β [95% CI] -0.001 [-0.002, -0.001] and -0.001 ([-0.002, 0.000]), respectively); however, none of the clinical measures were significantly related to TBS in nr-axSpA patients (Figure 2). BASDAI showed no relationship with TBS in either AS or nr-axSpA patients.

Discussion

This study shows that disease activity measures are longitudinally associated with TBS values. ASDAS and

systemic inflammatory markers (but not BASDAI) showed a significant association with TBS, and this association was seen to be specific to patients with AS.

The present study assessed trabecular bone loss using the TBS, which is a novel texture index derived from standard lumbar spinal DXA images. The TBS was developed as a clinical tool capable of assessing bone microarchitecture, which is a key determinant of bone strength ⁹. Lower TBS values are known to be associated with an increased risk of major osteoporotic fracture, independent of BMD values ²¹. Although it is not a direct measurement of bone microarchitecture, it provides information on trabecular characteristics that is not captured by the measurement of bone density. An *ex vivo* study has shown TBS to have a strong positive correlation with the number of trabeculae and the trabecular bone volume assessed on micro-computed tomography of transiliac bone biopsies ²². Therefore, the TBS is considered to be a practical and non-invasive tool for the assessment of trabecular bone microarchitecture.

While the association between TBS and disease activity has previously been described in cross-sectional studies, the current study is the first to demonstrate a statistically significant association in a longitudinal follow up of patients with axSpA. In one recent cross-sectional study, TBS showed a negative correlation with ESR and CRP levels in patients with axSpA, but not in matched controls, and inflammatory markers were independently related to low TBS values in multivariate analysis ¹¹. In addition, Boussoualim et al reported that TBS was associated with disease activity measured by ASDAS and ESR and CRP ²³. These data suggest that lower levels of TBS are related to disease activity, although these results are limited by the cross-sectional design. These previous studies and the current data support the use of TBS to reflect inflammation-mediated changes in lumbar spine trabecular bone in patients with axSpA.

Unlike the ASDAS, BASDAI values were not significantly associated with TBS in the current study. This may reflect the fact that the BASDAI is fully patient-reported and therefore reflects patient-specific factors independent of inflammation. By contrast, the ASDAS is a better reflection of inflammation and has been shown to be associated with disease activity and inflammation on MRI²⁴.

Subgroup analysis, according to the presence of radiographic sacroiliitis, showed that the longitudinal relationship between disease activity measures and TBS was observed only in patients with AS. The fact that no association was seen in the nr-axSpA group may be explained by the lower level of spinal structural damage in

these patients, compared with the AS group. The mean mSASSS was higher in the AS group than in the nraxSpA group $(1.1 \pm 4.5 \text{ and } 15.5 \pm 21.2 \text{ in nr-axSpA}$ and AS, respectively), meaning that the spinal involvement of inflammation was cumulatively greater in AS than nr-axSpA patients. Also, TBS showed a negative correlation with both disease activity measures and spinal structural damage, such as mSASSS and syndesmophyte number. These findings suggest that TBS may reflect trabecular microarchitecture changes resulting from cumulative inflammatory activity as well as current disease activity.

Bone disease in AxSpA is a complex phenomenon with the presence of both bone loss and new bone formation having an impact on the clinical features of the disease ²⁵. Bone loss can appear as systemic bone loss, leading to osteoporosis and increased fractures, and as local bone loss, such as erosions. Trabecular bone in the vertebrae is the main site of inflammation in axSpA⁸ and trabecular bone loss is frequent in these patients ^{11,23}. Recently, trabecular bone loss has also been proposed as an important step in the pathogenesis of new bone formation in the spine ⁷. One hypothesis for spinal progression in AS is that inflammation-induced bone loss causes instability, another type of biomechanical stress, which then leads to more bone formation to increase spinal stability. It is suggested that a change in bone microarchitecture in a part of the body where dynamic loading is important triggers a regenerative or reparative response ²⁶. Trabecular bone is the main load bearing structure in the vertebrae ²⁷, which is directly affected by inflammation. Therefore, persistent inflammation may prevent the anabolic response from correcting any instability in the trabecular bone of the vertebral bodies, and relatively new bone formation in the cortical bone of the vertebrae may be increased at sites away from the inflammation ⁷. This would result in the formation of syndesmophytes and/or bridging to compensate for a lack of stability in the spine ²⁸. The relative inaccessibility of the spine tissue and the lack of an available tool for assessing trabecular bone change means that, to date, there is little evidence to show that loss of bone and biomechanical instability may trigger new bone formation. Quantitative Computed Tomography has been developed to measure bone microarchitecture but cannot be performed routinely in a clinical setting due to the high radiation dose required, cost, and limited access to such devices ²⁹. Although TBS is an indirect index for accessing trabecular bone, it has the advantage of being readily available in clinical practice using DXA images, and being able to assess the microarchitecture of trabecular bone at the lumbar spine.

