
1808 The Journal of Rheumatology 2015; 42:10; doi:10.3899/jrheum.150088

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2015. All rights reserved.

The Endothelial-mesenchymal Transition in Systemic
Sclerosis Is Induced by Endothelin-1 and Transforming
Growth Factor-β and May Be Blocked by Macitentan, a
Dual Endothelin-1 Receptor Antagonist
Paola Cipriani, Paola Di Benedetto, Piero Ruscitti, Daria Capece, Francesca Zazzeroni, 
Vasiliki Liakouli, Ilenia Pantano, Onorina Berardicurti, Francesco Carubbi, Gianluca Pecetti,
Stefano Turricchia, Edoardo Alesse, Marc Iglarz, and Roberto Giacomelli

ABSTRACT. Objective. High endothelin-1 (ET-1) and transforming growth factor-β (TGF-β) levels may induce in
healthy endothelial cells (EC) an endothelial-to-mesenchymal transition (EndMT). The same cytokines
are associated with fibrosis development in systemic sclerosis (SSc). Although EndMT has not been
definitively shown in SSc, this process, potentially induced by a stimulatory loop involving these 2
cytokines, overexpressed in this disease might contribute to fibroblast accumulation in affected tissues.
Macitentan (MAC), an ET-1 receptor antagonist interfering with this loop, might prevent EndMT and
fibroblast accumulation.
Methods. EC, isolated from healthy controls (HC) and patients with SSc, were treated with ET-1 and
TGF-β and successively analyzed for gene and protein expressions of endothelial and mesenchymal
markers, and for Sma- and Mad-related (SMAD) phosphorylation. Further, in the supernatants, we
evaluated ET-1 and TGF-β production by ELISA assay. In each assay we evaluated the ability of MAC
to inhibit both the TGF-β and ET-1 effects.
Results.We showed that both TGF-β and ET-1 treatments induced an activation of the EndMT process
in SSc-EC as reported in HC cells. The ELISA assays showed a mutual TGF-β and ET-1 induction in
both SSc-EC and HC-EC. A statistically significant increase of SMAD phosphorylation after treatment
was observed in SSc-EC. In each assay, MAC inhibited both TGF-β and ET-1 effects.
Conclusion.Our work is the first demonstration in literature that SSc-EC, under the synergistic effect
of TGF-β and ET-1, may transdifferentiate toward myofibroblasts, thus contributing to fibroblast
accumulation. MAC, interfering with this process in vitro, may offer a new potential therapeutic
strategy against fibrosis. (First Release August 15 2015; J Rheumatol 2015;42:1808–16; doi:10.3899/
jrheum.150088)
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Systemic sclerosis (SSc) is a chronic disease characterized by
the activation of the immune system, fibroproliferative vascu-
lopathy, and tissue fibrosis1. Vascular abnormalities are involved
in many organ dysfunctions, including lung, heart, and kidney2,

and probably drive the first symptom of the disease, the Raynaud
phenomenon. Although different mediators have been identified
as active players in the vascular remodeling in SSc, such as
endothelin-1 (ET-1) and transforming growth factor-β
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(TGF-β)1,2,3, the mechanisms underlying SSc vasculopathy and
how this damage may lead to fibrosis remain poorly understood.

In this setting, myofibroblasts are considered the effector
cell in the fibrotic process. The differentiation of quiescent
fibroblasts toward cells displaying a proliferating,
matrix-producing, contractile phenotype has been shown to
be a basic step in this process4. Further, the use of in vivo
animal models in which fibrillar collagen-producing cells
have been tracked, helped us to understand that both pericytes
and resident fibroblasts are a source of activated myofibro-
blasts as shown during the evolution of chronic kidney
fibrotic diseases5,6,7. Several reports8,9,10 showed that
myo-fibroblasts may also originate through the mesenchymal
transition of endothelial cells (EC), the so-called endothe-
lial-to-mesenchymal transition (EndMT), first observed in
studies on cardiac development11, and to date, emerging as a
possible pathogenetic mechanism in different diseases,
including diabetic nephropathy, cardiac fibrosis, intestinal
fibrosis, pulmonary hypertension, and SSc12,13,14,15,16.

