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Using the Mouse to Model Human Diseases: 
Cognitive Impairment in Systemic Lupus 
Erythematosus
Lara El Khoury, Aida Zarfeshani, and Betty Diamond

ABSTRACT.	 In this 2020 Dunlop-Dottridge Lecture, the authors discuss cognitive impairment (CI), one of the 
most prevalent neuropsychiatric syndromes in systemic lupus erythematosus (SLE). Patients often 
report CI as the most bothersome disease-related manifestation, with a great effect on their quality of 
life. Nevertheless, studies focusing on CI remain scarce and no effective targeted therapy has been 
identified. We herein present murine models of CI in SLE with insights into the pathogenesis of this 
condition as well as the role of the renin angiotensin system in microglial activation. We will discuss 
the role of neuroimaging as a useful objective assessment tool, describing our experience in previous 
and ongoing clinical trials of CI in patients with SLE. (J Rheumatol 2020;47:1145–9; doi:10.3899/
jrheum.200410)
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Cognitive impairment (CI) is one of the 19 syndromes that 
constitute neuropsychiatric systemic lupus erythematosus 
(NPSLE)1,2. The term refers to deficits in any cognitive 
domain such as learning and executive skills, psychomotor 
function, attention and memory1. The prevalence of CI in 
SLE is highly variable, ranging from 6.6 to 80%2,3. This 
wide range can be attributed to the variability in assessments 
and measures between different reports, the lack of a stan-
dardized definition, and most of all the difficulty attributing 
CI uniquely to SLE.
	 CI tends to develop insidiously over the course of the 
disease, independent from other SLE clinical manifestations. 
It has been shown that patients with CI tend to have higher 
unemployment rates and decreased quality of life (QOL)4,5. 
During a patient-focused drug development meeting in 
2017, individuals with SLE selected forgetfulness and lack 
of concentration as causing substantial harm to their lives. 
Most survey respondents referred to these symptoms as 
“brain fog”6.
	 There are multiple barriers to studying CI in SLE 
including the lack of a standardized objective assessment and 
screening tools. Confounding factors that make it difficult to 

attribute CI exclusively to SLE, such as inclusion of patients 
with focal NPSLE manifestations for studies. Reconciling 
these obstacles with the wide prevalence of CI and its major 
effect on the QOL of patients with SLE is a major unmet 
need. 

Murine Models of CI in NPSLE
Mouse models of disease can offer insight into pathogenesis. 
Most of the SLE mouse models develop antinuclear anti-
bodies (ANA) and immune complex glomerulonephritis. 
Some murine models of SLE have been assessed for cogni-
tive dysfunction. They provide insights into underlying 
mechanisms that might be comparable to those in patients 
with SLE.

Spontaneous Mouse Models
The most widely studied spontaneous models of SLE are the 
New Zealand Black crossed with the New Zealand White 
mouse (NZB/W), BXSB/Yaa, and MRL/lpr strains.
	 Female NZB/W mice make ANA and anti-dsDNA auto-
antibodies and develop glomerulonephritis7. The study of 
this strain is difficult because the time to onset of disease 
is long and the 2 strains need to be bred together to have 
offspring for study. Similar to humans with SLE, they exhibit 
learning impairments and mood-disorder behaviors8, and the 
incidence and severity of SLE is greater in females9.
	 The BXSB/Yaa mouse model differs from others because 
disease is presented only in male mice. The disease depends 
on the Y-autoimmune accelerator (Yaa) locus, which is trans-
located from a region of the X chromosome to the Y chromo-
some10,11. This region contains 16 genes including Toll-like 
receptor (TLR)7. TLR7 overexpression leads to activation 
of the type 1 interferon (IFN) pathway, a critical pathogenic 
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pathway in SLE12. The affected mice develop an SLE-like 
disease with ANA, glomerulonephritis, and impairment in 
spatial memory8.
	 The MRL/lpr mouse develops an SLE-like disease at 
a younger age than NZB/W mice. The LPR gene leads to 
loss of Fas function13,14; however, Fas-deficient humans do 
not develop an SLE-like phenotype. Similarly, breeding of 
LPR into B6, Balb/c, AKR, and C3H mice leads to very 
mild autoimmune disease15,16. The MRL+ mice develop 
SLE phenotype at 18 months of age; thus they are useful 
for studying accelerants of the disease17,18. Manifestations 
of SLE include ANA, glomerulonephritis, and cognitive 
dysfunction (anxiety, depression, anhedonia, decreased 
locomotion, and impaired spatial learning)8.

