Accepted Artic

<u>Title</u>

Utility of Magnetic Resonance Imaging in Diagnosis and Monitoring Enthesitis in Patients with Spondyloarthritis: an OMERACT Systematic Literature Review

Author Name	ORCID ID
Ashish J Mathew	https://orcid.org/0000-0002-2061-2042
Simon Krabbe	https://orcid.org/0000-0002-2877-1582
Richard Kirubakaran	https://orcid.org/0000-0002-5799-0303
Andrew J Barr	https://orcid.org/0000-0002-5618-8685
Philip G. Conaghan	https://orcid.org/0000-0002-3478-5665
Paul Bird	https://orcid.org/0000-0003-3314-3270
Mikkel Østergaard	https://orcid.org/0000-0003-3690-467X

Key indexing terms

Enthesopathy, Magnetic resonance imaging, Spondyloarthropathy, Inflammation, OMERACT

Departments/Institutions

Department of Clinical Immunology & Rheumatology, Christian Medical College, Vellore, India; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark; Cochrane South Asia, Christian Medical College, Vellore, India; NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, United Kingdom; Division of Medicine, University of New South Wales, Sydney, Australia.

Source of financial support

This project has not received any outside funding

<u>Conflicts of interest</u> None

Accepted Article

<u>Authors</u>

AJ. Mathew, MBBS, DNB, DM, Associate Professor, Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, India; PhD Fellow, Department of Clinical Medicine, Faculty of Health and Medical Sciences, COPECARE, Center for Rheumatology and Spine Diseases, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark

S. Krabbe, MD, PhD Fellow, Department of Clinical Medicine, Faculty of Health and Medical Sciences, COPECARE, Center for Rheumatology and Spine Diseases, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark

R. Kirubakaran, BSc, MSc, Biostatistician, Cochrane South Asia, Christian Medical College, Vellore, India

AJ. Barr, MRCP, PhD, Consultant Rheumatologist and Honorary Senior Lecturer, NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom

PG. Conaghan MB BS, PhD, FRACP, FRCP, Professor of Musculoskeletal Medicine, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and NIHR Leeds Biomedical Research Centre, Leeds, UK

P. Bird B Med (Hons), FRACP, PhD, Grad Dip MRI, Associate Professor, Division of Medicine, University of New South Wales, Sydney, Australia

M. Østergaard, MD, PhD, DMSc, Professor, Department of Clinical Medicine, Faculty of Health and Medical Sciences, COPECARE, Center for Rheumatology and Spine Diseases, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark

Correspondence

Ashish J Mathew DNB, DM, Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, India, 632004 Email: ashishjacobmathew@gmail.com

Running head

MRI enthesitis in SpA

Word count

1466/1500

Accepted Articl

Abstract

Objectives: A systematic literature review was performed to document published MRI lesion definitions and scoring systems for enthesitis in SpA. **Methods:** PubMed, EMBase and Cochrane library databases were searched for original publications involving adult SpA patients undergoing MRI of axial/peripheral joints. Selected articles were assessed for quality using a standardised assessment tool and metric indices. **Results:** Considering the heterogeneous nature, quality and outcome measures of studies, statistical data pooling was considered inappropriate. A qualitative narrative of results was undertaken based on study designs. **Conclusions:** Lack of a comprehensive, validated score warrants additional research to develop an MRI enthesitis scoring system.

Word count: 100

PROSPERO registration number: CRD42018090537

Introduction

Enthesitis, inflammation at the insertion site of tendon, ligament or joint capsule into bone, is considered to be a key pathological feature in spondyloarthritis (SpA) and psoriatic arthritis (PsA). ¹ Compared to conventional assessment of enthesitis using clinical scores, MRI detects both soft tissue and intra-osseous abnormalities in active enthesitis, potentially aiding early diagnosis and outcome measurement in SpA and PsA. ² With the advent of treat-to-target concept and novel therapies, objective and sensitive monitoring of response of enthesitis to therapy is desirable, and a validated

MRI scoring system would be a useful adjunct to clinical practice as well as providing additional information as an outcome measure in clinical trials.

The Outcome Measures in Rheumatology (OMERACT) MRI in Inflammatory Arthritis Working Group undertook a systematic literature review (SLR) to describe the MRI variables, definitions and scoring systems used to diagnose and monitor enthesitis in SpA. We assessed the quality and reported psychometric qualities, including validity, reliability and responsiveness, of original publications, in order to understand if there were a need for a novel MRI scoring system for enthesitis in SpA. ^{3,4}