During EndMT, resident EC delaminate from the
polarized cell layer and invade the underlying tissue. This EC
“mesenchymal” phenotype is characterized by the loss of
cell-cell junctions and EC markers, such as Von Willebrand
factor (vWF), CD31, and vascular endothelial-cadherin
(VE-cadherin), as well as the acquisition of invasive
properties associated with the gain of mesenchymal markers,
such as α-smooth muscle actin (α-SMA), smooth muscle 22
(Sm22), and collagen1 (Col1A1)11,17,18,19. Despite evidence
suggesting that EndMT is involved not only in patho-
logical12,13,14,15,16,17,18,19 but also in physiological condi-
tions20, the underlying molecular mechanisms involved in
this process are largely unknown. Evidence has shown the
crucial role of TGF-β signaling in the initiation of EndMT17.
Of note, the same molecule is also considered a pivotal player
in many fibrotic diseases, including SSc21,22,23. TGF-β exerts
its profibrotic role by binding with specific receptors, and the
signal is transduced to the nucleus by members of the 
Sma- and Mad-related (SMAD) family. It has been shown
that TGF-β may induce phosphorylation of both SMAD1 and
SMAD5, together with phosphorylation of SMAD2/3, in
different cell lines such as EC, epithelial cells, fibroblasts,
and cancer-derived cell lines24,25,26. The activation of intra-
cellular transcription factors supported the production of
other fibrotic molecules, such as ET-127. Further, TGF-β–medi-
ated ET-1 release has been associated to the fibrotic response
observed in scleroderma fibroblasts in the context of skin and
lung fibrosis28.

ET-1, a 21–amino acid peptide, is known to be one of the
most potent vasoconstrictors. In addition to its role in
regulating vascular tone through its interaction with 2 specific
receptors, endothelin receptor A (ETRA) and B (ETRB), this
peptide further displays some fibrotic activity. In vitro studies
showed that ET-1 promotes myofibroblast switch in fibro-
blasts, including the SSc fibroblasts19.

A better understanding of the mechanisms responsible for
EndMT may be of primary importance in recognizing clini-
cally useful biomarkers, predicting fibrotic remodeling,
and/or developing effective antifibrotic therapies in different
fibrotic conditions. Considering that EndMT may induce a
profibrotic phenotype and contribute significantly to the
vessel’s instability and capillary rarefaction during SSc, we
investigated the ability of ET-1 in inducing EndMT in
SSc-EC and the possible role of macitentan (MAC) in
blocking this process. MAC is a novel ETRA/ETRB antag-
onist, showing in a longterm event-driven Phase III trial
(SERAPHIN) the ability to reduce the risk of morbidity and
mortality in patients with pulmonary arterial hypertension29.

To our knowledge, ours is the first report showing that
SSc-EC may undergo EndMT and that ET-1 strongly
modulates this process. Further, EndMT may be partially
blocked by MAC. Our data suggest that this new ET-1 antag-
onist, interfering in vivo with this process, might offer a new
therapeutic opportunity for fibrosis in SSc, a condition still
lacking an appropriate therapy.

MATERIALS AND METHODS
EC isolation and culture. After obtaining approval from the San Salvatore
University Hospital ethics committee and written informed consent from
patients, microvascular EC were acquired from 10 patients with SSc with the
diffuse cutaneous form of recent onset (disease duration < 3 yrs calculated
since the first non-Raynaud symptom of SSc)30,31 by skin biopsies.
Demographic and clinical characteristics of the patients are shown in Table 1.

Patients discontinued corticosteroids, oral vasodilators, intravenous
prostanoids, or other potentially disease-modifying drugs at least 1 month
before biopsies. None took immunosuppressants.