We have previously shown that the inflammation on spinal MRI is negatively correlated with TBS in patients with AS and the severity of local inflammation on spinal MRI was associated with trabecular bone loss ³⁰. The

10

This accepted article is protected by copyright. All rights reserved.

Downloaded on April 17, 2024 from www.jrheum.org

longitudinal observations in the present study show the relationship between loss of trabecular bone and disease activity measures over time in patients with axSpA. Also, TBS values were negatively correlated with mSASSS and syndesmophyte number, and the association was longitudinally observed in the univariate GEE analysis. These data suggest that TBS in the vertebrae can consistently reflect microarchitectural change induced by inflammation in axSpA. Although the TBS was introduced as a tool for the assessment of osteoporosis risk, our data suggest the potential as a useful clinical tool to assess inflammation-induced loss of trabecular bone in patients with axSpA. However, it is not yet clear whether the TBS could usefully predict further new bone formation in axSpA and a prospective study would be required to evaluate this potential application.

This study has several limitations. The 4 year follow-up data are limited by the low sample size. The numbers of patients at Year 3 and Year 4 are small because the observation period was relatively short. Also, the proportion of nr-AxSpA patients included in the study was relatively small. Although there was no association between disease activity measures and TBS over time in nr-SpA patients (unlike in AS patients), it cannot be ruled out that the small sample size affected the results. Therefore, the results of the subgroup analysis in the nr-axSpA group should be interpreted with caution. Further studies are required to assess longitudinal associations in other patient cohorts and larger cohorts of nr-axSpA patients.

In conclusion, clinical disease activity measures are longitudinally associated with trabecular bone loss, as assessed using the TBS. We found a relationship between the TBS and disease activity in patients with AS, but not in those with nr-axSpA.

Acknowledgements

None

Conflicts of interest

The authors have no competing interests to declare.

References

- 1. Sieper J, Poddubnyy D. Axial spondyloarthritis. Lancet 2017;390:73-84.
- 2. Hinze AM, Louie GH. Osteoporosis Management in Ankylosing Spondylitis. Curr Treatm Opt Rheumatol 2016;2:271-82.
- Poddubnyy D, Sieper J. Mechanism of New Bone Formation in Axial Spondyloarthritis. Curr Rheumatol Rep 2017;19:55.
- 4. Lories RJ, Schett G. Pathophysiology of new bone formation and ankylosis in spondyloarthritis. Rheum Dis Clin North Am 2012;38:555-67.
- 5. Baraliakos X, Heldmann F, Callhoff J, Listing J, Appelboom T, Brandt J, et al. Which spinal lesions are associated with new bone formation in patients with ankylosing spondylitis treated with anti-TNF agents? A long-term observational study using MRI and conventional radiography. Ann Rheum Dis 2014;73:1819-25.
- van der Heijde D, Machado P, Braun J, Hermann KG, Baraliakos X, Hsu B, et al. MRI inflammation at the vertebral unit only marginally predicts new syndesmophyte formation: a multilevel analysis in patients with ankylosing spondylitis. Ann Rheum Dis 2012;71:369-73.
- 7. Neerinckx B, Lories RJ. Structural Disease Progression in Axial Spondyloarthritis: Still a Cause for Concern? Curr Rheumatol Rep 2017;19:14.
- 8. Schett G. Structural bone changes in spondyloarthritis: mechanisms, clinical impact and therapeutic considerations. Am J Med Sci 2011;341:269-71.
- 9. Martineau P, Leslie WD. Trabecular bone score (TBS): Method and applications. Bone 2017;104:66-72.
- 10. Carey JJ, Buehring B. Current imaging techniques in osteoporosis. Clin Exp Rheumatol 2018;36:115-26.
- 11. Kang KY, Goo HY, Park SH, Hong YS. Trabecular bone score as an assessment tool to identify the risk of osteoporosis in axial spondyloarthritis: a case-control study. Rheumatology (Oxford) 2018;57:462-9.
- 12. Rudwaleit M, Landewe R, van der Heijde D, Listing J, Brandt J, Braun J, et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part I): classification of paper patients by expert opinion including uncertainty appraisal. Ann Rheum Dis 2009;68:770-6.
- 13. van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum 1984;27:361-8.
- 14. Calin A, Garrett S, Whitelock H, Kennedy LG, O'Hea J, Mallorie P, et al. A new approach to defining functional ability in ankylosing spondylitis: the development of the Bath Ankylosing Spondylitis Functional Index. J Rheumatol 1994;21:2281-5.