Methods

Selection criteria and search strategies: We searched Medline, EMBase and Cochrane Library databases from their inception till February 2018 for original publications involving adult patients (>18 years) with SpA in whom MRI of axial or peripheral joints had been performed using a high-field magnet (\geq 1.5T), to assess enthesitis. Exclusion criteria included studies on enthesitis related to other conditions including degenerative, trauma-related, and inflammatory diseases other than SpA. The search strategy was designed to select cross-sectional, case-control, randomised controlled and non-randomised studies in English language containing at least one term from each of the following search blocks: 1) Spondyloarthritis, spondylarthritis, psoriatic arthritis or ankylosing spondylitis. 2) Enthesopathy, enthesitis or enthesis. 3) Magnetic resonance imaging or MRI. The selected studies were evaluated for definitions of MRI enthesitis lesions, quality of studies using a standardised assessment tool and for their metric qualities. **Selection of studies and data extraction:** Two reviewers (AJM and SK) independently selected the studies, systematically screened the titles and abstracts, applying inclusion and exclusion criteria. Selected articles were retrieved in full, and the same reviewers assessed each article for its eligibility. Disagreements between the reviewers on article selection were resolved by discussion. Data were extracted to a standardised form. Any discordance in opinion was resolved by consensus and involvement of a third reviewer (MØ). The data extraction sheet contained the following information: author, year of publication, study design, study population, number of participants, intervention, comparator, MRI field strength, sequences used, MRI sites used for evaluating enthesitis, definitions of MRI inflammatory and structural enthesitis, and scoring system used. *(Table 1)*

Quality assessment of selected studies: A standardised tool (*Appendix*) for assessment of quality of the analysed studies based on a set of 12 predefined criteria addressing the following components: study population, enthesitis imaging feature, outcome of interest, study design and analysis and data presentation, was developed and assessed in a binary mode (yes/no). Concepts from review of quality assessment tools in systematic reviews of observational studies were adapted for developing these criteria.⁵ Quality was reported on a scale of 0-12, with higher scores indicating better quality. Included studies that scored <3 on the scale were excluded from the final analysis.

Psychometric properties of included studies: Each selected article was analysed and assessed in order to determine whether it satisfied certain aspects of validity. The following metric qualities were evaluated: face and content validity, construct validity, criterion validity and discriminant validity (reliability and responsiveness) (*Table 2*).

Statistical Analysis: Details of the studies were reported with descriptive statistics such as frequencies and percentages for categorical data and mean and SD for continuous data. Due to variability in studies, meta-analysis could not be performed.

Results

Literature search:

The study selection process is depicted in a PRISMA flow diagram (Figure 1).

Study characteristics: Attributes of the included studies are summarised in *Table 1*. The majority of included studies were of cross-sectional design (20; 51%).^{2, 6-24} Eight case-control, ²⁵⁻³² six cohort, ³³⁻³⁸ three randomized controlled trials, ³⁹⁻⁴¹ and two other longitudinal studies. ^{42,43} were included. Study populations involved SpA in 22, AS in 7, PsA in 9 studies and chronic low back pain in 1 study. Totally, 1534 (range: 8 - 127) individuals in different groups were evaluated for MRI enthesitis in all the studies together. Peripheral enthesitis were evaluated in 24 (62%),^{7,10,11,15-29,34,38} axial enthesitis in 8 studies,^{6,8,12-14,,36,42,43} and enthesitis at both sites using whole body MRI in 7 studies.^{2,9,30,33,37,40,41}. Both T1-weighted (T1w) and T2w fat suppressed or its comparable sequences were included in all the studies. Comparison with other methods of evaluating enthesitis (ultrasonography and clinical assessment) was described in 10 studies,^{7,9-11,18,30-32,35,36}, while 5 studies compared different MRI sequences to assess enthesitis.^{6,13,14,25,42} Only 4 studies compared efficacy of MRI against a gold standard.^{11,13,35,42}.

Qualitative assessment of enthesitis at different regions was used in 82% of studies. Only eight studies mentioned a semi-quantitative or quantitative MRI scoring system.^{2,14,16,17,19,25,39,40,} No studies described a validated, comprehensive MRI Downloaded on April 17, 2024 from www.jrheum.org scoring system measuring all the aspects of enthesitis in any region. The majority of studies defined inflammatory enthesitis as enhancement of ligaments, increased signal intensity, perientheseal increased signal intensity, adjacent bone marrow edema, soft tissue signal around ligaments or tendons, thickening of ligaments, capsulitis in sacroiliac joints, extracapsular soft tissue enhancement, Achilles tendon diameter of bone marrow edema, perientheseal fluid and/or tendinitis in T1w post-gadolinium or short tau inversion recovery (STIR) sequences. Entheseal structural damage defined by few studies include bone erosions, enthesophytes, focal signal intensity changes and calcaneal spur in T1w-sequences. ^{2,7,16,25,27-29,32}

Quality assessment of included studies: Quality scores assessed using a standardised tool are provided in *Table 2*. With one exception, all 38 studies met the minimal quality requirement score of 4. High quality scores (10-12) were present in only 2 studies,^{2,40} while the remaining 36 studies had moderate quality scores (5-9).