Ten frozen healthy control (HC) EC samples obtained from age-matched
women donors (skin samples for research purposes) were used as controls.

Biopsy samples (1 × 0.5 cm) of the involved forearm skin (skin score
1/2 at the biopsy site) were washed with phosphate buffered saline (PBS;
Life Technologies), and 4 explants were placed into a 50-ml tube containing
15 ml of trypsin (Sigma-Aldrich) and then to digest for 45 min at 37°C. Cells
were cultured in EGM2-MV (Lonza) at 37°C in a humidified atmosphere of
5% CO2.

Before the cells reached confluence, after about 1 week, the hetero-
geneous pool of cells was exposed to a CD31-positive selection performed
with the Dynabeads magnetic CD31 MicroBeads cell-sorting system
(Invitrogen, Life Technologies). The beads rapidly targeted and partially
coated the EC expressing the CD31 receptor.

After incubation, the cells were placed in a magnet (Dyna MPC-S;
Invitrogen, Life Technologies) for 2 min, following the manufacturer’s
recommended protocol for washings and final extraction. The
CD31-negative cells were removed during the successive washings. The
positive-selected cells were 99% EC with specific phenotype (CD-31,
CD-34, CD-144; Figure 1A). The cells were used at third passages (P3).
EC treatment with TGF-β, ET-1, and MAC. To establish the optimal concen-
trations of TGF-β (R&D), ET-1 (Sigma-Aldrich), and MAC in our system,
a dose/response curve was performed on α-SMA expression (data not
shown) using P3 EC obtained from both 1 control and 1 patient.

Each experiment was performed in triplicate and the optimal stimulation
dose for TGF-β was assessed to be 10 ng/ml, for ET-1, it was assessed to be
200 nM, and for MAC, it was 1 µm.

For EndMT gene and protein expressions, EC were treated in the
following conditions: (1) untreated (UT) EC, (2) EC + TGF-β (10 ng/ml),
(3) EC pretreated (1 h) with MAC (1 µm) before being treated with TGF-β,
(4) EC + ET-1 (200 nM), and (5) EC pretreated (1 h) with MAC (1 µm)
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before being treated with ET-1. EC were cultured for 6 days in accordance
with published studies19,32.

To assess SMAD 1/5 and SMAD 2/3 phosphorylation, EC were treated
in the following conditions: (1) UT EC, (2) EC + TGF-β (10 ng/ml), (3) EC
pretreated (1 h) with MAC (1 µm) before being treated with TGF-β, (4) EC
+ ET-1 (200 nM), and (5) EC pretreated (1 h) with MAC (1 µm) before being
treated with ET-1. The experimental conditions were applied for 24 h.
Quantitative real-time (qRT)-PCR analysis. Total RNA was extracted from
EC using NucleoSpin RNAXS (Macherey Nagel) according to manufac-
turer’s instructions and reverse transcribed into cDNA with the ThermoScript
reverse transcription–PCR system (Invitrogen, Life Technologies).