Accepted Article

- 15. Garrett S, Jenkinson T, Kennedy LG, Whitelock H, Gaisford P, Calin A. A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index. J Rheumatol 1994;21:2286-91.
 - 16. van der Heijde D, Lie E, Kvien TK, Sieper J, Van den Bosch F, Listing J, et al. ASDAS, a highly discriminatory ASAS-endorsed disease activity score in patients with ankylosing spondylitis. Ann Rheum Dis 2009;68:1811-8.
 - Machado PM, Landewe R, Heijde DV. Ankylosing Spondylitis Disease Activity Score (ASDAS): 2018 update of the nomenclature for disease activity states. Ann Rheum Dis 2018;77:1539-40.
 - McCloskey EV, Oden A, Harvey NC, Leslie WD, Hans D, Johansson H, et al. A Meta-Analysis of Trabecular Bone Score in Fracture Risk Prediction and Its Relationship to FRAX. J Bone Miner Res 2016;31:940-8.
 - 19. Wanders AJ, Landewe RB, Spoorenberg A, Dougados M, van der Linden S, Mielants H, et al. What is the most appropriate radiologic scoring method for ankylosing spondylitis? A comparison of the available methods based on the Outcome Measures in Rheumatology Clinical Trials filter. Arthritis Rheum 2004;50:2622-32.
 - 20. Twisk JW. Longitudinal data analysis. A comparison between generalized estimating equations and random coefficient analysis. Eur J Epidemiol 2004;19:769-76.
 - 21. Hans D, Goertzen AL, Krieg MA, Leslie WD. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res 2011;26:2762-9.
 - 22. Muschitz C, Kocijan R, Haschka J, Pahr D, Kaider A, Pietschmann P, et al. TBS reflects trabecular microarchitecture in premenopausal women and men with idiopathic osteoporosis and low-traumatic fractures. Bone 2015;79:259-66.
 - 23. Boussoualim K, Amouzougan A, Pallot-Prades B, Denarie D, Collet P, Marotte H, et al. Evaluation of bone quality with trabecular bone score in active spondyloarthritis. Joint Bone Spine 2018;85:727-31.
 - 24. Navarro-Compan V, Ramiro S, Landewe R, Dougados M, Miceli-Richard C, Richette P, et al. Disease activity is longitudinally related to sacroiliac inflammation on MRI in male patients with axial spondyloarthritis: 2-years of the DESIR cohort. Ann Rheum Dis 2016;75:874-8.
 - 25. Van Mechelen M, Gulino GR, de Vlam K, Lories R. Bone Disease in Axial Spondyloarthritis. Calcif Tissue Int 2018;102:547-58.
 - 26. Van Mechelen M, Lories RJ. Microtrauma: no longer to be ignored in spondyloarthritis? Curr Opin Rheumatol 2016;28:176-80.
 - 27. Oftadeh R, Perez-Viloria M, Villa-Camacho JC, Vaziri A, Nazarian A. Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng 2015;137.
 - 28. Neerinckx B, Lories R. Mechanisms, impact and prevention of pathological bone

regeneration in spondyloarthritis. Curr Opin Rheumatol 2017;29:287-92.

- 29. Harvey NC, Gluer CC, Binkley N, McCloskey EV, Brandi ML, Cooper C, et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 2015;78:216-24.
- 30. Jung JY, Han SH, Hong YS, Park SH, Ju JH, Kang KY. Inflammation on spinal magnetic resonance imaging is associated with poor bone quality in patients with ankylosing spondylitis. Mod Rheumatol 2019;29:829-35.

Accepted Article

Figure legends

Figure 1. Proportion of patients with low TBS values according to disease activity at baseline. (A) Proportion of low TBS according to ASDAS-ESR activity group. (B) Proportion of low TBS according to ASDAS-CRP activity group.