Assessment of psychometric properties: Table 2 describes psychometric properties of the selected studies. Face validity was assessed in 33 (87%) studies; content validity in 19 (50%) studies, and construct validity of MRI as related to ultrasonography and clinical examination in 5 (13%) and 6 (16%) studies, respectively. Five studies reported construct validity of different MRI sequences in relation to each other. ^{6,13,14,25,42} Criterion validity of MRI in relation to histology was described only by Tan et al.²² Reliability of MRI in detecting enthesitis using various scoring methods was reported by 26 (68%) studies in which images were evaluated by two independent readers who were blinded to clinical outcomes. Responsiveness of various MRI enthesitis scores was reported in 6 (18%) studies, of which three showed statistically significant changes (p<0.05). ^{37,40,41}

Discussion

Axial and peripheral enthesitis constitute a core feature of SpA and PsA. The OMERACT PsA core domain set includes enthesitis, which makes it mandatory to be assessed in all clinical trials and observational studies.⁴⁴ MRI allows sensitive assessment of enthesitis in clinical trials. We have critically evaluated the published literature for available methods of evaluating enthesitis using MRI in SpA and PsA patients, and we identified notable limitations regarding standardisation of MRI enthesitis definitions across studies and validity of available semi-quantitative scores as outcome measures. The findings suggest there is no currently available reliable and validated MRI scoring system for enthesitis. Many studies have included definitions of MRI lesions suggestive of enthesitis, ^{2,7,9,10,18,23,24,28,29,33,34,37,39,40}but definitions differ, hindering direct comparison of the available methods. A fifth of the selected studies described a semi-quantitative scoring system, albeit without standardisation and lack of internal validity, as all were developed based on expert opinion.

Poor content validity of reported scoring methods was another limitation of the literature. Most studies have focused on assessing inflammatory aspects of enthesitis, and not the structural variables which denote chronic, irreversible changes. MRI inflammatory lesions are amenable to change and responsive to therapy. Wide variation in the entheseal sites to be assessed adds to the challenge in standardisation. Lack of a standardised definition to define the borders of enthesitis makes it difficult to differentiate it from other inflammatory variables, like synovitis and tenosynovitis, thus increasing the variability of scores in each study.

Construct validity was evaluated in relation to ultrasonography and clinical examination. Most of the studies showed a poor correlation between MRI and ultrasonography. This again emphasises the lack of standardised definitions of MRI enthesitis lesions. Limited information exists regarding criterion validity as only one study which compared MRI with histology. Lack of significant responsiveness of available qualitative and semi-quantitative MRI enthesitis scores suggest limited utility as outcome measures in clinical trials.

The above-mentioned limitations and the lack of validated, generally accepted MRI enthesitis assessment systems warrant the development of a reliable and feasible MRI enthesitis scoring system, to increase the utility of MRI as an outcome measure in SpA and PsA clinical trials.

Acknowledgements

AJB and PGC are supported in part through the UK National Institute for Health Research (NIHR) Leeds Biomedical Research Centre. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Accepted Articl

References

- Eshed I, Bollow M, McGonagle DG, Tan AL, Althoff CE, Asbach P, Hermann KG. MRI of enthesitis of the appendicular skeleton in sponydloarthritis. Ann Rheum Dis 2007;66:1553-59
- Poggenborg RP, Eshed I, Østergaard M, Sørensen IJ, Møller JM, Madsen OR, Pedersen SJ. Enthesitis in patients with psoriatic arthritis, axial spondyloarthritis and healthy subjects assessed by 'head-to-toe' whole-body MRI and clinical examination. Ann Rheum Dis 2015;74:823-29
- Boers M, Kirwan JR, Tugwell P, Beaton D, Bingham CO III, Conaghan PG, et al. The OMERACT Handbook. [Internet. Accessed May 17, 2017.] Available from: https://omeract.org/resources
- Boers M, Kirwan JR, Wells G, Beaton D, Gossec L, d'Agostino MA, et al. Developing core outcome measurement sets for clinical trials: OMERACT filter 2.0. J Clin Epidemiol 2014;67:745-53
- 5. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomized and non-randomized studies for health care interventions. J Epidemiol Community Health 1998;52:377-84
- Agten CA, Zubler V, Rosskopf AB, Weiss B, Pfirrmann CWA. Enthestis of lumbar spinal ligaments in clinically suspected spondyloarthritis: value of gadolium-enhanced MR images in comparison to STIR. Skeletal Radiol 2016;45:187-95
- Maldonado RA, Ruta S, Valuntas ML, Garcia M. Ultrasonography assessment of heel entheses in patients with spondyloarthritis: a comparative study with magnetic resonance imaging and conventional radiography. Clin Rheumatol 2017;36:1811-17