The qRT-PCR was performed using SYBR green kits (Applied
Biosystems). Results were analyzed after 45 cycles of amplification using
the ABI 7500 Fast Real Time PCR System. Primers were designed on the
basis of the reported sequences [Primer bank National Center for
Biotechnology Information: β-actin: 5¢-CCT GGC ACC CAG CAC AAT-3¢
(forward) and 5¢-AGT ACT CCG TGT GGA TCG GC-3¢ (reverse); vWF:
5¢-AGC CTT GTG AAA CTG AAG CAT-3¢ (forward) and 5¢-GGC CAT
CCC AGT CCA TCT G-3¢ (reverse); CD31: 5¢-CCA AGG TGG GAT CGT
GAG G-3¢ (forward) and 5¢-TCG GAA GGA TAA AAC GCG GTC-3¢
(reverse); VE-cadherin: 5¢-GTT CAC GCA TCG GTT GTT CAA-3¢
(forward) and 5¢-CGC TTC CAC CAC GAT CTC ATA-3¢ (reverse); Sm22:
5¢-CCG GTT AGG CCA AGG CTC-3¢ (forward) and 5¢-GCG GCT CAT
GCC ATA GGA-3¢ (reverse); α-SMA: 5¢-CGG TGC TGT CTC TCT ATG
CC-3¢ (forward) and 5¢-CGC TCA GTC AGG ATC TTCA-3¢ (reverse);
Col1A1: 5¢-AGG GCC AAG ACG AAG ACA GT-3¢ (forward) and 5¢-AGA
TCA CGT CAT CGC ACA ACA-3¢ (reverse)]. Each gene was normalized
to those for β-actin.
Western blot. To perform Western blot assays, EC cells were pelleted,
washed twice with PBS, and lysed in sodium dodecyl sulfate (SDS) sample
buffer. The protein concentration was calculated by Bradford protein assay
reagent (Bio-Rad). There were 50 μg of proteins separated by SDS-polyacry-
lamide gel and transferred to nitrocellulose membranes. After 1 h at room
temperature in blocking buffer [5% nonfat milk in Tris-buffered saline/1%
tween 20 (TBS/T)], the membranes were washed 3 times for 5 min each in
TBS/T and incubated overnight at 4°C with the primary antibodies: CD31,
VE-cadherin (R&D Systems), Sm22 (Abcam), vWF, α-SMA, Col1A1
(Santa Cruz), Phospho-SMAD1/5, and Phospho-SMAD2/3 (Cell Signaling),
diluted in 5% bovine serum albumin in TBS/T. Following 3 washes with
TBS/T, horseradish peroxidase-conjugated secondary antibodies (Santa Cruz
Biotechnology) diluted in blocking buffer was added for 30 min at room
temperature and washed 3 times with TBS/T. The detection was done with
enhanced chemiluminescence detection electrochemiluminescent reaction

(Amersham Pharmacia Biotechnology). All the results were normalized to
the levels of proteins of UT HC-EC and normalized to the actin signal
(Sigma-Aldrich). Immunoreactive bands were quantified with densitometry
using ImageJ software (National Institutes of Health).
ELISA. The concentrations of TGF-β and ET-1 released in EC supernatants
were determined by ELISA using Quantikine Human Immunoassay kits (all
by R&D Systems) according to the manufacturer’s protocol.
Statistical analysis. GraphPad Prism 5.0 software was used for statistical
analyses. Results are expressed as median (range). Because of the nonpara-
metric distribution of our data, the Mann-Whitney U test was used as appro-
priate for analyses. Statistical significance was expressed by a p value ≤ 0.05.

RESULTS
Effect of MAC on endothelial marker expression in SSc-EC.
As shown in Figure 1 (B, C, D), after TGF-β or ET-1
treatment, the mRNA expression of endothelial markers
markedly decreased in both HC-EC and SSc-EC when
compared with UT cells. Of note, MAC significantly reverted
both the TGF-β and the ET-1 effects on HC-EC and SSc-EC.
As shown in Figure 1E, these results were confirmed at the
protein level by Western blotting analyses.
Effect of MAC on mesenchymal markers expression in
SSc-EC. In both HC-EC and SSc-EC, TGF-β or ET-1
treatment induced a significant increase of mRNA expression
of the myofibroblast markers when compared with UT cells
(Figure 2A, B, C). MAC reverted both the TGF-β and the
ET-1 effects on HC-EC and SSc-EC, mirroring the results
obtained in the endothelial markers analyses. The Western
blot in Figure 2D showed that at protein levels, the results
mirror the changes observed in gene expression levels.
The synergic ET-1/TGF-β production in SSc-EC. ET-1
production was assessed using a specific ELISA assay before
and after cells treatment with TGF-β for 24 h. The results
showed that ET-1 was significantly increased in UT SSc-EC
when compared with UT HC-EC [UT HC-EC: 5.35 pg/ml
(4.00–6.40) vs UT SSc-EC: 11.20 pg/ml (9.60–12.70), p =
0.0002]. Further, TGF-β significantly induced ET-1
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Table 1. Clinical and demographic features of the 10 patients with diffuse SSc.