Induced Mouse Models
Human SLE is believed to be triggered by environmental 
factors in genetically susceptible individuals; thus, the study 
of induced models of SLE is also useful. 
	 Pristane is an isoprenoid alkane abundant in mineral oil. 
Intraperitoneal injection of pristane to Balb/c mice develops an 
SLE-like disease with ANA and immune complex-mediated 
glomerulonephritis with high levels of IFN. It also results 
in downregulation of the GluN2A subunit of the NMDA 
receptor in hippocampal neurons and to disrupted learning 
and memory deficits19. Abnormal levels of IFN-α have 
been observed in the sera and cerebrospinal fluid (CSF) of 
patients with mental disorders20,21. Intravenous injection of 
IFN-α leads to anxiety and depression-like behaviors as 
well as CI in female NZB/W/ mice. 
	 We have developed an induced model of SLE that requires 
immunization of non-spontaneously autoimmune mice with 
a peptide mimetope of DNA (DWEYS)22. Immunization 
with a multimeric form of this sequence results in produc-
tion of anti-DNA antibodies, immunoglobulin deposition in 
the kidneys, and cognitive dysfunction in mice in which an 
antibody can penetrate brain parenchyma. We will describe 
this model in detail. The anti-DNA antibodies in this model, 
termed DNRAb, cross-react with the NMDA receptor. 
	 Current evidence suggests that antibodies arise in the 
CSF of patients with SLE through penetration of the blood 
brain barrier (BBB); the antibodies in the CSF are poly-
clonal and there is albumin in the CSF as well. To mimic 
this clinical scenario, we administered LPS to mice immu-
nized with the multimeric peptide. LPS causes a BBB 
breach in the hippocampus. Once the antibody penetrates 
the brain parenchyma, pathology proceeds as a 2-step 
process. First, the antibody functions as an allosteric 
modulator of NMDA receptor signaling to cause excito-
toxic death of some neurons. This occurs over the course 
of a week23. High-mobility group box chromosomal  
protein 1 (HMGB1) is secreted by activated or damaged 
neurons. Recent studies have demonstrated that HMGB1 
binds to the NMDA receptor on surviving neurons where 