Figure 2. The longitudinal effect of disease activity measures on TBS according to the presence of radiographic sacroiliitis. A. Longitudinal effect of ASDAS-ESR on TBS, B. longitudinal effect of ASDAS-CRP on TBS, C. longitudinal effect of ESR on TBS, and D. longitudinal effect of CRP on TBS. All models were adjusted for age, HLA-B27, smoking status, and syndesmophyte number.

p-value

0.562

0.914

0.612

1.000 0.996

0.787 0.996

0.963

0.658

0.996

1.000

0.668

0.744

0.724

0.401

0.221

0.404

0.624

0.169

0.283

1	1 5	
Variables,	Patients included in the analysis	All enrolled patients
N (%) or mean \pm SD	(N = 240)	(N = 330)
Age, years	37 ± 12	37 ± 12
Male	193 (80)	267 (81)
Symptom duration, years	9 ± 9	9 ± 9
HLA-B27 positive	190 (79)	262 (79)
Smoking		
Never	106 (45)	148 (45)
Ex-smoker	49 (21)	67 (21)
Current	80 (34)	111 (34)
BASDAI (0-10)	4.0 ± 2.2	4.1 ±2.2
ASDAS-ESR	2.7 ± 1.1	2.7 ± 1.1
ASDAS-CRP	2.4 ± 1.3	2.4 ± 1.3
ESR, mm/h	24 ± 21	23 ± 21
CRP, mg/L	10.3 ± 18.5	10.3 ± 19.6
Radiographic sacroiliitis	190 (79)	262 (79)
mSASSS	12.2 ± 20.0	11.5 ± 19.3
Number of syndesmophytes	4.0 ± 7.1	3.8 ± 6.8
Treatment at baseline		
NSAIDs	216 (93)	302 (94)
Sulfasalazine	66 (28)	102 (32)
TNF inhibitor	48 (21)	52 (16)
TBS	1.385 ± 0.123	1.393 ± 0.122
BMD at lumbar spine	1.175 ± 0.224	1.184 ± 0.214

BMD at femoral neck

BMD at total hip

Table 1. Characteristics of patients with axial spondyloarthritis

ASDAS, Ankylosing Spondylitis Disease Activity Score; BASDAI, Bath Ankylosing Spondylitis Disease Activity Index; BMD, bone mineral density; CRP, c-reactive protein; ESR, erythrocyte sedimentation rate; mSASSS, modified Stoke Ankylosing Spondylitis Spinal Score; NSAIDs, non-steroidal anti-inflammatory drugs; TNF, tumor necrosis factor.

 0.932 ± 0.151

 0.969 ± 0.154

 0.950 ± 1.150

 0.982 ± 0.151

			Follow	up, years
	Baseline	1	2	3
	(N = 240)	(N = 131)	(N = 138)	(N =
TBS				
BASDAI (0–10)	0.049	-0.118	-0.197*	0.046
ASDAS-ESR	-0.088	-0.181*	-0.233**	-0.024
ASDAS-CRP	-0.081	-0.124	-0.314**	-0.055
ESR, mm/h	-0.252**	-0.217*	-0.168*	-0.091
CRP, mg/l	-0.177**	-0.150	-0.284**	-0.182
mSASSS	-0.419**	-0.365**	-0.535**	-0.306**
Syndemophyte no.	-0.336**	-0.249**	-0.443**	-0.268*
BMD at lumbar spine				
BASDAI (0-10)	-0.056	0.113	0.121	0.005
ASDAS-ESR	-0.150*	0.032	0.010	-0.020
ASDAS-CRP	-0.143*	0.014	0.046	0.081
ESR, mm/h	-0.316**	-0.162	-0.168*	-0.051
CRP, mg/l	-0.225**	-0.105	-0.111	0.091
mSASSS	0.114	0.187*	0.245**	0.241*
Syndemophyte no.	0.217**	0.277**	0.297**	0.247*

al structural damage

ASDAS, Ankylosing Spondylitis Disease Activity Score; BASDAI, Bath Ankylosing Spondylitis Disease Activity Index; BMD, bone mineral density; CRP, c-reactive protein; ESR, erythrocyte sedimentation rate; mSASSS, modified Stoke Ankylosing Spondylitis Spinal Score.