- 8. Aivazoglou LU, Zotti OR, Pinheiro MM, Junior MRC, Puchnick A, Fernandes ADRC, et al. Topographic MRI evaluation of the sacroiliac joints in patients with axial spondyloarthritis. Rev Bras Rheumatol Engl Ed 2017;57:378-84
- Althoff CE, Seiper J, Song I-H, Haibel H, Weiss A, Diekhoff T, et al. Active inflammation and structural change in early active axial spondyloarthritis as detected by whole-body MRI. Ann Rheum Dis 2013;72:967-73
- 10. Aydin SZ, Tan AL, Hodsgon R, Grainger A, Emery P, Wakefield RJ, McGonagle D. Comparison of ultrasonography and magnetic resonance imaging for the assessment of clinically defined knee enthesitis in spondyloarthritis. Clin Exp Rheumatol 2013;31:933-36
- 11. Braum LS, McGonagle D, Bruns A, Philipp S, Hermann S, Aupperle K, et al. Characterisation of hand small joints arthropathy using high-resolution MRI -Limited discrimination between osteoarthritis and psoriatic arthritis. Eur Radiol 2013;23:1686-93
- 12. Fournie B, Boutes A, Dromer C, Sixou L, Le Guennec P, Granel J, Railhac JJ. Prospective study of anterior chest wall involvement in ankylosing spondylitis and psoriatic arthritis. Rev Rheum (Engl Ed) 1997;64:22-25
- 13. Giraudo C, Magnaldi S, Weber M, Puchner A, Platzgummer H, Kainberger F, Schuller-Weidekamm C. Optimizing the MRI protocol of the sacroiliac joints in spondyloarthritis: which para-axial sequences should be used? Eur Radiol 2016;26:122-9
- 14. Maksymowicz H, Kowalewski K, Lubkowska K, Zolud W, Sasieadek M. Diagnostic value of gadolinium-enhanced MR imaging of active sacroiliitis in seronegative spondyloarthropathy. Pol J Radiol 2010;75:58-65

- Accepted Articl
- 15. Marzo-Ortega H, Tanner SF, Rohdes LA, Tan AL, Conaghan PG, Hensor EMA, et al. Magnetic resonance imaging in the assessment of metacarpophalangeal joint disease in early psoriatic and rheumatoid arthritis. Scand J Rheumatol 2009;38:79-83
- 16. McGonagle D, Marzo-Ortega H, O'Connor P, Gibbon W, Pease C, Reece Richard, Emery P. The role of biomechanical factors and HLA-B27 in magnetic resonance imaging-determined bone changes in plantar fascia enthesopathy. Arthritis Rheum 2002;46:489-93
- 17. McQueen F, Lassere M, Bird P, Haavardshom EA, Peterfy C, Conaghan PG, et al. Developing a magnetic resonance imaging scoring system for peripheral psoriatic arthritis. J Rheum 2007;34:859-861
- 18.Olivieri I, Barozzi L, Padul A, de Matteis M, Pierro A, Cantini F, et al. Retrocalcaneal bursitis in spondyloarthropathy: Assessment by ultrasonography and magnetic resonance imaging. J Rheumatol 1998;25:1352-7
- 19. Olivieri I. Salvarani C, Cantini F, Scarano E, Padula A, Niccoli L, et al. Fast spin echo-T2-weighted sequences with fat saturation in dactylitis of spondyloarthritis. No evidence of entheseal involvement of the flexor digitorum tendons. Arthritis Rheumatol 2002;46:2964-67
- 20. Paramarta JE, van der Leij C, Gofita I, Yeremenko N, van de Sande MG, de Hair MJ, et al. Peripheral joint inflammation in early onset spondyloarthritis is not specifically related to enthesitis. Ann Rheum Dis 2014;73:735-40
- 21. Ramirez J, Pomes I, Sobrino-Guijarro B, Pomes J, Sanmarti R, Canete JD. Ultrasound evaluation of greater trochanter pain syndrome in patients with

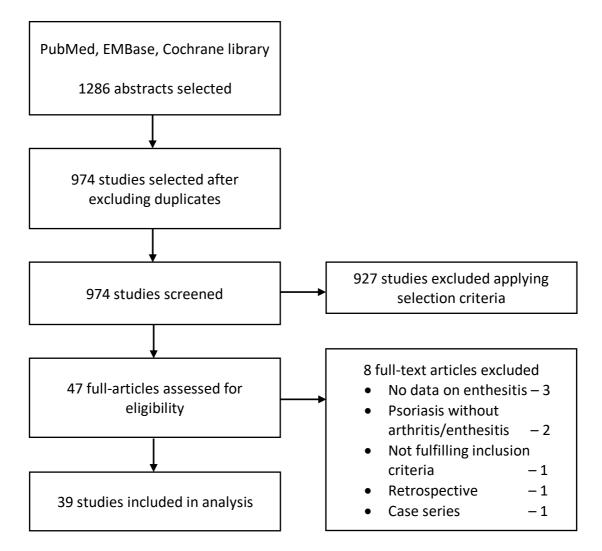
spondyloarthritis: Are there any specific features? Rheumatol Int. 2014;34:947-52