C1q is targeted to the synapses and binds to HMGB1. 
HMGB1 therefore serves as the bridge between the damaged 
neurons and C1q, which is detected by microglia and targets 
the synapses for pruning24.
	 Binding of DNRAb to NMDA receptors leads to 
increased free calcium in the cell where it is taken up by 
mitochondria to buffer. A high level of calcium in the 
mitochondria promotes cellular respiratory system, thus 
ROS production. Because of the increased calcium concen-
tration, the mitochondrial membrane potential collapses 
and the mitochondrial permeability transition pores open, 
resulting in the release of proapoptotic molecules like 
Cytc and apoptosis-inducing factor, leading to neuronal 
death. Concomitantly, calcium activates cytosolic enzymes 
including phospholipases, proteases, and endonucleases, 
which promote necrosis25.
	 In a recent study, DWEYS immunized mice with a 
forebrain deletion of GluN2B subunits displayed acute 
neural loss in hippocampal CA1, while GluN2A knockout 
mice were protected from the DWEYS neuropsycholog-
ical phenotypes, suggesting the essential mediatory role of 
GluN2A subunit in SLE cognitive dysfunctions26.
	 The second phase of pathology starts at 4 weeks after 
LPS administration, at a time when antibody is no longer 
detectable in the brain, and is characterized by microglial acti-
vation and dendritic pruning of the surviving neurons. This 
pathology persists for as long as we have observed the mice 
and is dependent on the presence of microglia and C1q. It 
manifests with impaired spatial memory. To understand the 
basis for this impairment, we performed electrophysiologic 
studies. The pyramidal neurons in CA1 region of the hippo-
campus represent place cell activity. A neuron fires intensely 
within a given area and becomes silent in other parts. The area 
of neuronal firing is known as a place field. Place fields from 
spatial maps rely on NMDA receptors27. The place fields are 
expanded in Balb/C mice with DNRAb penetration into the 
hippocampus, indicating a disrupted CA1 place cell system 
as a key neural substrate for DNRAb‑mediated pathology28.
	 We also performed 18F-fluorodeoxyglucose micro posi-
tron emission tomography (FDG-microPET) in these mice 
to plot changes in brain metabolism. An inverse relation-
ship was observed between neuronal number and regional 
metabolism compared to the positive correlation seen in 
control mice. 
	 Because we found that depletion of microglia can prevent 
the loss of dendritic arborization or can reverse established 
injury, we asked whether suppressing microglial activation 
might also be effective. Treatment of mice with an angioten-
sin-converting enzyme inhibitor (ACEi) that penetrates the 
BBB and suppresses microglial activation spares cognitive 
function when given early or late after LPS administration29. 
This observation is of great importance as it suggests that 
there is sufficient neuronal plasticity to recover from the 
DNRAb-mediated insult.
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Neuroimaging
Neuroimaging techniques constitute a promising method 
to objectively assess cognitive dysfunction in SLE and a 
potentially useful metric in clinical trials.
	 Several anatomical and functional neuroimaging modal-
ities have been used in NPSLE, including diffusion tensor 
imaging (DTI), functional magnetic resonance imaging 
(fMRI), and PET scans30. 
	 DTI is a noninvasive, refined MRI technique that detects 
the diffusion of water in brain tissue, allowing study of 
the brain structure and assessment of white matter (WM) 
integrity measured by fractional anisotropy (FA)31. Several 
studies showed various WM correlates of NPSLE in SLE 
patients with and without acute NPSLE manifestations32,33. 
	 The advantage of fMRI is its ability to detect variations 
in the deoxyhemoglobin levels in neurons as a measure of 
neuronal activity, serving as an indirect assessment of cere-
bral functions such as working memory, executive function, 
and attention34. Different studies demonstrated abnormali-
ties in the hippocampal/parahippocampal regions of patients 
with SLE both at rest and during a memory task35,36.
	 The FDG-PET measures the uptake of glucose by the 
brain, serving as a measure of brain metabolic activity. The 
glucose metabolism in the brain can be affected by any 
inflammatory state as well as changes in neuronal density 
and activity. Therefore, FDG-PET provides a highly sensi-
tive assessment tool for brain pathology37,38. 

Bridging Mouse Models to Human Disease
To understand whether the mouse model can inform us about 
patients, we performed FDG-PET scans of patients with 
SLE who had no prior evidence of neuropsychiatric disease. 
We observed a higher resting metabolism in several areas of 
the brain39. These areas of hypermetabolism correlated with 
the serum DNRAb titers and memory impairment. 
	 To validate these findings, we also assessed FDG-PET 
images in a larger cohort of patients with SLE. A total of 20 
patients with SLE underwent FDG-PET and DTI imaging at 
baseline and at 15 months40. This study was able to repro-
duce the initial finding of resting hypermetabolism in the 
hippocampus, orbitofrontal cortex, and basal ganglia as well 
as identify 3 new regions: sensorimotor cortex, and occipital 
and temporal lobes. Hypermetabolism in 5 of these regions 
correlated with poor performance on a memory test. Further, 
we showed a significant correlation between serum DNRAb, 
the performance on a spatial navigation task, and resting 
glucose metabolism in the anterior putamen and frontal 
cortex41. DTI images revealed the presence of regions of 
decreased microstructural integrity (measured by FA) struc-
turally linked to the hypermetabolic regions. Tractography 
revealed that connecting tracts in the region of the hippo-
campus are substantially reduced in patients with SLE 
compared to healthy controls. 
	 The structural and functional changes remained stable 

during the followup time of 15 months, suggesting that 
they possibly represent an “SLE-specific” pathology  
irrespective of disease activity and other confounders such 
as medications or prior central nervous system events. Taken 
together, the hippocampal hypermetabolism, decreased 
structural integrity of para-hippocampal regions, higher 
serum DNRAb, and poor performance on spatial memory 
testing suggest the possibility that the primary event takes 
place in the grey matter, leading to damage to WM tracts and 
spatial memory loss. 
	 An 18-kDa translocator protein referred to as TSPO is 
upregulated during microglial activation and therefore serves 
as a correlate of brain injury and inflammation. Consequently, 
it has been gaining interest as a target in neuroimaging of 
various neurodegenerative diseases42. Several second‑gen-
eration radioligands, such as PBR28, have been developed 
for use in PET imaging providing a higher affinity for the 
TSPO. One study demonstrated a significant decrease in 
TSPO distribution in the hippocampus of patients with SLE 
compared to healthy controls and that these changes were 
more pronounced in SLE patients with CI43. 