Sex/Age, Yrs Yr of SSc mRSS/Score at Autoantibodies Lung Involvement Heart Involvement/ Raynaud 
Onset/Disease Duration Skin Biopsy from HRCT/PFT Scleroderma Phenomenon/ 

at Skin Biopsy, Yrs Renal Crisis Digital Ulcers

F/46 2010/2 12/2 ANA/Scl-70 Normal/Normal Normal/No Yes/No
F/21 2009/3 13/1 ANA/Scl-70 Normal/Normal Normal/No Yes/Yes
F/31 2011/1 13/2 ANA/Scl-70 Normal/Normal Normal/No Yes/Yes
F/36 2010/2 11/2 ANA/Scl-70 Normal/Normal PAH/No Yes/Yes
M/20 2010/2 11/1 ANA/Scl-70 Normal/Normal Normal/No Yes/No
F/41 2010/2 15/2 ANA/Scl-70 Normal/Normal Normal/No No/No
F/30 2010/2 10/1 ANA/Scl-70 Normal/Normal Normal/No Yes/No
F/21 2010/2 09/1 ANA/Scl-70 Normal/Normal Normal/No Yes/No
F/31 2009/3 14/1 ANA/Scl-70 Normal/Normal Normal/No Yes/No
F/42 2009/3 16/2 ANA/Scl-70 Fibrosis/Normal Normal/No Yes/No

SSc: systemic sclerosis; mRSS: modified Rodnan skin score, maximum possible score 51; HRCT: high-resolution computed tomography; PFT: pulmonary
function test; ANA: antinuclear antibodies; Scl-70: antitopoisomerase; PAH: pulmonary arterial hypertension.
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production with significantly higher levels in SSc-EC 
when compared with HC-EC [HC-EC + TGF-β: 10.90 
pg/ml (9.50–12.40) vs SSc-EC + TGF-β: 21.65 pg/ml
(19.70–23.50), p = 0.0002; Figure 3A].

We further evaluated the TGF-β production after ET-1
stimulation. Already in UT condition, SSc-EC produced
significantly higher levels of TGF-β when compared with HC
cells [UT HC-EC: 30.90 pg/ml (28.20–35.20) vs UT SSc-EC:
62.85 pg/ml (60.90–66.10), p = 0.0002]. ET-1 significantly
induced TGF-β production, and this increase was signifi-
cantly higher in SSc-EC when compared with HC-EC
[HC-EC + ET-1: 60.10 pg/ml (57.90–63.90) vs SSc-EC +
ET-1: 92.75 pg/ml (88.90–95.70), p = 0.0002; Figure 3B].
SMAD phosphorylation is inhibited by MAC treatment in
SSc-EC. The Western blot in Figure 3C shows that in UT
SSc-EC, the levels of SMAD phosphorylation were higher
than in HC-EC. After TGF-β treatment, we observed a signifi-
cant increase of SMAD phosphorylation in both HC-EC and
SSc-EC, the latter significantly higher than HC-EC. After ET-
1 treatment, in both HC-EC and SSc-EC, the SMAD
phosphorylation was significantly increased when compared
with UT EC. Further, after ET-1 treatment, the levels of
SMAD phosphorylation in SSc-EC were higher than in HC-
EC. MAC significantly blocked the ET-1 effect on SMAD
activation in both HC-EC and SSc-EC. Further, we observed
that MAC significantly inhibited the SMAD phosphorylation
induced by TGF-β.

