Gynecologic Vasculitis: Positron Emission Tomography–Computed Tomography Contribution in a Rare Localization of Giant Cell Arteritis

To the Editor:

We read with great interest the letter entitled “Unusual presentation of giant cell arteritis in 2 patients: uterine involvement,” published in The Journal of Rheumatology 1. We have observed a case of ovarian involvement of giant cell arteritis (GCA) whose characteristics allow us to reinforce some key messages regarding the investigation of inflammatory disorders.

A 67-year-old female (who has given her written informed consent to publish this material) presented with a history of fever over 6 months, associated with abdominal pain, predominant in the right iliac fossa. Biological analysis showed only inflammation (C-reactive protein: 70 mg/l). Abdominal and pelvic computed tomography (CT) scan was normal. An exploratory coelioscopy showed a left ovarian cyst with nodules on the tube and a slightly inflammatory contralateral ovary. Histological analysis on the adnexectomy piece showed giant cell granulomatous arteritis affecting small- and medium-sized arteries. Given the persistence of the symptoms, a second coelioscopy was performed 1 month later, with contralateral adnexectomy. The same anatomopathological findings were found. Because there was no improvement, an 18F-fluorodeoxyglucose positron emission tomography/CT (FDG-PET/CT) was performed, revealing extended hypermetabolism of the aorta, and of the subclavian, humeral, iliac, and femoral arteries (Figure 1) in favor of GCA. A biopsy of the temporal artery confirmed this diagnosis. Corticosteroids were started initially at 0.7 mg/kg for an 18-month regimen, with effectiveness on the fever and normalization of the C-reactive protein. At the 4-year followup, there was no sign of relapse with no current treatment.

Gynecologic vasculitis is divided into 2 forms: isolated gynecologic vasculitis (70%) and systemic gynecologic vasculitis (30%). The ovaries are the sites most often affected in the systemic condition, emphasizing the value of a PET scan to investigate biological inflammatory disorders, even in cases without clinical signs, as was the case in our patient2,3.

ACKNOWLEDGMENT

We thank Dr. Xavier Puechal, Dr. Annie Jacquet, and Dr. Cendra Barbe for their contribution.

REFERENCES


J Rheumatol 2019;46:4; doi:10.3899/jrheum.181024

Figure 1. 18F-fluorodeoxyglucose positron emission tomography/computed tomography showing hypermetabolism of thoracic and abdominal aorta, subclavian arteries, and iliofemoral arteries.