- 22. Tan AL, Benjamin M, Toumi H, Grainger AJ, Tanner SF, Emery P, McGonagle D. The relationship between the extensor tendon enthesis and the nail in distal interphalangeal joint disease in psoriatic arthritis--aa high-resolution MRI and histological study. Rheumatology 2007;46:253-56
- 23. Tan AL, Fukuba E, Halliday NA, Tanner SF, Emery P, McGonagle D. Highresolution MRI assessment of dactylitis in psoriatic arthritis shows flexor tendon pulley and sheath-related enthesitis. Ann Rheum Dis 2015;74:185-89
- 24. Tan AL, Grainger AJ, Tanner SF, Emery P, McGonagle D. A high-resolution magnetic resonance imaging study of distal interphalangeal joint arthropathy in psoriatic arthritis and osteoarthritis: are they the same? Arthritis Rheum 2006;54:1328-33
- 25. Chen B, Zhao Y, Cheng X, Ma Y, Chang EY, Kavanaugh A, et al. Threedimensional ultrashort echo time cones (3D UTE-Cones) magnetic resonance imaging of entheses and tendons. Magn Reson Imaging 2018;49:4-9
- 26.Emad Y, Ragab Y, Bassyouni I, Moawayh O, Fawzy M, Saad A, et al. Enthesitis and related changes in the knees in seronegative spondyloarthropathies and skin psoriasis: magnetic resonance imaging casecontrol study. J Rheumatol 2010;37:1709-17
- 27. Erdem CZ, Sarikaya S, Erdem LO, Ozdolap S, Gundogdu S. MR imaging features of foot involvement in ankylosing spondylitis. Eur J Radiol 2005;53:110-19
- 28. Feydy A, Lavie-Brion MC, Gossec L, Lavie F, Guerini H, Nguyen C, et al. Comparative study of MRI and power Doppler ultrasonography of the heel in

This accepted article is protected by copyright. All rights reserved.

patients with spondyloarthritis with and without heel pain and in controls. Ann Rheum Dis 2012;71:498-503

- 29. Lambert RGW, Dhillon SS, Jhangri GS, Sacks J, Sacks H, Wong B, et al. High prevalence of symptomatic enthesopathy of the shoulder in ankylosing spondylitis: deltoid origin involvement constitutes a hallmark of disease. Arthritis Rheum (Arthritis Care Res) 2004;51:681-90
- 30. Weckbach S, Schewe S, Michaely HF, Steffinger D, Reiser MF, Glaser C. Whole-body MR imaging in psoriatic arthritis: additional value for therapeutic decision making. Eur J Radiol 2011;77:149-55
- 31. Wiell C, Szkudlarek M, Hasselquist M, Møller JM, Nørregaard J, Terslev L, Østergaard M. Power Doppler ultrasonography of painful Achilles tendons and entheses in patients with and without spondyloarthropathy - A comparison with clinical examination and contrast-enhanced MRI. Clin Rheumatol 2013;32:301-08
- 32. Wiell C, Szkudlarek M, Hasselquist M, Møller JM, Vestergaard A, Nørregaard J, Terslev L, Østergaard M. Ultrasonography, magnetic resonance imaging, radiography, and clinical assessment of inflammatory and destructive changes in fingers and toes of patients with psoriatic arthritis. Arthritis Res Ther 2007;9:R119
- 33. Althoff CE, Sieper J, Song I-H, Weiss A, Deikhoff T, Haibel H, Hamm B, Hermann KG. Comparison of clinical examination versus whole-body magnetic resonance imaging of enthesitis in patients with early axial spondyloarthritis during 3 years of continuous etanercept. J Rheumatol 2016;43:618-24


- 34. Eshed I, Althoff CE, Feist E, Minden K, Schink T, Hamm B, Hermann K-G. Magnetic resonance imaging of hindfoot involvement in patients with spondyloarthritides: comparison of low-field and high-field strength units. Eur J Radiol 2008;65:140-47
- 35. Godfrin B, Zabraniecki L, Lamboley V, Bertrand-Latour F, Sans N, Fournie B. Spondyloarthropathy with entheseal pain. A prospective study in 33 patients. Joint Bone Spine 2004;71:557-62
- 36. Zhen-Guo H, Xue-Zhe Z, Wen H, Guo-Chun W, Hui-Qiong Z, Xin L, et al. The application of MR imaging in the detection of hip involvement in patients with ankylosing spondylitis. Eur J Radiol 2013;82:1487-93
- 37. Karpitschka M, Godau-Kellner P, Kellner H, Horng A, Theisen D, Glaser C, et al. Assessment of therapeutic response in ankylosing spondylitis patients undergoing anti-tumour necrosis factor therapy by whole-body magnetic resonance imaging. Eur Radiol 2013;23:1773-84
- 38. Marzo-Ortega H, McGonagle D, O'Connor P, Emery P. Efficacy of etanercept in the treatment of the entheseal pathology in resistant spondyloarthropathy: a clinical and magnetic resonance imaging study. Arthritis Rheum 2001;44:2112-17
- 39. Dougados M, Combe B, Braun J, Landwew R, Sibilia J, Cantagrel A, et al. A randomised, multicentre, double-blind, placebo-controlled trial of etanercept in adults with refractory heel enthesitis in spondyloarthritis: the HEEL trial. Ann Rheum Dis 2010;69:1430-35
- 40. Krabbe S, Østergaard M, Eshsed I, Sørensen IJ, Jensen B, Møller JM, et al. Whole-body MRI in axial spondyloarthritis: Reduction of sacroiliac, spinal, and