DISCUSSION
To our knowledge, our work is the first to demonstrate that
ET-1 induces EndMT in SSc-EC and that this pathologic
process may be inhibited by MAC, a new ET-1 dual receptors
blocker. It is well known that ET-1 is strongly upregulated in
patients with SSc and an endothelial dysfunction is involved
in SSc pathogenesis. In addition to its well-known vasocon-
strictive action, ET-1 displays a wide range of biological
effects such as proliferation, fibrosis, and inflammation, and
involving different cell types. ET-1 induces a profibrotic
phenotype in fibroblasts through the increased expression of
extracellular matrix proteins, such as Type I and Type III
collagen and fibronectin, as well as decreasing the expression
of matrix metalloproteinase 133,34. On the other hand, much
evidence supports the hypothesis that ET-1 may induce the
α-SMA expression in human EC, as well as an increased
collagen production, thus modulating their transdifferenti-
ation toward myofibroblasts8,9,10. The recruitment of myofi-
broblasts in affected tissues, associated with the persistence
of their elevated biosynthetic functions, may be considered
as pivotal determinants for the extent and the progression rate
of the fibrosis in SSc10.

Available literature suggests that myofibroblasts may
derive from several sources, including the expansion of tissue
resident fibroblasts, the migration of bone marrow-derived
circulating fibrocytes, pericytes, and the epithelial cells that

underwent epithelial-mesenchymal transition5,7. A more
recent study showed that EC, under specific stimuli, can also
be considered a source of myofibroblasts undergoing
EndMT, and this phenotypic transition could mainly be of
interest in SSc pathogenesis by providing a cellular link
between vasculopathy and fibrosis10.

We showed that SSc-EC acquired a myofibroblast-like
phenotype after treatment with ET-1, as previously observed
for normal EC after treatment with ET-1 and TGF-β9,27.
Further, to assess the ability of SSc-EC to mirror the behavior
of normal EC, we stimulated these cells with TGF-β, also
showing that this cytokine may modulate EndMT in SSc-EC.
In fact, SSc-EC displayed a reduction of endothelial markers
(CD31, vWF), as well as an increase of profibrotic markers,
such as stress fibers (Sm22, α-SMA) and collagen, after ET-1
and TGF-β stimulation. It has been shown that the endothelial
damage in SSc skin is characterized by a progressive loss of
the endothelial-specific marker VE-cadherin35, a strictly
endothelial-specific adhesion molecule located at junctions
between EC36. It has been recently shown that during
EndMT, VE-cadherin expression is reduced in EC under-
going transdifferentiation37. Of note, in our experiments, we
showed that after ET-1 and TGF-β stimulation, SSc-EC
displayed a significant decrease of VE-cadherin expression,
suggesting the induction of the EndMT program in our cells.
This evidence allows us to speculate that this profibrotic
switch may be considered a normal response of EC in any
condition characterized by an overexpression of TGF-β and
ET-1, such as the physiologic wound healing or the patho-
logic response to an unknown trigger, as occurs during SSc.

We recently reported the pathologic role that perivascular
mesenchymal cells may play in the fibrotic evolution during
SSc38,39,40 and the results of our present work suggest that in
the process leading to SSc fibrosis, not only perivascular
mesenchymal cells but also EC may contribute to myofi-
broblast generation through the EndMT program.

In this setting, considering the role of ET-1 in triggering
EndMT41, ET-1 blockade may represent an important and
still unexplored target to preserve EC integrity, thus
decreasing the fibroblast accumulation in SSc.

In our experimental model, MAC treatment significantly
reverted the ET-1 effect, as expected, but interestingly MAC
was also able to inhibit the TGF-β–mediated EndMT on both
HC-EC and SSc-EC. The inhibitory effect of MAC on the
EndMT induced by TGF-β suggests that ET-1 may represent
the ultimate mediator of the TGF-β actions. In line with this
evidence, it has been reported42,43 that in both EC and
fibroblast, TGF-β induces the ET-1 gene promoter activity
by SMAD activation. To clarify this aspect, we further
assessed the ET-1 production after TGF-β stimulation by
ELISA assays. Our results confirmed that TGF-β stimulation
increased the ET-1 production by EC. Of note, SSc-EC
displayed higher ET-1 production, already at basal levels,
when compared with HC-EC. Further, we observed that ET-1
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stimulation was able to increase the TGF-β production in
both HC-EC and SSc-EC, the latter showing significantly
higher values of TGF-β before treatment. Under our experi-
mental conditions, UT HC-EC and UT SSc-EC did not show
any change in their phenotypic features, although SSc-EC
constitutively produced higher levels of ET-1 and TGF-β than
HC-EC. We showed that HC-EC and SSc-EC in vitro begin
their morphological changes after 6 days of strong stimu-
lation by ET-1 and TGF-β, a setting mirroring the cytokines
milieu in which these cells may be exposed in vivo, consid-
ering the number of these molecules produced by activated
fibroblasts and inflammatory-recruited cells.