Therapeutic Interventions
The treatment of CI in SLE is exceedingly challenging, 
as is the case with NPSLE in general. The clinician is 
faced with several challenges starting with the attribution 
of CI to SLE-specific immune mechanisms as opposed to 
confounders or mimickers (medication side effects, infec-
tions, etc.) and objectively assessing the level of impair-
ment. At this time, there is no clinically proven treatment 
that effectively targets CI in SLE.
	 As described above, there is significant evidence 
suggesting that microglia play a central role in the inflam-
matory cascade leading to CI in SLE. Therefore, a strategy 
that targets microglial activation, without inducing immuno-
suppression, is very attractive. The renin angiotensin system 
is a key player in neuroinflammation and is implicated in 
microglial activation44,45. Targeting this pathway using ACEi 
successfully inhibited microglial activation and neuronal 
damage in various neurodegenerative diseases46,47. A small 
study in older patients with Alzheimer disease (AD) showed 
that those patients receiving ACEi experienced a slower rate 
of cognitive decline. Several observational studies showed 
similar benefit of ACEi in patients with AD48,49.
	 Based on the promising results from the DNRAb-mediated 
mouse model of CI and in keeping with the commitment to 
find non-immunosuppressive therapy, we have designed a 
trial of ACEi in SLE patients with CI. The study is a phase 
II double-blinded randomized multicentral trial comparing 
the efficacy of lisinopril, an ACEi known to cross the 
BBB (or centrally acting) to benazepril, an ACEi that 
does not cross the BBB (or non-centrally acting). A major 
benefit of the trial is the use of objective assessment tools 
as endpoints. Patients will undergo FDG-PET imaging to 
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evaluate resting metabolism at baseline and at 12 months. 
Secondary endpoints will include changes on a battery of 
cognitive testing (spatial memory, spatial navigation, auto-
mated neuropsychological assessment metrics), patient- 
reported outcomes, and disease activity measures. Further, 
the use of PBR28 tracer will allow for the study of microg-
lial activation.
	 This trial would be the first study in humans, to our knowl-
edge, to investigate the effectiveness of ACEi, a commonly 
used antihypertensive, in improving CI in patients with 
SLE, relying on advanced imaging techniques and objective 
assessment tools.

Future Perspective
Activation of microglia is implicated in the pathogen-
esis of CI in SLE, an NPSLE manifestation characterized 
by longterm progressive nature of neural degeneration. 
Detecting and validation of biomarkers based on neuro-
imaging studies is a fundamental step in the future clinical 
trials toward treatment of cognitive dysfunction in SLE. 
	 Further research dealing with human and murine models 
of CI will promote a better understanding of the pathophys-
iological events that trigger and sustain this strong form of 
SLE disease and allow the possibility of finding therapeutic 
targets and an evidence-based approach for further treat-
ment of the disease. We believe ACE inhibition is a rational 
potential therapeutic target in clinical trials to benefit CI.
	 Despite its major effect on the QOL of patients with SLE, 
CI in SLE remains widely understudied and poorly under-
stood, and no targeted treatments are available. One of the 
major challenges of studying CI in SLE is the lack of objec-
tive assessment measures. We described several neuroim-
aging techniques that can be effectively used as metrics in 
clinical trials. We presented our experience with previous 
and ongoing clinical trials relying on sophisticated PET and 
MRI techniques to assess CI in SLE.
	 The study of the DNRAb-mediated mouse model of CI 
allowed us to identify the central role that microglial acti-
vation plays in this condition as well as to test promising 
therapeutic targets. The use of centrally acting ACEi appears 
to be an encouraging approach because it is mechanistically 
plausible, the drug has a well-established safety profile, and 
most of all, it is non-immunosuppressive. 
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