This accepted article is protected by copyright. All rights reserved.

entheseal inflammation in a placebo-controlled trial of adalimumab. J Rheumatol 2018;45:621-29

- 41. Song I-H, Hermann KG, Haibel H, Althoff CE, Listing J, Burmester GR, et al. Effects of etanercept versus sulfasalazine in early axial spondyloarthritis on active inflammatory lesions as detected by whole-body MRI (ESTHER): a 48week randomised controlled trial. Ann Rheum Dis 2011;70:590-96
- 42. de Hooge M, van den Berg R, Navarro-Compan V, van Gaalen F, van der Heijde D, Huizinga T, et al. Magnetic resonance imaging of the sacroiliac joints in the early detection of spondyloarthritis: no added value of gadolinium compared with short tau inversion recovery sequence. Rheumatology 2013;52:1220-24
- 43. Tan AL, Marzo-Ortega H, O'Connor P, Fraser A, Emery P, McGonagle D. Efficacy of anakinra in active ankylosing spondylitis: a clinical and magnetic resonance imaging study. Ann Rheum Dis 2004;63:1041-45
- 44. Orbai A-M, de Wit M, Mease P, Duffin KC, Elmamoun M, Tilett W, et al. Updating the psoriatic arthritic core domain set: A report from the PsA workshop at OMERACT 2016. J Rheumatol 2017;44:1522-28

Figure 1: Flow diagram of article selection (PRISMA)

Table 1: Characteristics of included studies

Author/Year of publication	Study population	Number of particip ants	Interv ention	Com para tor	MRI field strength	Sequences	MRI sites	Scoring systems		
Cross sectional studies										
Fournie 1997	AS fulfilling Amor criteria and PsA based on seronegative joint disease with psoriasis	8 (5; 3)	MRI	NA	NA	T1W Gd	Anterior chest wall	Qualitative		
McGonagle 2002	SpA with plantar fasciitis; Mechanically induced plantar fasciitis	28 (17; 11)	MRI	NA	0.5; 1.5	T1W; SPIR	Plantar fascia	Semi quantitativ e		
Olivieri 2002	SpA with dactylitis	6	MRI	NA	1.5	T1W; T2W FS; GRE-T2W	Finger tendon insertions	Semi quantitativ e		
Tan 2006	DIP joint PsA; DIP joint OA; Healthy subjects	30 (10; 10; 10)	MRI	NA	1.5	T1W; T2W FS; PD; 3DGE; T1W FS Gd	DIP joints	Qualitative		
McQueen 2007	PsA	10	MRI	NA	0.6	T1W; T1W Gd; STIR	2nd-5th finger	Semi quantitativ e		
Tan 2007	DIP joint PsA; DIP joint OA; Healthy subjects	30 (10; 10; 10)	MRI	NA	1.5	T1W; T2W FS; PD; 3DGE; T1W FS Gd	DIP joints	Qualitative		
Marzo-Ortega 2009	SpA; RA	20 (10; 10)	MRI	NA	1.5	T1W; DCE- MRI; SPIR FS Gd	MCP joints	Qualitative		
Maksymowicz 2010	SpA or suspected SpA	35	MRI T1W FS Gd	MRI T2W FS	1.5	T1W; T1W FS; T2W FS; T1W FS Gd	Enthesitis of SIJ ligaments	Semi quantitativ e		
Feydy 2012	SpA; Controls hospitalized low-back pain	75 (51; 24)	MRI	NA	1.5	T1W; STIR	Heel enthesitis	Qualitative		
Althoff 2013	SpA	75	MRI	NA	1.5	T1W; STIR	Whole- body	Qualitative		
Aydin 2013	SpA with swollen knee	21	MRI	US	1.5	T1W; T2 SPIR; TI SPIR; TI SPIR Gd	Knee entheses	Qualitative		
Braum 2013	Suspected inflammatory joint disease	69	MRI	Clinic al	1.5	T1W; T1W FS Gd; STIR	Collateral ligaments of finger joints	Qualitative		
Paramarta 2014	Knee or ankle arthritis: SpA; RA; crystal arthritis	41 (13; 20; 8)	MRI	NA	1.5	T1W; T2W FS; STIR; T1W FS Gd	Knee and ankle entheses	Qualitative		
Ramirez 2014	Greater trochanter pain: SpA/RA/no inflammatory disease	40	MRI	NA	1.5	T1W; T2W FS	Greater femoral trochanter	Qualitative		

This accepted article is protected by copyright. All rights reserved.