An alternative hypothesis to explain the inhibitory effect
of MAC on TGF-β–induced EndMT could be the cooperation
between TGF-β receptors and ETR in inducing this program.
It has been shown that G-protein–coupled receptors such as
ET-1 receptors may cross over and interact with the pathways
of serine/threonine kinase receptors, such as the TGF-β Type
I receptor (TβRI). Therefore, agonists of ETR may also
activate TβRI signaling and their downstream products, such
as phospho Sma and Mad (pSMAD)44,45. In this setting, the
effects of ET-1 may be due to crosstalk between these 2
receptors induced by the hijack of TβRI signaling machinery
by ETR46. Our results showed that, similarly to TGF-β, ET-1
induced the phosphorylation of SMAD in HC-EC and
SSc-EC, confirming the hypothesis of a possible TGF-β/ET-1
receptor cooperation. Of note, in UT SSc-EC, the levels of
pSMAD were significantly increased when compared with
UT HC-EC. We may speculate that in our experiments at
basal condition, the TGF-β signaling pathway was already
activated as a result of the overexpression of TGF-β and ET-1
during SSc, thus conditioning the higher levels of pSMAD
observed in SSc-EC. In this scenario, MAC, interacting with
the ETR, might also inhibit the TβRI transactivation and
consequent SMAD phosphorylation induced after both
TGF-β and ET-1 stimulation46. A further speculative and
unexplored aspect may be the block of TβRI. However, to
date, unlike ET-1, we still do not have any licensed drug able
to interfere with TβRI47, and from a clinical point of view,
ET-1 receptor antagonist now represents the only possibility
we have to modulate this functional complex.

We showed for the first time, to our knowledge, the
finding that ET-1 induces a phenotypic switch toward
mesenchymal cells in SSc-EC, characterized by a downreg-
ulation of endothelial markers and an increased expression
of profibrotic genes and proteins. Taken together, our results
point out the possible contribution of damaged endothelia in
the generation of profibrotic cells, and support the hypothesis
of a pathologic link between vascular and fibrotic alterations
in the pathogenesis of SSc.

Focusing on the involvement of TGF-β and ET-1 as early
mediators of both vascular and fibrotic components of SSc,
we suggest that these molecules may be considered key thera-
peutic targets in the early phases of the disease. MAC, the

new dual ETR antagonist (as shown in our in vitro study), in
inhibiting the EndMT, may offer new potential therapeutic
strategies that target the TGF-β/ET-1 loop, and may prevent
the early pathways leading to fibrosis in SSc.

Further studies are needed to translate these preclinical
findings into the clinical setting. In fact, although many in
vitro studies suggested the antifibrotic effect of another ET-1
receptor antagonist, bosentan42,48, no clinical benefits were
observed when this drug was used in patients with SSc with
lung fibrosis49. It must be taken into account that the failure
of the clinical trials evaluating its efficacy on interstitial lung
disease may be biased by the choice of a non-sensitive
primary endpoint, as well as the heterogeneity of the enrolled
patients and the lack of histological classifications. On this
basis, any further study of the ET-1 receptor antagonist in
patients with fibrosis might need more stringent inclusion
criteria and perhaps primary and secondary endpoints that
might be more responsive to change50.
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