(N = 85)

-0.306**

4

(N = 57)

0.205

0.093

-0.015

-0.155

-0.212

-0.412**

-0.336*

0.232

0.041

0.086

-0.071

0.008

0.344**

0.360**

β 95% CI p-value -0.002 -0.003--0.001 < 0.001 Age, years Male -0.020 -0.047-0.007 0.138 Symptom duration, years -0.0008 -0.0006-0.0005 0.788 HLA-B27 positive -0.032 0.057 -0.064-0.001 Smoking Reference Never -0.050 -0.084--0.016 0.004 Ex-smoker Current -0.044 -0.075--0.013 0.006 BASDAI, 0-10 -0.002 -0.008-0.003 0.440 ASDAS-ESR -0.017 -0.028--0.005 0.005 ASDAS-CRP -0.015 -0.025--0.004 0.005 ESR, mm/h -0.001 < 0.001 -0.002--0.001 CRP, mg/L -0.001 -0.002 - 0.0000.004 Radiographic sacroiliitis -0.068 -0.096--0.040 < 0.001 mSASSS, per 1 -0.002 -0.003--0.001 < 0.001 < 0.001 Number of syndesmophytes, per 1 -0.005 -0.007 - 0.003Treatment at baseline NSAIDs -0.021 0.259 -0.057-0.015 Sulfasalazine 0.018 -0.007-0.043 0.152 TNF inhibitor -0.022 -0.056-0.012 0.203

ASDAS, Ankylosing Spondylitis Disease Activity Score; BASDAI, Bath Ankylosing Spondylitis Disease Activity Index; BMD, bone mineral density; CRP, c-reactive protein; ESR, erythrocyte sedimentation rate; mSASSS, modified Stoke Ankylosing Spondylitis Spinal Score; NSAIDs, non-steroidal anti-inflammatory drugs; TNF, tumor necrosis factor.

Table 3. Univariate generalized estimating equations for TBS

	β	95% CI	QIC	p-val
BASDAI, 0–10	-0.001	-0.006-0.308	41.5	0.57
ASDAS-ESR	-0.013	-0.0230.003	41.6	0.01
ASDAS-CRP	-0.011	-0.0200.002	41.7	0.01
ESR, mm/h	-0.001	-0.0020.001	40.7	< 0.0
CRP, mg/L	-0.001	-0.002-0.000	41.2	0.00
	ondylitis Disease Activity ESR, erythrocyte sediment	Score; BASDAI, Bath Ankylos ation rate.	ing Spondylitis Disea	ase Activity I
		-	ing Spondylitis Disea	ase Activity

Table 4. Longitudinal relationship between disease activity measures and TBS

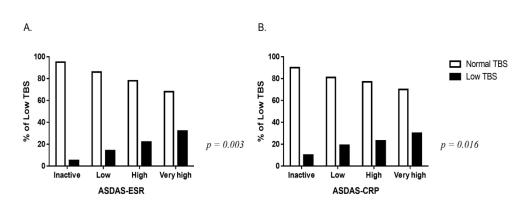


Figure 1. Proportion of patients with low TBS values according to disease activity at baseline. (A) Proportion of low TBS according to ASDAS-ESR activity group. (B) Proportion of low TBS according to ASDAS-CRP activity group.

499x190mm (150 x 150 DPI)

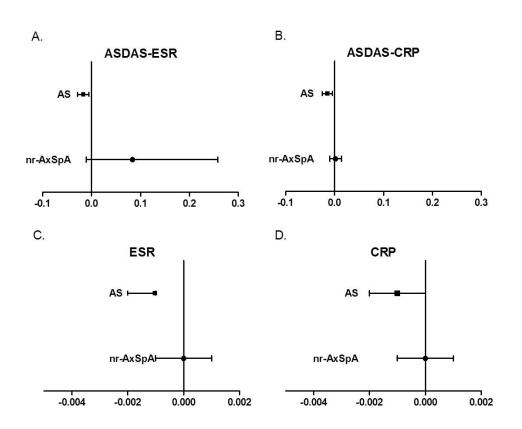


Figure 2. The longitudinal effect of disease activity measures on TBS according to the presence of radiographic sacroiliitis. A. Longitudinal effect of ASDAS-ESR on TBS, B. longitudinal effect of ASDAS-CRP on TBS, C. longitudinal effect of ESR on TBS, and D. longitudinal effect of CRP on TBS. All models were adjusted for age, HLA-B27, smoking status, and syndesmophyte number.

194x154mm (150 x 150 DPI)