Poggenborg 2015	PsA; SpA; Healthy subjects	48 (18; 18; 12)	MRI	NA	3	T1W; STIR	Whole- body	Semi quantitativ e
Tan 2015	PsA with dactylitis; Healthy subjects	22 (12; 10)	MRI	NA	1.5	T2W FS; T1W; TSE; T1W FS Gd	Fingers/to es	Qualitative
Agten 2016	Suspected SpA	68	MRI T1W Gd	MRI STIR	1.5; 3.0	T1W FS Gd; STIR	T12-S1 interspino us and supraspin ous ligaments	Qualitative
Giraudo 2016	Suspected SpA	106	MRI T2W; MRI PD	T1W Gd	3	T2W; PD; T1W; T1W FS Gd	SIJ anterior and posterior ligaments	Qualitative
Aivazoglou 2017	SpA	16	MRI	NA	1.5	T1W FS; T1W FS Gd; STIR	Enthesitis of SIJ ligaments	Qualitative
Maldonado 2017	SpA	40	MRI	US; CR	1.5	T1W; T1W FS Gd; T2W FS or STIR	Achilles tendon insertion; Plantar fascia	Qualitative
		Cas	e control	studies	5		•	
Olivieri 1998	SpA fulfilling Amor's criteria and showing severe Achilles enthesitis	19 pathologic 9 normal tendons	MRI	US	0.5	T1W, PD, T2W	Ankle	Qualitative
Lambert 2004	AS; Healthy subjects	111 (17; 94)	MRI	NA	1.5	T1W; T2W; PD; T2W FS or STIR	Shoulder	Qualitative
Erdem 2005	AS; Healthy subjects	33 (23; 10)	MRI	NA	1.5	T1W; T2W; STIR	Heel enthesitis	Qualitative
Wiell 2007	PsA; RA; Healthy subjects	25 (15; 5; 5)	MRI	US	0.6	T1W; STIR; T1W Gd	Fingers/to es	Qualitative
Emad 2010	PsA/AS/ReA/IBD/Skin psoriasis; Healthy subjects	76 (56; 20)	MRI	NA	1.5	T1W; T1W Gd	Knee entheses	Qualitative
Emad 2010 Weckbach 2011			MRI MRI	NA Clinic al	1.5 1.5	T1W; T1W Gd STIR, VIBE; VIBE Gd		
Weckbach	psoriasis; Healthy subjects	20)		Clinic		STIR, VIBE;	entheses Whole-	Qualitative
Weckbach 2011	PsA SpA; non-SpA; Healthy	20) 30 37 (12;	MRI	Clinic al	1.5	STIR, VIBE; VIBE Gd T1W; STIR;	entheses Whole- body Achilles tendon and	Qualitative Qualitative Qualitative Quantitative

Godfrin 2004	Entheseal pain at multiple sites	33	MRI	Clinic al	1.5	T1W; T2W; T1W FS Gd and/or STIR	Not described	Qualitative
Eshed 2008	SpA with hindfoot pain	27	MRI	NA	0.2; 1.5	T1W; STIR; T1W FS Gd; T1W GRE FS	Heel enthesitis	Qualitative
Karpitscha 2013	AS	10	MRI	NA	1.5	T1W; STIR	Whole- body	Qualitative
Zhen-Guo 2013	AS	58	MRI	CR; Clinic al	1.5	T2W; T1W; STIR; T1W FS Gd	Hip	Qualitative
Althof f2016	SpA	41	MRI	Clinic al	1.5	T1W; STIR	Whole- body	Qualitative
Marzo-Ortega 2001	SpA	10	MRI	NA	1.5	T1W; T2W FS; T1W FS Gd	Dependin g on symptoms of each patient	Qualitative
Tan 2004	AS fulfilling modified NY criteria	9	MRI	NA	1.5	T1TSE, STIR	SIJ and spine	Semi quantitativ e
de Hooge 2013	Chronic back pain	127	MRI T1W FS Gd	MRI STIR	1.5	T1W; T1W FS Gd; STIR	SIJ enthesitis/ capsulitis	Qualitative
		Random	nised cont	trolled t	rials			
Dougados 2010	SpA with heel enthesitis	24	MRI	NA	Not reported	T1W; STIR	Heel enthesitis	Quantitaiv e
Song 2011	SpA	76	MRI	NA	1.5	T1W; STIR	Whole- body	Qualitative
Krabbe 2018	SpA	49	MRI	NA	3	T1W; STIR	Whole- body	Semi quantitativ e

