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Editorial

DNA Methylation of the MHC Region 
in Rheumatoid Arthritis: Perspectives 
and Challenges
Wenqing Qiu1 and Yun Liu1

The MHC, which covers a region about 4 Mb at 6p21.3, is one 
of the most polymorphic regions in the human genome. With a 
high density of more than 200 genes, most of which are directly 
involved in the immune response to self or non-self antigens, 
MHC genes have long been associated with a wide range of 
complex human diseases, including autoimmune or inflamma-
tory diseases and cancer. Rheumatoid arthritis (RA) is a systemic 
autoimmune disease; recent investigations in large genome-wide 
association studies using single‑nucleotide polymorphisms have 
confirmed the correlation of classic HLA genes and non-classic 
HLA genes with RA in many populations1,2. Functional and 
structural analyses indicate that these genetic variants reside 
in the peptide-binding groove, which may affect the binding 
affinity of the citrullinated peptides, and eventually lead to the 
development of RA1,3. However, because of the heterogeneity 
among ethnic groups and clinical subtypes, the major RA-risk 
allele in MHC is quite different among different populations. 
For example, HLA-DRB1*04 includes the *04:01 and *04:04 
alleles, which are the dominant RA-risk alleles in whites4, 
whereas DRB1*04:05/*0901 are the major RA-risk alleles in 
Asians, specifically for RA patients positive for anticitrullinated 
protein antibodies (ACPA)5,6. A recent study conducted target 
deep sequencing of the entire MHC region for ACPA-positive 
RA in a Han Chinese population, and it found that instead of 
HLA-DRB1 alleles, HLA-DQA1:160D confers the greatest 
independent genetic risk7. Meanwhile, other genes, such as 
HLA-B and HLA-DPB1, have also been identified8. Despite the 
recent efforts to determine the genetic risk factors for RA, the 

identified risk loci to date account for only a small fraction of the 
total susceptibility, indicating that other factors are involved in 
the disease risk.
	 Many studies have shown that DNA methylation plays an 
important role in the development and progression of many 
common diseases9. It can act as a mediator of genetic suscepti-
bility and disease phenotype10,11 and as an integrator of internal 
genetic and external environmental risk factors in disease devel-
opment12,13. Considering the association of the MHC genetic 
variants with susceptibility to RA, the potential role of DNA 
methylation changes in the MHC region has raised much atten-
tion. Genome-scale DNA methylation analysis of peripheral 
blood mononuclear cells based on a Swedish population showed 
that 9 differential methylation positions (DMP) within the 
MHC region can mediate the genetic risk for RA11. A replica-
tion study based on 2 different populations supports the finding 
that at least 1 DMP in the MHC region is associated with RA14. 
Because DNA methylation is relatively dynamic and can be 
influenced by many factors (such as infection, drugs, race, and 
sex), whether the previously reported DMP found within the 
MHC region are in accord among different ethnic groups still 
warrants further investigation.
	 In this issue of The Journal, Anaparti, et al report on DNA 
methylation changes within MHC of patients with RA from an 
indigenous North American (INA) population that is known 
to have prevalent RA15. They conducted whole blood targeted 
bisulfite sequencing of an MHC locus of about 3.8 Mb using a 
bacterial artificial chromosome clone‑based target enrichment 
technology16. Different from the popular array-based plat-
form (such as the Illumina Infinium HumanMethylation450 
BeadChip arrays) for interrogating DNA methylation in the 
preset CpG sites (a cytoside base followed by a guanine base), this 
method retains the advantage of recording all of the CpG within 
the desired region with single-base resolution. By comparing 
ACPA-positive RA patients with matched ACPA-negative 
first-degree relatives (ACPA–/FDR), they identified 74 DMP 
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within the MHC region, with 32 loci mapped to 21 annotated 
genes, while most of the rest of the DMP were located within 
the intronic regions. They compared the DMP found in this 
research with previously published data11 and verified 4 exactly 
matched DMP. The remaining 70 DMP are in close proximity 
to the previously reported DMP, possibly owing to the different 
methods and sample size used. To find out the functional rela-
tionship between the DMP and the relative gene expression, 
they selected 5 genes with multiple DMP located either within 
the gene body or promoter 1 Kb regions, and they found that the 
relative expression of 2 genes (C6orf10 and HCG18) was signifi-
cantly influenced by the related DMP15.
	 This study confirmed the presence of known DMP and found 
novel DMP within the MHC region of INA patients with RA, 
and integrated the RNA expression data to partly reveal the 
functional role of DNA methylation changes in RA15. A recent 
study of multiple sclerosis integrated the HLA variants with 
allele-specific DNA methylation and allele-specific RNA expres-
sion data. It found that the major risk haplotype DRB1*15:01 
is hypomethylated and expressed at a higher level compared to 
other haplotypes17. Another study analyzed the allele-specific 
methylation of CpG sites between carriers of the type 1 diabetes 
risk haplotypes HLA-DR3-DQ2 and HLA-DR4-DQ8 and 
found a marked difference in their methylation status and 
transcript expression18. These studies demonstrate that DNA 
methylation in the MHC region may mediate the genetic risk 
for disease development and highlight the importance of inte-
grating multiomic data to elucidate the molecular mechanisms 
underlying disease susceptibility. Even so, they bring new chal-
lenges. The present enrichment approaches for the MHC region 
are mainly based on collection strategies with probes or PCR, 
which rely on the known HLA alleles and may result in biased 
coverage. Additionally, sequencing reads are aligned to the refer-
ence genome, but owing to extreme polymorphisms and high 
levels of sequence homology of HLA genes, sequencing reads 
with low mapping rate are lost and reads with multiple alignment 
are abandoned, which leads to ambiguous results. One potential 
strategy for this problem is to map reads to an HLA personalized 
haplotype. Several approaches that use known HLA alleles (the 
IMGT/HLA database)19,20,21 or a population-based reference 
graph22 have been developed to infer the HLA reference closest 
to individual haplotypes. However, new methods with higher 
accuracy and low cost are required to obtain HLA personalized 
haplotypes for downstream analysis. Technologies such as long-
read and linked-reads sequencing combined with high molecular 
weight DNA molecular enrichment technology23,24 may further 
advance this research.
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