* AS – ankylosing spondylitis, SpA – spondyloarthritis, PsA – psoriatic arthritis, RA – rheumatoid arthritis, OA – osteoarthritis, MCP – metacarpophalangeal joint, DIP – distal interphalangeal joint, SIJ – sacroiliac joints, T1W – T1 weighted, T2W – T2 weighted, Gd – gadolinium, FS – fat suppressed, SPIR – spectral pre-saturation with inversion recovery, GRE – gradient recalled echo, PD – proton density, 3D-GE – 3D gradient echo, STIR – short tau inversion recovery, DCE – dynamic contrast enhanced, TSE – turbo spin echo, VIBE – volumetric interpolated breath-hold sequence, UTE – quantitative ultrashort echo time, US – ultrasound, CR – conventional radiograph

This accepted article is protected by copyright. All rights reserved.

Accepted Article

Author/Year of publication	Face validity*	Content validity*	Construct validity*	Criterion validity*	Reliab ility*	Responsiv eness*	QUALITY SCORING			
Cross sectional studies										
McGonagle 2002	YES	YES	NO	NO	YES	NO	9			
Olivieri 2002	YES	NO	NO	NO	NO	NO	7			
Tan 2006	YES	NO	NO	NO	YES	NO	7			
McQueen 2007	YES	YES	NO	NO	YES	NO	8			
Tan 2007	NO	NO	NO	YES	NO	NO	5			
Marzo-Ortega 2009	NO	NO	NO	NO	YES	NO	7			
Maksymowicz 2010	NO	NO	NO	NO	NO	NO	6			
Althoff 2013	YES	YES	NO	NO	YES	NO	7			
Aydin 2013	YES	YES	YES	NO	YES	NO	8			
Braum 2013	YES	YES	YES	NO	NO	NO	7			
Ramirez 2014	YES	NO	NO	NO	NO	NO	8			
Paramarta 2014	YES	YES	NO	NO	YES	NO	7			
Poggenborg 2015	YES	YES	YES	NO	YES	NO	10			
Tan 2015	YES	YES	NO	NO	YES	NO	7			
Giraudo 2016	YES	NO	NO	NO	YES	NO	7			
Agten 2016	NO	NO	YES	NO	YES	NO	8			

Table 2: Psychometric properties and quality scores of selected studies (n = 38)

Maldonado 2017	YES	YES	YES	NO	YES	NO	7			
Aivazoglou 2017	YES	NO	YES	NO	NO	NO	7			
Case control studies										
Olivieri 1998	YES	YES	YES	NO	NO	NO	6			
Lambert 2004	YES	YES	NO	NO	YES	NO	6			
Erdem 2005	YES	YES	NO	NO	YES	NO	5			
Wiell 2007	YES	NO	NO	NO	NO	NO	8			
Emad 2010	YES	NO	NO	NO	YES	NO	6			
Weckbach 2011	YES	NO	YES	NO	YES	NO	7			
Feydy 2012	YES	NO	NO	NO	YES	NO	8			
Wiell 2013	YES	YES	YES	NO	YES	NO	9			
Chen 2018	YES	YES	YES	NO	NO	NO	6			
			Cohort studi	es						
Godfrin 2004	YES	NO	YES	NO	YES	NO	6			
Eshed 2008	YES	YES	NO	NO	YES	NO	6			
Zhen-Guo 2013	YES	NO	YES	NO	YES	NO	9			
Karpitschka 2013	YES	YES	YES	NO	YES	YES	9			
Althoff 2016	YES	YES	NO	NO	YES	NO	8			
Marzo-Ortega 2001	YES	YES	YES	NO	YES	YES	8			

This accepted article is protected by copyright. All rights reserved.

Tan 2004	YES	NO	NO	NO	NO	YES	8		
de Hooge 2013	YES	NO	YES	NO	NO	YES	9		
Randomised controlled trials									
Dougados 2010	NO	NO	NO	NO	NO	NO	7		
Song 2011	YES	NO	NO	NO	YES	YES	9		
Krabbe 2018	YES	YES	NO	NO	YES	YES	11		

*Face validity was defined as expert opinion on the credibility of scoring system used in each article to measure enthesitis. Content validity estimated the reliability of the scoring system used in each study to measure the full spectrum of outcome - inflammatory and structural changes. Construct validity was achieved when MRI evaluation of enthesitis correlated with the following concepts of enthesitis: 1) clinical assessment of enthesitis using a validated enthesitis score (e.g., MASES), 2) ultrasound or radiographic assessment of enthesitis sites, and/or 3) comparison of different sequences of MRI in assessing enthesitis. Criterion validity was achieved when MRI evaluation of enthesitis correlated with a gold standard (e.g., histology). Reliability was defined in studies mentioning inter-rater reliability measures of scoring consistency between and within MRI readers, e.g. inter/intra-class correlation coefficients (ICCs) or kappa statistics. Responsiveness was achieved in studies documenting statistically significant changes in relation to treatment introduction or change.